去括号与添括号法则
如何快速理解添括号与去括号

如何快速理解添括号与去括号
一、法则
添括号法则:
如果括号前面是加号,加上括号后,括号里面的符号不变。
如果括号前面是减号,加上括号后,括号里面的符号全部改为与其相反的符号。
去括号法则:
括号前面是加号,把括号和它前面的加号去掉,括号里各项都不变号;括号前面是减号,把括号和它前面的减号去掉,括号里各项要改变符号.
二、讲解
因为正负数可以表示相反意义的量,所以我们可以用“好”和“坏”来表示“正”和“负”。
带正号的括号我们比喻成一个好国家,比如中国。
带负号的括号我们比喻成一个坏国家,比如日本。
在一个国家里有好人(正数)和坏人(负数)。
在我们中国(带正号的括号里),好人(正数)就是好人(正数),坏人(负数)就是坏人(负数)。
在日本(带负正号的括号里)所谓的好人,其实是坏人,所谓坏人反而是好人。
现在我们来理解添括号法则:
带正号的情况好理解,我们重点说添上带负号的括号:好人(正数)到了日本(带负号的括号里)会被认为是坏人(负数),而坏人(负数)到了日本(带负正号的括号里)反而成了好人(正数)。
现在我们来理解去括号法则:
去掉带正号的括号情况好理解,我们重点说去带负号的括号:日本国里(带负正号的括号里)所谓的好人(正数),去掉括号后,其实是坏人(负数);日本国里(带负正号的括号里)所谓的坏人(负数),去掉括号后,其实是好人(正数)。
括号法则

括号法则1. 去括号的法则是:括号前面是“+”号,去括号时,括号里的各项都不变;括号前面是“-”号,去括号时,括号里的各项都变号.例如;5a+(4b-3a)-(2b+a)=5a+4b-3a-2b-a=a+2b.练习题:5246-(246+694)= 354+(229+46)=(23+56)+47 = 125×(3+8)=2. 添括号的法则是:添括号时,括号前面是“+”号,括到括号里的各项都不变;括号前面是“-”号,括到括号里的各项都变号.例如:4a-3b-2c=4a-(3b+2c);7a+2b-5c=7a+(2b-5c).练习题:582-157-182= 2354-456-544=45627-258-742-1627= 458-45—155括号前面是加号时,去掉括号,括号内的算式不变。
括号前面是减号时,去掉括号,括号内加号变减号,减号变加号。
法则的依据实际是乘法分配律注: 要注意括号前面的符号,它是去括号后括号内各项是否变号的依据.去括号时应将括号前的符号连同括号一起去掉.要注意,括号前面是"-"时,去掉括号后,括号内的各项均要改变符号,不能只改变括号内第一项或前几项的符号,而忘记改变其余的符号.若括号前是数字因数时,应利用乘法分配律先将数与括号内的各项分别相乘再去括号,以免发生错误.遇到多层括号一般由里到外,逐层去括号,也可由外到里.数"-"的个数.3. 一定要注意,若括号前面是除号,不能直接去除除号.小学数学巧算,移位凑合法法交换律两个数相加,交换加数的位置,和不变。
a+b=b+a加法结合律三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。
(a+b)+c=a+(b+c)减法的性质减去一个数,等于加这个数的相反数。
a-b=a+(-b)连续减去两个数,等于减去这两个数的和。
a-b-c=a-(b+c)减去一个数再加上一个数,等于减去这两个数的差。
四年级数学去添括号

1
1.加减法去括号和添括号的法则 在只有加减运算的算式里,
如果括号前面是“+”号, 则不论去掉括号或添上括号, 括号里面的运算符号都不变;
如果括号前面是“-”号,
则不论去掉括号或添上括号,
括号里面的运算符号都要改变,
“+”变“-”,“-”变“+”。
大家好
2
1.加减法去括号和添括号的法则
• 即:
• 即:
• a × (b × c)=a × b × c • a × (b ÷ c)=a × b ÷ c • a ÷ (b × c )=a ÷ b ÷ c • a ÷ (b ÷ c)=a ÷ b × c
大家好
8
例4. 150×36÷6 = 150×(36÷6 ) = 150 ×6 = 900
(63×25)×(40÷7) = 63÷7×(25 ×40 ) = 9 ×1000 = 9000
• a+(b+c)=a+b+c
• a+(b-c)=a+b-c • a-(b+ c )=a-b-c • a-(b-c)=a - b + c
大家好
3
例1. 178+(229+122) =178+229+122 =178+122+229 = 300+229 =529
• 295+(214-195) =295 + 214 - 195 = 295 - 195 + 214 =100+214 =314
大家好
4
例2. 618-243-157 = 618-(243+157) = 618-400
= 218
174-(41+74) = 174-74 - 41 =100- 41
= 59
大家好
突破去括号与添括号难点

添括号 -a-b+c-d-e (把前两项后三项括在括号内) 原式 (把后四项括在括号内) 原式 (把前三项后两项括在括号内) 原式
添括号 -a-b+c-d-e (把前两项后三项括在括号内) 原式=(-a-b)+(c-d-e) =-(a+b)+(c-d-e) (把后四项括在括号内) 原式=-a+(-b+c-d-e) =-a-(b-c+d+e) (把前三项后两项括在括号内) 原式=(-a-b+c)+(-d-e) =-(a+b-c)-(d+e)
2 2 ( 30 y 15 y 5 ) ( 30 y 12 ) ( 3 30 y ) 解:原式 30 y 2 15 y 5 30 y 12 3 30 y 2
15 y 4
当y=-3时,上式值为
-15X(-3)+4 =45+4=49
2 2
先添括号,再合并 同类项,可以降低 错误率
注意事项
添括号是为了达到某个目的预备手段,若 被括号第一项为“+”,则括号前选择“+” 号,被括各项不变号;若被括号第一项为 “-”号,则括号前选择“-”号,被括各项都 变号
练习化简求值:
2xx=1,y=-1.
2
练习化简求值:
2x y 4x y 3xy 5xy
同步练习 2 1)
2) 3)
a 2 ab b b
2
2
x
2
7a b 4a b 5ab 2 2a b 3ab
2 2 2
y 3 2x 3 y
2 2
去括号和添括号的法则G

③100-(30-10)=100-30+10=80
例2计算下面各题:
①100+10+20+30=100+(10+20+30)=100+
60=160
②100-10-20-30=100-(10+20+30)=100-60=40
③100-30+10=100-(30-10)=100-20=80
一
如果括号前面是“+”号,则不论去掉括号或添上括号,括号里
面的运算符号都不变;如果括号前面是“-”号,则不论去掉括号
或添上括号,括号里面的运算符号都要改变,“+”变“-”,“-”变“+”,
即:
a+(b+c+d)=a+b+c+d
a-(b+a+d)=a-b-c-d
a-(b-c)=a-b+c
例1
①100+(10+20+30)=100+10+20+30=160
①1320×500÷250=1320×(500÷250)=1320×2=2640
②4000÷125÷8=4000÷(125×8)=4000÷1000=4
③5600÷(28÷6)=5600÷28×6=200×6=1200
④372÷162×54=372÷(162÷54)=372÷3=124
⑤2997×729÷(81×81)=2997×729÷81÷81
注意:
带符号“搬家”
例3计算325+46-125+54=325-125+46+54
=(325-125)+(46+54)=200+100=300
注意:
每个数前面的运算符号是这个数的符号.如+46,
-125,+
去括号和添加括号法则练习

去括号添括号法则及练习一、去括号法则:1、括号前面有"+"号,把括号和它前面的"+"号去掉,括号里各项的符号不改变;字母表示:a +(b + c)= a + b + c例如:23+(77+56)=23+77+56a +(b - c)= a + b - c例如:38+(62-48)=38+62-482、括号前面是"-"号,把括号和它前面的"-"号去掉,括号里各项的符号都要改变为相反的符号;字母表示:a -(b + c)= a - b - c例如:159-(59+26)=159-59-26a -(b - c)= a - b + c例如:378-(78-39)=378-78+393、去括号时,应将括号前的符号连同括号一起去掉. 要注意,括号前面是"-"时,去掉括号后,括号内的各项均要改变符号,不能只改变括号内第一项或前几项的符号,而忘记改变其余的符号.x+(y-z)-(-y-z-x) =4、若括号前是数字因数时,应利用乘法分配律先将数与括号内的各项分别相乘再去括号,以免发生错误.a+3(2b+c-d)=5、遇到多层括号一般由里到外,逐层去括号,也可由外到里,数"-"的个数.24-(176+24)+[276-72-(134-72)+234]例题:4+(5+2) 4-(5+2)= =a+(b+c) a-(b+c)= =去括号练习:(1)a+(-b+c-d)=(2)a-(-b+c-d) =(3)-(p+q)+(m-n)=(4)(r+s)-(p-q) =(5)x+(y-z)-(-y-z-x) =(6)(2x-3y)-3(4x-2y)=下列去括号有没有错误?若有错,请改正:(1)a2-(2a-b+c) (2)-(x-y)+(xy-1)=a2-2a-b+c =-x-y+xy-1二、添括号法则:添上“+”号和括号,括到括号里的各项都不变号;添上“-”号和括号,括到括号里的各项都改变符号。
整式的加减法去括号和添括号的用法(一)

整式的加减法去括号和添括号的用法(一)整式的加减法去括号和添括号的用法本文将介绍整式的加减法去括号和添括号的用法,并详细讲解以下几个方面:1.去括号和添括号的定义2.整式去括号的规则和示例3.整式添括号的规则和示例4.注意事项和常见错误1. 去括号和添括号的定义•去括号:将一个整式中的括号内的表达式按照括号前的符号进行分配运算,去掉括号。
•添括号:在一个整式中提取其中的一部分进行括号,用于改变运算顺序或减少计算量。
2. 整式去括号的规则和示例•去括号的规则:–括号前有正号或无符号:将括号内的每一项与括号前的符号相乘。
–括号前有负号:将括号内的每一项与括号前的符号相乘,并改变项内的符号。
•示例1:–原式:2(3x + 5y)–去括号后:6x + 10y•示例2:–原式:-3(2x - 4y)–去括号后:-6x + 12y3. 整式添括号的规则和示例•添括号的规则:–可以在整式中的任意位置添加括号,但需保持运算的正确性。
–添括号可以改变整式的运算顺序,提高计算效率。
•示例1:–原式:3x + 2y + 4z - 5w–添括号后:(3x + 2y) + (4z - 5w)•示例2:–原式:2x^2 + 3x - 5–添括号后:2x^2 + (3x - 5)4. 注意事项和常见错误•注意事项:–在运算中,括号的使用必须符合数学运算的法则。
–添括号时要注意运算顺序,确保计算的正确性。
•常见错误:–在去括号过程中,忽略了括号前的符号,导致计算错误。
–在添括号过程中,未保持原式的运算顺序,导致计算结果不正确。
这些是整式的加减法去括号和添括号的常用用法和规则,希望可以帮助你更好地理解和运用整式的运算。
在实际运算中,需要根据具体的情况和题目要求灵活运用这些方法。
3.4.3 去括号与添括号

3.化简: (1)x-3(1-2x+x2)+2(-2+3x-x2) (2)(3x2-5xy)+{-x2-[-3xy+2(x2-xy)+y2]} 解:(1)原式=x-3+6x-3x2-4+6x-2x2 =(-3x2-2x2)+(x+6x+6x)+(-3-4) =-5x2+13x-7 (2)原式=3x2-5xy+{-x2-[-3xy+2x2-2xy+y2]} =3x2-5xy+{-x2+3xy-2x2+2xy-y2} =3x2-5xy-x2+3xy-2x2+2xy-y2 =(3x2-x2-2x2)+(-5xy+3xy+2xy)-y2=-y2
[典例] 已知A=4x2-4xy+y2,B=x2+xy-5y2,求A-B。
错解:A-B=4x2-4xy+y2-x2+xy-5y2=3x2-3xy-4y2 正解:A-B=(4x2-4xy+y2)-(x2+xy-5y2) =4x2-4xy+y2-x2-xy+5y2 =3x2-5xy+6y2
评析:本题产生错误的原因是把A、B代入所求式子时,丢掉 了括号,导致后两项的符号错误。因为A、B表示两个多项式, 它是一个整体,代入式子时必须用括号表示,尤其是括号前 面是“-”时,如果丢掉了括号就会发生符号错误,今后遇到 这类问题,一定要记住“添括号”。
[典例] 计算2a2b-3ab2+2(a2b-ab2)
错解:原式=2a2b-3ab2+2a2b-ab2 =2a2b+2a2b-3ab2-ab2=4a2b-4ab2 正解:原式=2a2b-3ab2+2a2b-2ab2 =2a2b+2a2b-3ab2-2ab2=4a2b-5ab2 评析:去括号时,要按照乘法分配律把括号前面的 数和符号一同与括号内的每一项相乘,而不是只乘 第一项。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
教学目标
(一)知识目标:
1.通过生活实际,让学生感受有括号产生的实际背景和引入的必要性.
2.能掌握去括号与添括号法则;并能说出现由.
(二)能力训练目标:
1.让学生从实际背景的活动,感受去括号与添括号的必要性和合理性,培养学生感受数学来自生活。
2.通过学生进出教室这一实例,能正确地进行推理和判断去括号与添括号法则,训练他们的思维判断能力.
(三)情感与价值观目标:
1.激励学生积极参与教学活动,提高大家学习数学的热情.
2.引导学生充分进行交流,讨论与探索等教学活动,培养他们的合作与钻研精神.
3.了解去括号与添括号法则后,鼓励学生大胆质疑,培养他们为真理而奋斗的精神.
教学重点
1.让学生经历学生进出教室这一事例.感知生活中确实存在着没有括号与有括号的重要性.
2.掌握去括号与添括号法则,并能熟练应用
教学难点
1.从学生走出教室的实例,让学生理解括号前是个“-”的理由。
2.添上“-”与括号,括到括号里各项都要变号。
教学方法
教师引导,主要由学生分组讨论得出结果.
教学过程
一、创设问题情境,引入新课
[师]同学们,由于你们上体育课后,教室里原有a个学生,走进来了第一批学生是b个学生,又走进来第二批学生是c个学生,现在教室里有几个学生?相反呢?
[生]表示:a+b+c;或者a+(b+c), a_b_c或者a_(b+c)。
[生]发现:a+b+c=a+(b+c),a_(b+c)=a_b_c. [师]对,我们在小学里用过括号,但没有进一步探究,今天我们来一起探究有括号与没有括号的区别在于什么,下面我们就来共同研究这个问题.
二、讲授新课
1.问题的提出
[师]请大家四个人为一组,探究下列四个等式:a+(b+c)= a+b+c,a_(b+c)= a_b_c 或者:a+b+c= a+(b+c),a_b_c= a_(b+c)。
有什么规律,下面开始探究。
教学目标
(一)知识目标:
1.通过探究活动,让学生感受去括号与添括号实际背景和引入的必要性.
2.能判断去括号与添括号的正确性。
并能说出现由.
(二)能力训练目标:
1.让学生亲自动探究活动,感受去括号与添括号的规律,培养大家的合作精神.
2.通过学习去括号与添括号的法则后,能正确地进行推理和判断,识别某些去括号与添括号是否正确,训练他们的思维判断能力.
(三)情感与价值观目标:
1.激励学生积极参与教学活动,提高大家学习数学的热情.
2.引导学生充分进行交流,讨论与探索等教学活动,培养他们的合作与钻研精神.
3.掌握去括号与添括号的法则的有关知识,鼓励学生大胆质疑,培养他们为真理而奋斗的精神. [生]好.(学生非常高兴地投入活动中).
[师]经过大家的共同努力,每个小组都完成了任务,请各组把所发现的问题用一句话描述一下,同学们非常踊跃地举手回答.
[师]现在我们一齐把大家所描述的总结一下:添括号法则:添上“+”号和括号,括到括号里的各项都不变号;添上“-”号和括号,括到括号里的各项都改变符号;
例1 按要求,将多项式3a-2b+c添上括号:
(1)把它放在前面带有“+”号的括号里;(2)把它放在前面带有“-”号的括号里
此题是添括号法则的直接应用,为了更加明确起见,在解题时,先写出3a-2b+c=+( )=-( )的形式,再让学生往里填空,特别注意,添“-”号和括号,括到括号里的各项全变号
解:3a-2b+c=+(3a-2b+c)=-(-3a+2b-c)
紧接着提问学生:如何检查添括号对不对呢?引导学生观察、分析,直至说出可有两种方法:一是直接利用添括号法则检查,一是从结果出发,利用去括号法则检查肯定学生的回答,并进一步指出所谓用去括号法则检查添括号,正如同用加法检验减法,用乘法检验除法一样。
例2 在下列( )里填上适当的项:(1)a+b+c-d=a+( );
(2)a-b+c-d=a-( ); (3)x+2y-3z=2y-( )(4)(a+b-c)(a-b+c)=[a+( )][a-( )];
(5)-(a3-a2)+(a-1)=-a3-( )
本题找学生回答
解:(1)原式=a+(b+c-d);(2)原式=a-(b-c+d);
(3)原式=2y-(3z-x);(4)原式=[a+(b-c)][a-(b-c)];(5)原式=-a3-(-a2-a+1)
三.质疑再探:例3 按下列要求,将多项式x3-5x2-4x+9的后两项用( )括起来:
(1)括号前面带有“+”号;(2)括号前面带有“-”号。
解:(1)x3-5x2-4x+9 (2)x3-5x2-4x+9
=x3-5x2+(-4x+9); =x3-5x2-(4x-9).
说明:1.解此题时,首先要让学生确认x 3-5x 2-4x+9的后两项是什么——是-4x 、+9,要特别注意每一项都包括前面的符。
。
四.运用拓展:
课堂练习
1、用括号把mx+nx-my-ny 分成两组,使其中含m 的项结合,含n 的项结合(两个括号用“+连接)
2、在多项式m 4-2m 2n 2-2m 2+2n 2+n 4中添括号:
(1)把四次项结合,放在前面带有“+”号的括号里; (2)把二次项结合
,放在前面带有“-”号的括号里 3、把多项式10x 3-7x 2y+4xy 2+2y 3-5写成两个多项式的和,使其中一个不含字母y
4、把三项式31-x 2+x 写成单项式与二项式的差
5、把21b 3-31b 2+41b-6
1写成两个二项式的和.
小结 1、这两节课我们学习了去括号法则和添括号法则,这两个法则在整式变形中经常用到,而利用它们进行整式变形的前提是原来整式的值不变。
2、去、添括号时,一定要注意括号前的符号,这里括号里各项变不变号的依据。
板书设计
3.5去括号(2)
(一)情景引入 (三)课堂练习 (五)作业
(二)新课讲解 (四)课堂小结。