【小初高学习]2017年中考数学热身 不等式及其应用(含解析)
2017年中考数学热身不等式与不等式组含解析

不等式与不等式组一、选择题1.在数轴上表示不等式x+5≥1的解集,正确的是()A.B.C.D.2.下列说法中,错误的是()A.不等式x<2的正整数解有一个B.﹣2是不等式2x﹣1<0的一个解C.不等式﹣3x>9的解集是x>﹣3D.不等式x<10的整数解有无数个3.如图,数轴上表示的是下列哪个不等式组的解集()A.B.C.D.4.如图,在数轴上表示不等式组的解集,其中正确的是()A.B.C. D.5.若关于x的一元一次不等式组无解,则a的取值范围是()A.a≥1 B.a>1 C.a≤﹣1 D.a<﹣1二、填空题6.不等式2x+9≥3(x+2)的正整数解是.7.已知关于x的不等式(1﹣a)x>2的解集为x<,则a的取值范围是.8.不等式组的解集是.9.若不等式组的解集是x>3,则m的取值范围是.10.若关于x的不等式组有实数解,则a的取值范围是.三、解答题(共40分)11.(1)解不等式: +≤1;(2)解不等式组.12.(1)解不等式:5(x﹣2)+8<6(x﹣1)+7;(2)若(1)中的不等式的最小整数解是方程2x﹣ax=3的解,求a的值.13.解不等式组:,并判断﹣1、这两个数是否为该不等式组的解.14.已知关于x、y的方程组的解满足不等式x+y<3,求实数a的取值范围.15.先阅读理解下面的例题,再按要求解答下列问题:例题:解一元二次不等式x2﹣4>0解:∵x2﹣4=(x+2)(x﹣2)∴x2﹣4>0可化为(x+2)(x﹣2)>0由有理数的乘法法则“两数相乘,同号得正”,得解不等式组①,得x>2,解不等式组②,得x<﹣2,∴(x+2)(x﹣2)>0的解集为x>2或x<﹣2,即一元二次不等式x2﹣4>0的解集为x>2或x<﹣2.(1)一元二次不等式x2﹣16>0的解集为;(2)分式不等式的解集为;(3)解一元二次不等式2x2﹣3x<0.不等式与不等式组参考答案与试题解析一、选择题1.在数轴上表示不等式x+5≥1的解集,正确的是()A.B.C.D.【考点】在数轴上表示不等式的解集;解一元一次不等式.【专题】计算题.【分析】求出不等式的解集,表示在数轴上即可.【解答】解:不等式x+5≥1,解得:x≥﹣4,表示在数轴上,如图所示:故选B【点评】此题考查了在数轴上表示不等式的解集,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.2.下列说法中,错误的是()A.不等式x<2的正整数解有一个B.﹣2是不等式2x﹣1<0的一个解C.不等式﹣3x>9的解集是x>﹣3D.不等式x<10的整数解有无数个【考点】不等式的解集.【分析】解不等式求得B,C即可选项的不等式的解集,即可判定C错误,又由不等式解的定义,判定B正确,然后由不等式整数解的知识,即可判定A与D正确,则可求得答案.【解答】解:A、不等式x<2的正整数解只有1,故A正确;B、2x﹣1<0的解集为x<,所以﹣2是不等式2x﹣1<0的一个解,故B正确;C、不等式﹣3x>9的解集是x<﹣3,故C错误;D、不等式x<10的整数解有无数个,故D正确.该题选择错误的,故选:C.【点评】此题考查了不等式的解的定义,不等式的解法以及不等式的整数解.此题比较简单,注意不等式两边同时除以同一个负数时,不等号的方向改变.3.如图,数轴上表示的是下列哪个不等式组的解集()A.B.C.D.【考点】在数轴上表示不等式的解集.【专题】探究型.【分析】根据数轴上不等式解集的表示方法得出此不等式组的解集,再对各选项进行逐一判断即可.【解答】解:由数轴上不等式解集的表示方法得出此不等式组的解集为:x≥﹣3,A、不等式组的解集为x>﹣3,故A错误;B、不等式组的解集为x≥﹣3,故B正确;C、不等式组的解集为x<﹣3,故C错误;D、不等式组的解集为﹣3<x<5,故D错误.故选:B.【点评】本题考查的是在数轴上表示一元一次不等式组的解集,根据题意得出数轴上不等式组的解集是解答此题的关键.4.如图,在数轴上表示不等式组的解集,其中正确的是()A.B.C. D.【考点】在数轴上表示不等式的解集;解一元一次不等式组.【专题】计算题.【分析】求出不等式的解集,表示在数轴上即可.【解答】解:,由①得:x<1,由②得:x≥﹣1,则不等式的解集为﹣1≤x<1,表示在数轴上,如图所示:故选C【点评】此题考查了在数轴上表示解集,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.5.若关于x的一元一次不等式组无解,则a的取值范围是()A.a≥1 B.a>1 C.a≤﹣1 D.a<﹣1【考点】解一元一次不等式组.【分析】首先解出两个不等式,再根据“大大小小找不到”的原则解答即可.【解答】解:,由①得:x>a,由②得:x<1,∵不等式组无解,∴a≥1,故选:A.【点评】此题主要考查了是已知不等式组的解集,求不等式中另一未知数的问题.可以先将另一未知数当作已知处理,求出解集与已知解集比较,进而求得另一个未知数.求不等式的公共解,要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.二、填空题6.不等式2x+9≥3(x+2)的正整数解是1,2,3 .【考点】一元一次不等式的整数解.【专题】计算题.【分析】先解不等式,求出其解集,再根据解集判断其正整数解.【解答】解:2x+9≥3(x+2),去括号得,2x+9≥3x+6,移项得,2x﹣3x≥6﹣9,合并同类项得,﹣x≥﹣3,系数化为1得,x≤3,故其正整数解为1,2,3.故答案为:1,2,3.【点评】本题考查了一元一次不等式的整数解,会解不等式是解题的关键.7.已知关于x的不等式(1﹣a)x>2的解集为x<,则a的取值范围是a>1 .【考点】解一元一次不等式.【分析】因为不等式的两边同时除以1﹣a,不等号的方向发生了改变,所以1﹣a<0,再根据不等式的基本性质便可求出不等式的解集.【解答】解:由题意可得1﹣a<0,移项得,﹣a<﹣1,化系数为1得,a>1.【点评】本题考查了同学们解简单不等式的能力,解答这类题学生往往在解题时不注意移项要改变符号这一点而出错.解不等式要依据不等式的基本性质,在不等式的两边同时加上或减去同一个数整式不等号的方向不变;在不等式的两边同时乘以或除以同一个正数不等号的方向不变;在不等式的两边同时乘以或除以同一个负数不等号的方向改变.8.不等式组的解集是x≥2 .【考点】解一元一次不等式组.【专题】计算题.【分析】分别计算出每个不等式的解集,再求其公共部分.【解答】解:,由①得,x≥2;由②得,x≥﹣;则不等式组的解集为x≥2.故答案为:x≥2.【点评】本题考查了解一元一次不等式组,找到公共解是解题的关键,求不等式的公共解,要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.9.若不等式组的解集是x>3,则m的取值范围是m≤3 .【考点】不等式的解集.【专题】探究型.【分析】根据“同大取较大”的法则进行解答即可.【解答】解:∵不等式组的解集是x>3,∴m≤3.故答案为:m≤3.【点评】本题考查的是不等式的解集,熟知“同大取较大”的法则是解答此题的关键.10.若关于x的不等式组有实数解,则a的取值范围是a<4 .【考点】解一元一次不等式组.【专题】计算题.【分析】分别求出各不等式的解集,再根据不等式组有实数解即可得到关于a的不等式,求出a的取值范围即可.【解答】解:,由①得,x<3,由②得,x>,∵此不等式组有实数解,∴<3,解得a<4.故答案为:a<4.【点评】本题考查的是解一元一次不等式组,根据不等式组有实数解得出关于a的不等式是解答此题的关键.三、解答题(共40分)11.(1)解不等式: +≤1;(2)解不等式组.【考点】解一元一次不等式组;解一元一次不等式.【分析】(1)去分母、去括号,然后移项、合并同类项、系数化成1即可求得不等式的解集;(2)首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集.【解答】解:(1)去分母,得:3(x+1)+2(x﹣1)≤6,去括号,得:3x+3+2x﹣2≤6,移项,得:3x+2x≤6﹣3+2,合并同类项,得:5x≤5,系数化为1得:x≤1;(2)解①得:x<,解②得:x≥﹣2.则不等式组的解集是:﹣2≤x<.【点评】主要考查了一元一次不等式解集的求法,其简便求法就是用口诀求解,求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).12.(1)解不等式:5(x﹣2)+8<6(x﹣1)+7;(2)若(1)中的不等式的最小整数解是方程2x﹣ax=3的解,求a的值.【考点】解一元一次不等式;一元一次方程的解;一元一次不等式的整数解.【分析】(1)根据不等式的基本性质先去括号,然后通过移项、合并同类项即可求得原不等式的解集;(2)根据(1)中的x的取值范围来确定x的最小整数解;然后将x的值代入已知方程列出关于系数a的一元一次方程2×(﹣2)﹣a×(﹣2)=3,通过解该方程即可求得a的值.【解答】解:(1)5(x﹣2)+8<6(x﹣1)+75x﹣10+8<6x﹣6+75x﹣2<6x+1﹣x<3x>﹣3.(2)由(1)得,最小整数解为x=﹣2,∴2×(﹣2)﹣a×(﹣2)=3∴a=.【点评】本题考查了解一元一次不等式、一元一次方程的解以及一元一次不等式的整数解.解不等式要依据不等式的基本性质:(1)不等式的两边同时加上或减去同一个数或整式不等号的方向不变;(2)不等式的两边同时乘以或除以同一个正数不等号的方向不变;(3)不等式的两边同时乘以或除以同一个负数不等号的方向改变.13.解不等式组:,并判断﹣1、这两个数是否为该不等式组的解.【考点】解一元一次不等式组;估算无理数的大小.【专题】探究型.【分析】分别求出各不等式的解集,再求出其公共解集,由x的取值范围即可得出结论.【解答】解:,由①得x>﹣3;由②得x≤1故此不等式组的解集为:﹣3<x≤1,所以﹣1是该不等式组的解,不是该不等式组的解.【点评】本题考查的是解一元一次不等式组及估算无理数的大小,根据题意求出x的取值范围是解答此题的关键.14.已知关于x、y的方程组的解满足不等式x+y<3,求实数a的取值范围.【考点】解一元一次不等式;解二元一次方程组.【专题】计算题;压轴题.【分析】先解方程组,求得x、y的值,再根据x+y<3,解不等式即可.【解答】解:,①+②得,3x=6a+3,解得x=2a+1,将x=2a+1代入①得,y=2a﹣2,∵x+y<3,∴2a+1+2a﹣2<3,即4a<4,a<1.【点评】本题是一元一次不等式和二元一次方程组的综合题,是中档题,难度适中.15.先阅读理解下面的例题,再按要求解答下列问题:例题:解一元二次不等式x2﹣4>0解:∵x2﹣4=(x+2)(x﹣2)∴x2﹣4>0可化为(x+2)(x﹣2)>0由有理数的乘法法则“两数相乘,同号得正”,得解不等式组①,得x>2,解不等式组②,得x<﹣2,∴(x+2)(x﹣2)>0的解集为x>2或x<﹣2,即一元二次不等式x2﹣4>0的解集为x>2或x<﹣2.(1)一元二次不等式x2﹣16>0的解集为x>4或x<﹣4 ;(2)分式不等式的解集为x>3或x<1 ;(3)解一元二次不等式2x2﹣3x<0.【考点】一元二次方程的应用;分式方程的应用;一元一次不等式组的应用.【专题】压轴题.【分析】(1)将一元二次不等式的左边因式分解后化为两个一元一次不等式组求解即可;(2)据分式不等式大于零可以得到其分子、分母同号,从而转化为两个一元一次不等式组求解即可;(3)将一元二次不等式的左边因式分解后化为两个一元一次不等式组求解即可;【解答】解:(1)∵x2﹣16=(x+4)(x﹣4)∴x2﹣16>0可化为(x+4)(x﹣4)>0由有理数的乘法法则“两数相乘,同号得正”,得解不等式组①,得x>4,解不等式组②,得x<﹣4,∴(x+4)(x﹣4)>0的解集为x>4或x<﹣4,即一元二次不等式x2﹣16>0的解集为x>4或x<﹣4.(2)∵∴或解得:x>3或x<1(3)∵2x2﹣3x=x(2x﹣3)∴2x2﹣3x<0可化为x(2x﹣3)<0由有理数的乘法法则“两数相乘,异号得负”,得或解不等式组①,得0<x<,解不等式组②,无解,∴不等式2x2﹣3x<0的解集为0<x<.【点评】本题考查了一元一次不等式组及方程的应用的知识,解题的关键是根据已知信息经过加工得到解决此类问题的方法.。
【小初高学习】2017年中考数学试题分项版解析汇编第03期专题03方程组和不等式组含解析

专题03 方程(组)和不等式(组)一、选择题1.(2017四川省南充市)如果a +3=0,那么a 的值是( ) A .3 B .﹣3 C .13 D .13- 【答案】B . 【解析】试题分析:移项可得:a =﹣3.故选B . 考点:解一元一次方程.2.(2017四川省眉山市)不等式122x ->的解集是( ) A .x <14- B .x <﹣1 C .x >14- D .x >﹣1【答案】A . 【解析】试题分析:两边都除以﹣2可得:x <14-,故选A . 考点:解一元一次不等式.3.(2017四川省眉山市)已知关于x ,y 的二元一次方程组231ax by ax by +=⎧⎨-=⎩的解为11x y =⎧⎨=-⎩,则a ﹣2b 的值是( )A .﹣2B .2C .3D .﹣3 【答案】B .考点:1.二元一次方程组的解;2.整体思想.4.(2017四川省绵阳市)关于x 的方程022=++n mx x 的两个根是﹣2和1,则mn 的值为( ) A .﹣8 B .8 C .16 D .﹣16 【答案】C . 【解析】试题分析:∵关于x 的方程022=++n mx x 的两个根是﹣2和1,∴2m -=﹣1,2n=﹣2,∴m =2,n =﹣4,∴mn =(﹣4)2=16.故选C .考点:根与系数的关系.5.(2017四川省达州市)某市从今年1月1日起调整居民用水价格,每立方米水费上涨13.小丽家去年12月份的水费是15元,而今年5月的水费则是30元.已知小丽家今年5月的用水量比去年12月的用水量多5cm 3.求该市今年居民用水的价格.设去年居民用水价格为x 元/cm 3,根据题意列方程,正确的是( ) A .30155113x x -=⎛⎫+ ⎪⎝⎭ B .30155113x x -=⎛⎫- ⎪⎝⎭ C . 30155113x x -=⎛⎫+ ⎪⎝⎭ D .30155113x x-=⎛⎫- ⎪⎝⎭【答案】A .考点:由实际问题抽象出分式方程.6.(2017山西省)在体育课上,甲,乙两名同学分别进行了5次跳远测试,经计算他们的平均成绩相同.若要比较这两名同学的成绩哪一个更为稳定,通常需要比较他们成绩的( ) A .众数 B .平均数 C .中位数 D .方差 【答案】D . 【解析】试题分析:由于方差能反映数据的稳定性,需要比较这两名学生立定跳远成绩的方差.故选D . 考点:1.在数轴上表示不等式的解集;2.解一元一次不等式组.7.(2017广东省)如果2是方程230x x k -+=的一个根,则常数k 的值为( ) A .1 B .2 C .﹣1 D .﹣2 【答案】B . 【解析】试题分析:∵2是一元二次方程230x x k -+=的一个根,∴22﹣3×2+k =0,解得,k =2.故选B .考点:一元二次方程的解.8.(2017广西四市)一元一次不等式组⎩⎨⎧≤+>+31022x x 的解集在数轴上表示为( )A .B .C .D .【答案】A . 【解析】试题分析:22013x x +>⎧⎨+≤⎩①②解不等式①得:x >﹣1,解不等式②得:x ≤2,∴不等式组的解集是﹣1<x ≤2,表示在数轴上,如图所示:.故选A .考点:1.解一元一次不等式组;2.在数轴上表示不等式的解集.9.(2017广西四市)一艘轮船在静水中的最大航速为35km/h ,它以最大航速沿江顺流航行120km 所用时间,与以最大航速逆流航行90km 所用时间相等.设江水的流速为v km/h ,则可列方程为( ) A .359035120-=+v v B .v v +=-359035120 C . 359035120+=-v v D .vv -=+359035120【答案】D .考点:由实际问题抽象出分式方程.10.(2017浙江省丽水市)若关于x 的一元一次方程x ﹣m +2=0的解是负数,则m 的取值范围是( ) A .m ≥2 B .m >2 C .m <2 D .m ≤2 【答案】C . 【解析】试题分析:∵程x ﹣m +2=0的解是负数,∴x =m ﹣2<0,解得:m <2,故选C . 考点:1.解一元一次不等式;2.一元一次方程的解.11.(2017浙江省台州市)滴滴快车是一种便捷的出行工具,计价规则如下表:小王与小张各自乘坐滴滴快车,行车里程分别为6公里与8.5公里.如果下车时两人所付车费相同,那么这两辆滴滴快车的行车时间相差( )A .10分钟B .13分钟C .15分钟D .19分钟 【答案】D .考点:二元一次方程的应用.12.(2017重庆市B 卷)若数a 使关于x 的不等式组2122274x x x a-⎧≤-+⎪⎨⎪+>-⎩有且仅有四个整数解,且使关于y 的分式方程2222a y y+=--有非负数解,则所以满足条件的整数a 的值之和是( ) A .3 B .1 C .0 D .﹣3 【答案】B . 【解析】试题分析:解不等式组2122274x x x a -⎧≤-+⎪⎨⎪+>-⎩,可得347x a x ≤⎧⎪+⎨>-⎪⎩,∵不等式组有且仅有四个整数解,∴-1≤47a +-<0,∴-4<a ≤3,解分式方程2222a y y+=--,可得y =12(a +2),又∵分式方程有非负数解,∴y ≥0且y ≠2,即12(a +2)≥0,且12(a +2)≠2,解得a ≥﹣2且a ≠2,∴﹣2≤a ≤3且a ≠2,∴满足条件的整数a 的值为﹣2,﹣1,0,1,3,∴满足条件的整数a 的值之和是1,故选B .考点:1.分式方程的解;2.一元一次不等式组的整数解;3.含待定字母的不等式(组);4.综合题. 二、填空题13.(2017四川省南充市)如果111m =-,那么m = . 【答案】2. 【解析】试题分析:去分母得:1=m ﹣1,解得:m =2,经检验m =2是分式方程的解,故答案为:2. 考点:解分式方程.14.(2017四川省广安市)不等式组⎪⎩⎪⎨⎧+≤-<--32114)2(3x x x x 的解集为 .【答案】1<x ≤4.考点:解一元一次不等式组.15.(2017四川省眉山市)已知一元二次方程2320x x --=的两个实数根为1x ,2x ,则12(1)(1)x x --的值是 . 【答案】﹣4. 【解析】试题分析:∵一元二次方程2320x x --=的两个实数根为1x ,2x ,∴123x x +=、122x x =-,∴12(1)(1)x x --=1212()1x x x x -++=﹣2﹣3+1=﹣4.故答案为:﹣4.考点:根与系数的关系.16.(2017四川省绵阳市)关于x 的分式方程xx x -=+--111112的解是 . 【答案】x =﹣2. 【解析】试题分析:两边乘(x +1)(x ﹣1)得到,2x +2﹣(x ﹣1)=﹣(x +1),解得x =﹣2,经检验,x =﹣2是分式方程的解,∴x =﹣2.故答案为:x =﹣2. 考点:解分式方程.17.(2017山东省枣庄市)已知关于x 的一元二次方程2210ax x --=有两个不相等的实数根,则a 的取值范围是 . 【答案】a >﹣1且a ≠0. 【解析】试题分析:由题意得a ≠0且△=(﹣2)2﹣4a (﹣1)>0,解得a >﹣1且a ≠0.故答案为:a >﹣1且a ≠0.考点:根的判别式.18.(2017山东省枣庄市)已知23x y =⎧⎨=-⎩是方程组23ax by bx ay +=⎧⎨+=⎩的解,则22a b -= .【答案】1.考点:1.二元一次方程组的解;2.整体思想.19.(2017山东省济宁市)《孙子算经》是中国古代重要的数学著作,其中有一段文字的大意是:甲、乙两人各有若干钱,如果甲得到乙所有钱的一半,那么甲共有钱48文;如果乙得到甲所有钱的23,那么乙也共有钱48文,甲、乙两人原来各有多少钱?设甲原有x 文钱,乙原有y 文钱,可列方程组是 .【答案】14822483x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩.【解析】试题分析:由题意可得:14822483x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩,故答案为:14822483x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩.考点:由实际问题抽象出二元一次方程组. 20.(2017广西四市)已知⎩⎨⎧==b y a x 是方程组⎩⎨⎧=+=-5202y x y x 的解,则3a ﹣b = .【答案】5.考点:1.二元一次方程组的解;2.整体思想.21.(2017江苏省盐城市)若方程2410x x -+=的两根是1x ,2x ,则()1221x x x ++的值为 . 【答案】5. 【解析】试题分析:根据题意得124x x +=,121x x =,所以()1221x x x ++=1212x x x x ++=4+1=5.故答案为:5. 考点:根与系数的关系.22.(2017江苏省连云港市)已知关于x 的方程220x x m -+=有两个相等的实数根,则m 的值是 . 【答案】1. 【解析】试题分析:∵关于x 的方程220x x m -+=有两个相等的实数根,∴△=(﹣2)2﹣4m =4﹣4m =0,解得:m =1.故答案为:1. 考点:根的判别式.23.(2017河北省)对于实数p ,q ,我们用符号{}min ,p q 表示p ,q 两数中较小的数,如{}min 1,21=,因此{min = ;若{}22min (1),1x x -=,则x = .【答案】2或-1. 【解析】试题分析:因为<min{ 当()221x x ->时,21x =,解得11x =(舍),21x =-; 当()221x x -<时,()211x -=,解得32x =,40x =(舍).考点:1.新定义;2.实数大小比较;3.解一元二次方程-直接开平方法.24.(2017浙江省台州市)商家花费760元购进某种水果80千克,销售中有5%的水果正常损耗,为了避免亏本,售价至少应定为 元/千克. 【答案】10. 【解析】试题分析:设商家把售价应该定为每千克x 元,根据题意得:x (1﹣5%)≥76080,解得,x ≥10,故为避免亏本,商家把售价应该至少定为每千克10元.故答案为:10. 考点:1.一元一次不等式的应用;2.最值问题. 25.(2017湖北省襄阳市)分式方程233x x=-的解是 . 【答案】x =9.考点:解分式方程.26.(2017湖北省襄阳市)不等式组211841x x x x ->+⎧⎨+≥-⎩的解集为 .【答案】2<x ≤3. 【解析】 试题分析:211841x x x x ->+⎧⎨+≥-⎩①②,解不等式①,得x >2.解不等式②,得x ≤3,故不等式组的解集为2<x ≤3. 故答案为:2<x ≤3. 考点:解一元一次不等式组. 三、解答题27.(2017四川省南充市)已知关于x 的一元二次方程2(3)0x m x m ---=. (1)求证:方程有两个不相等的实数根;(2)如果方程的两实根为1x ,2x ,且2212127x x x x +-=,求m 的值. 【答案】(1)证明见解析;(2)m 的值是1或2.考点:1.根与系数的关系;2.根的判别式.28.(2017四川省南充市)学校准备租用一批汽车,现有甲、乙两种大客车,甲种客车每辆载客量45人,乙种客车每辆载客量30人,已知1辆甲种客车和3辆乙种客车共需租金1240元,3辆甲种客车和2辆乙种客车共需租金1760元.(1)求1辆甲种客车和1辆乙种客车的租金分别是多少元?(2)学校计划租用甲、乙两种客车共8辆,送330名师生集体外出活动,最节省的租车费用是多少? 【答案】(1)1辆甲种客车的租金是400元,1辆乙种客车的租金是280元;(2)2960. 【解析】试题分析:(1)可设1辆甲种客车的租金是x 元,1辆乙种客车的租金是y 元,根据等量关系:①1辆甲种客车和3辆乙种客车共需租金1240元,②3辆甲种客车和2辆乙种客车共需租金1760元,列出方程组求解即可;(2)由于求最节省的租车费用,可知租用甲种客车6辆,租用乙客车2辆,进而求解即可. 试题解析:(1)设1辆甲种客车的租金是x 元,1辆乙种客车的租金是y 元,依题意有:31240321760x y x y +=⎧⎨+=⎩,解得:400280x y =⎧⎨=⎩.答:1辆甲种客车的租金是400元,1辆乙种客车的租金是280元;(2)租用甲种客车6辆,租用乙客车2辆是最节省的租车费用,400×6+280×2=2400+560=2960(元).答:最节省的租车费用是2960元.考点:1.一元一次不等式的应用;2.二元一次方程组的应用;3.最值问题.29.(2017四川省广安市)某班级45名同学自发筹集到1700元资金,用于初中毕业时各项活动的经费.通过商议,决定拿出不少于544元但不超过560元的资金用于请专业人士拍照,其余资金用于给每名同学购买一件文化衫或一本制作精美的相册作为纪念品.已知每件文化衫28元,每本相册20元.(1)适用于购买文化衫和相册的总费用为W元,求总费用W(元)与购买的文化衫件数t(件)的函数关系式.(2)购买文化衫和相册有哪几种方案?为了使拍照的资金更充足,应选择哪种方案,并说明理由.【答案】(1)W=8t+900;(2)有三种购买方案.为了使拍照的资金更充足,应选择方案:购买30件文化衫、15本相册.【解析】试题分析:(1)设购买的文化衫t件,则购买相册(45﹣t)件,根据总价=单价×数量,即可得出W关于t 的函数关系式;(2)由购买纪念品的总价范围,即可得出关于t的一元一次不等式组,解之即可得出t值,从而得出各购买方案,再根据一次函数的性质即可得出W的最小值,选取该方案即可.试题解析:(1)设购买的文化衫t件,则购买相册(45﹣t)件,根据题意得:W=28t+20×(45﹣t)=8t+900.(2)根据题意得:8900170056089001700544tt+≥-⎧⎨+≤-⎩,解得:30≤t≤32,∴有三种购买方案:方案一:购买30件文化衫、15本相册;方案二:购买31件文化衫、14本相册;方案三:购买32件文化衫、13本相册.∵W=8t+900中W随x的增大而增大,∴当t=30时,W取最小值,此时用于拍照的费用最多,∴为了使拍照的资金更充足,应选择方案一:购买30件文化衫、15本相册.考点:1.一次函数的应用;2.一元一次不等式组的应用;3.最值问题;4.方案型.30.(2017四川省眉山市)解方程:11222xx x-+=--.【答案】无解.考点:解分式方程.31.(2017四川省眉山市)东坡某烘焙店生产的蛋糕礼盒分为六个档次,第一档次(即最低档次)的产品每天生产76件,每件利润10元.调查表明:生产提高一个档次的蛋糕产品,该产品每件利润增加2元.(1)若生产的某批次蛋糕每件利润为14元,此批次蛋糕属第几档次产品;(2)由于生产工序不同,蛋糕产品每提高一个档次,一天产量会减少4件.若生产的某档次产品一天的总利润为1080元,该烘焙店生产的是第几档次的产品?【答案】(1)第3档;(2)第5档.【解析】试题分析:(1)根据生产提高一个档次的蛋糕产品,该产品每件利润增加2元,即可求出每件利润为14元的蛋糕属第几档次产品;(2)设烘焙店生产的是第x档次的产品,根据单件利润×销售数量=总利润,即可得出关于x的一元二次方程,解之即可得出结论.试题解析:(1)(14﹣10)÷2+1=3(档次).答:此批次蛋糕属第3档次产品.(2)设烘焙店生产的是第x档次的产品,根据题意得:(2x+8)×(76+4﹣4x)=1080,整理得:x2﹣16x+55=0,解得:x1=5,x2=11(舍去).答:该烘焙店生产的是第5档次的产品.考点:一元二次方程的应用.32.(2017四川省绵阳市)江南农场收割小麦,已知1台大型收割机和3台小型收割机1小时可以收割小麦1.4公顷,2台大型收割机和5台小型收割机1小时可以收割小麦2.5公顷.(1)每台大型收割机和每台小型收割机1小时收割小麦各多少公顷?(2)大型收割机每小时费用为300元,小型收割机每小时费用为200元,两种型号的收割机一共有10台,要求2小时完成8公顷小麦的收割任务,且总费用不超过5400元,有几种方案?请指出费用最低的一种方案,并求出相应的费用.【答案】(1)每台大型收割机1小时收割小麦0.5公顷,每台小型收割机1小时收割小麦0.3公顷;(2)有三种方案,当大型收割机和小型收割机各5台时,总费用最低,最低费用为5000元. 【解析】试题分析:(1)设每台大型收割机1小时收割小麦x 公顷,每台小型收割机1小时收割小麦y 公顷,根据“1台大型收割机和3台小型收割机1小时可以收割小麦1.4公顷,2台大型收割机和5台小型收割机1小时可以收割小麦2.5公顷”,即可得出关于x 、y 的二元一次方程组,解之即可得出结论;(2)设大型收割机有m 台,总费用为w 元,则小型收割机有(10﹣m )台,根据总费用=大型收割机的费用+小型收割机的费用,即可得出w 与m 之间的函数关系式,由“要求2小时完成8公顷小麦的收割任务,且总费用不超过5400元”,即可得出关于m 的一元一次不等式组,解之即可得出m 的取值范围,依此可找出各方案,再结合一次函数的性质即可解决最值问题.试题解析:(1)设每台大型收割机1小时收割小麦x 公顷,每台小型收割机1小时收割小麦y 公顷,根据题意得:3 1.425 2.5x y x y +=⎧⎨+=⎩,解得:0.50.3x y =⎧⎨=⎩.答:每台大型收割机1小时收割小麦0.5公顷,每台小型收割机1小时收割小麦0.3公顷.(2)设大型收割机有m 台,总费用为w 元,则小型收割机有(10﹣m )台,根据题意得:w =300×2m +200×2(10﹣m )=200m +4000.∵2小时完成8公顷小麦的收割任务,且总费用不超过5400元,∴20.520.3(10)820040005400m m m ⨯+⨯-≥⎧⎨+≤⎩,解得:5≤m ≤7,∴有三种不同方案.∵w =200m +4000中,200>0,∴w 值随m 值的增大而增大,∴当m =5时,总费用取最小值,最小值为5000元.答:有三种方案,当大型收割机和小型收割机各5台时,总费用最低,最低费用为5000元. 考点:1.一元一次不等式组的应用;2.二元一次方程组的应用;3.方案型;4.最值问题. 33.(2017四川省达州市)设A =223121a a a a a a -⎛⎫÷- ⎪+++⎝⎭.(1)化简A ;(2)当a =3时,记此时A 的值为f (3);当a =4时,记此时A 的值为f (4);… 解关于x 的不等式:()()()27341124x xf f f ---≤+++,并将解集在数轴上表示出来.【答案】(1)21a a+ ;(2)x ≤4.考点:1.分式的混合运算;2.在数轴上表示不等式的解集;3.解一元一次不等式;4.阅读型;5.新定义.34.(2017四川省达州市)如图,△ABC内接于⊙O,CD平分∠ACB交⊙O于D,过点D作PQ∥AB分别交CA、CB延长线于P、Q,连接BD.(1)求证:PQ是⊙O的切线;(2)求证:BD2=AC•BQ;(3)若AC、BQ的长是关于x的方程4x mx+=的两实根,且tan∠PCD=13,求⊙O的半径.【答案】(1)证明见解析;(2)证明见解析;(3).【解析】试题分析:(1)根据平行线的性质和圆周角定理得到∠ABD=∠BDQ=∠ACD,连接OB,OD,交AB于E,根据圆周角定理得到∠OBD=∠ODB,∠O=2∠DCB=2∠BDQ,根据三角形的内角和得到2∠ODB+2∠O=180°,于是得到∠ODB +∠O =90°,根据切线的判定定理即可得到结论;(2)证明:连接AD ,根据等腰三角形的判定得到AD =BD ,根据相似三角形的性质即可得到结论; (3)根据题意得到AC •BQ =4,得到BD =2,由(1)知PQ 是⊙O 的切线,由切线的性质得到OD ⊥PQ ,根据平行线的性质得到OD ⊥AB ,根据三角函数的定义得到BE =3DE ,根据勾股定理得到BE 的长,设OB =OD =R ,根据勾股定理即可得到结论.试题解析:(1)证明:∵PQ ∥AB ,∴∠ABD =∠BDQ =∠ACD ,∵∠ACD =∠BCD ,∴∠BDQ =∠ACD ,如图1,连接OB ,OD ,交AB 于E ,则∠OBD =∠ODB ,∠O =2∠DCB =2∠BDQ ,在△OBD 中,∠OBD +∠ODB +∠O =180°,∴2∠ODB +2∠O =180°,∴∠ODB +∠O =90°,∴PQ 是⊙O 的切线;(2)证明:如图2,连接AD ,由(1)知PQ 是⊙O 的切线,∴∠BDQ =∠DCB =∠ACD =∠BCD =∠BAD ,∴AD =BD ,∵∠DBQ =∠ACD ,∴△BDQ ∽△ACD ,∴AD AC BQ BD=,∴BD 2=AC •BQ ; (3)解:方程4x m x +=可化为x 2﹣mx +4=0,∵AC 、BQ 的长是关于x 的方程4x m x+=的两实根,∴AC •BQ =4,由(2)得BD 2=AC •BQ ,∴BD 2=4,∴BD =2,由(1)知PQ 是⊙O 的切线,∴OD ⊥PQ ,∵PQ ∥AB ,∴OD ⊥AB ,由(1)得∠PCD =∠ABD ,∵tan ∠PCD =13,∴tan ∠ABD =13,∴BE =3DE ,∴DE 2+(3DE )2=BD 2=4,∴DE =5,∴BE 设OB =OD =R ,∴OE =R ,∵OB 2=OE 2+BE 2,∴R 2=(R )2+)2,解得:R =,∴⊙O 的半径为.考点:1.相似三角形的判定与性质;2.分式方程的解;3.圆周角定理;4.切线的判定与性质;5.解直角三角形;6.压轴题.35.(2017山东省枣庄市)x 取哪些整数值时,不等式5x +2>3(x ﹣1)与13222x x ≤-都成立? 【答案】﹣2、﹣1、0、1. 【解析】试题分析:由题意分别求出每个不等式解集,由口诀:大小小大中间找,确定两不等式解集的公共部分,即可得整数值.试题解析:由题意解不等式组523(1)13222x xx x+>-⎧⎪⎨≤-⎪⎩①②,解不等式①,得:x>52-,解不等式②,得:x≤1,∴52-<x≤1,故满足条件的整数有﹣2、﹣1、0、1.考点:一元一次不等式的整数解.36.(2017山东省济宁市)解方程:211.22xx x=---.【答案】x=﹣1.【解析】试题分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.试题解析:去分母得:2x=x﹣2+1,移项合并得:x=﹣1,经检验x=﹣1是分式方程的解.考点:解分式方程.37.(2017广东省)学校团委组织志愿者到图书馆整理一批新进的图书.若男生每人整理30本,女生每人整理20本,共能整理680本;若男生每人整理50本,女生每人整理40本,共能整理1240本.求男生、女生志愿者各有多少人?【答案】男生志愿者有12人,女生志愿者有16人.考点:二元一次方程组的应用.38.(2017广西四市)为响应国家全民阅读的号召,某社区鼓励居民到社区阅览室借阅读书,并统计每年的借阅人数和图书借阅总量(单位:本),该阅览室在2014年图书借阅总量是7500本,2016年图书借阅总量是10800本.(1)求该社区的图书借阅总量从2014年至2016年的年平均增长率;(2)已知2016年该社区居民借阅图书人数有1350人,预计2017年达到1440人,如果2016年至2017年图书借阅总量的增长率不低于2014年至2016年的年平均增长率,那么2017年的人均借阅量比2016年增长a%,求a的值至少是多少?【答案】(1)20%;(2)12.5.【解析】试题分析:(1)经过两次增长,求年平均增长率的问题,应该明确原来的基数,增长后的结果.设这两年的年平均增长率为x,则经过两次增长以后图书馆有书7500(1+x)2本,即可列方程求解;(2)先求出2017年图书借阅总量的最小值,再求出2016年的人均借阅量,2017年的人均借阅量,进一步求得a的值至少是多少.试题解析:(1)设该社区的图书借阅总量从2014年至2016年的年平均增长率为x,根据题意得7500(1+x)2=10800,即(1+x)2=1.44,解得:x1=0.2,x2=﹣2.2(舍去).答:该社区的图书借阅总量从2014年至2016年的年平均增长率为20%;(2)10800(1+0.2)=12960(本)10800÷1350=8(本)12960÷1440=9(本)(9﹣8)÷8×100%=12.5%.故a的值至少是12.5.考点:1.一元二次方程的应用;2.一元一次不等式的应用;3.最值问题;4.增长率问题.39.(2017江苏省盐城市)解不等式组:311442x xx xì-?ïí+<-ïî.【答案】x>2.考点:解一元一次不等式组.40.(2017江苏省盐城市)某商店在2014年至2016年期间销售一种礼盒.2014年,该商店用3500元购进了这种礼盒并且全部售完;2016年,这种礼盒的进价比2014年下降了11元/盒,该商店用2400元购进了与2014年相同数量的礼盒也全部售完,礼盒的售价均为60元/盒. (1)2014年这种礼盒的进价是多少元/盒?(2)若该商店每年销售这种礼盒所获利润的年增长率相同,问年增长率是多少? 【答案】(1)35;(2)20%. 【解析】试题分析:(1)设2014年这种礼盒的进价为x 元/盒,则2016年这种礼盒的进价为(x ﹣11)元/盒,根据2014年花3500元与2016年花2400元购进的礼盒数量相同,即可得出关于x 的分式方程,解之经检验后即可得出结论;(2)设年增长率为m ,根据数量=总价÷单价求出2014年的购进数量,再根据2014年的销售利润×(1+增长率)2=2016年的销售利润,即可得出关于m 的一元二次方程,解之即可得出结论.试题解析:(1)设2014年这种礼盒的进价为x 元/盒,则2016年这种礼盒的进价为(x ﹣11)元/盒,根据题意得:3500240011x x =-,解得:x =35,经检验,x =35是原方程的解. 答:2014年这种礼盒的进价是35元/盒.(2)设年增长率为m ,2014年的销售数量为3500÷35=100(盒).根据题意得:(60﹣35)×100(1+a )2=(60﹣35+11)×100,解得:a =0.2=20%或a =﹣2.2(不合题意,舍去).答:年增长率为20%.考点:1.一元二次方程的应用;2.分式方程的应用;3.增长率问题.41.(2017江苏省连云港市)解不等式组()3143216x x x ì-+<ïí--?ïî.【答案】﹣1<x ≤4.考点:解一元一次不等式组.42.(2017河北省)某厂按用户的月需求量x(件)完成一种产品的生产,其中x>0,每件的售价为18万元,每件的成本y(万元)是基础价与浮动价的和,其中基础价保持不变,浮动价与月需求量x(件)成反比,经市场调研发现,月需求量x与月份n(n为整数,1≤n≤12),符合关系式x=2n2﹣2kn+9(k+3)(k为常数),且得到了表中的数据.(1)求y与x满足的关系式,请说明一件产品的利润能否是12万元;(2)求k,并推断是否存在某个月既无盈利也不亏损;(3)在这一年12个月中,若第m个月和第(m+1)个月的利润相差很大,求m.【答案】(1)6006yx=+,不可能;(2)不存在;(3)1或11.【解析】试题分析:(1)设by ax=+,将表中相关数据代入可求得a、b,根据12=18﹣(6006x+),则600x=0可作出判断;(2)将n=1、x=120代入x=2n2﹣2kn+9(k+3)可求得k的值,先由18=6006x+求得x=50,根据50=2n2﹣26n+144可判断;(3)第m个月的利润W=x(18﹣y)=18x﹣x(6006x+)=24(m2﹣13m+47),第(m+1)个月的利润为W′=24[(m+1)2﹣13(m+1)+47]=24(m2﹣11m+35),分情况作差结合m的范围,由一次函数性质可得.试题解析:(1)由题意,设by ax=+,由表中数据可得:1112012100baba⎧=+⎪⎪⎨⎪=+⎪⎩,解得:6600ab=⎧⎨=⎩,∴6006yx=+,由题意,若12=18﹣(6006x+),则600x=0,∵x>0,∴600x>0,∴不可能;(2)将n=1、x=120代入x=2n2﹣2kn+9(k+3),得:120=2﹣2k+9k+27,解得:k=13,∴x=2n2﹣26n+144,将n=2、x=100代入x=2n2﹣26n+144也符合,∴k=13;由题意,得:18=6006x+,解得:x=50,∴50=2n2﹣26n+144,即n2﹣13n+47=0,∵△=(﹣13)2﹣4×1×47<0,∴方程无实数根,∴不存在;(3)第m 个月的利润为W ,W =x (18﹣y )=18x ﹣x (6006x+)=12(x ﹣50)=24(m 2﹣13m +47),∴第(m +1)个月的利润为W ′=24[(m +1)2﹣13(m +1)+47]=24(m 2﹣11m +35),若W ≥W ′,W ﹣W ′=48(6﹣m ),m 取最小1,W ﹣W ′取得最大值240;若W <W ′,W ﹣W ′=48(m ﹣6),由m +1≤12知m 取最大11,W ﹣W ′取得最大值240; ∴m =1或11.考点:1.二次函数的应用;2.一元二次方程的应用;3.分类讨论;4.最值问题;5.压轴题. 43.(2017浙江省丽水市)解方程:(x ﹣3)(x ﹣1)=3. 【答案】x 1=0,x 2=4. 【解析】试题分析:先把方程化为一般式,然后利用因式分解法解方程. 试题解析:方程化为x 2﹣4x =0,x (x ﹣4)=0,所以x 1=0,x 2=4. 考点:解一元二次方程﹣因式分解法.44.(2017浙江省绍兴市)(1) 计算:()4π+--(2)解不等式:()4521x x +≤+. 【答案】(1)﹣3;(2)x ≤32-.考点:1.解一元一次不等式;2.实数的运算;3.零指数幂.45.(2017湖北省襄阳市)受益于国家支持新能源汽车发展和“一带一路”发展战略等多重利好因素,我市某汽车零部件生产企业的利润逐年提高,据统计,2014年利润为2亿元,2016年利润为2.88亿元. (1)求该企业从2014年到2016年利润的年平均增长率;(2)若2017年保持前两年利润的年平均增长率不变,该企业2017年的利润能否超过3.4亿元?【答案】(1)20%;(2)能超过.【解析】试题分析:(1)设这两年该企业年利润平均增长率为x.根据题意2013年创造利润250(1+x)万元人民币,2014年创造利润250(1+x)2 万元人民币.根据题意得方程求解;(2)根据该企业从2014年到2016年利润的年平均增长率来解答.试题解析:(1)设这两年该企业年利润平均增长率为x.根据题意得2(1+x)2=2.88,解得x1 =0.2=20%,x2 =﹣2.2 (不合题意,舍去).答:这两年该企业年利润平均增长率为20%.(2)如果2017年仍保持相同的年平均增长率,那么2017年该企业年利润为:2.88(1+20%)=3.456,3.456>3.4答:该企业2017年的利润能超过3.4亿元.考点:1.一元二次方程的应用;2.增长率问题.46.(2017重庆市B卷)某地大力发展经济作物,其中果树种植已初具规模,今年受气候、雨水等因素的影响,樱桃较去年有小幅度的减产,而枇杷有所增产.(1)该地某果农今年收获樱桃和枇杷共400千克,其中枇杷的产量不超过樱桃产量的7倍,求该果农今年收获樱桃至少多少千克?(2)该果农把今年收获的樱桃、枇杷两种水果的一部分运往市场销售,该果农去年樱桃的市场销售量为100千克,销售均价为30元/千克,今年樱桃的市场销售量比去年减少了m%,销售均价与去年相同,该果农去年枇杷的市场销售量为200千克,销售均价为20元/千克,今年枇杷的市场销售量比去年增加了2m%,但销售均价比去年减少了m%,该果农今年运往市场销售的这部分樱桃和枇杷的销售总金额与他去年樱桃和枇杷的市场销售总金额相同,求m的值.【答案】(1)50;(2)12.5.考点:1.一元二次方程的应用;2.一元一次不等式的应用.47.(2017重庆市B卷)对任意一个三位数n,如果n满足各个数位上的数字互不相同,且都不为零,那么称这个数为“相异数”,将一个“相异数”任意两个数位上的数字对调后可以得到三个不同的新三位数,把这三个新三位数的和与111的商记为F(n).例如n=123,对调百位与十位上的数字得到213,对调百位与个位上的数字得到321,对调十位与个位上的数字得到132,这三个新三位数的和为213+321+132=666,666÷111=6,所以F(123)=6.(1)计算:F(243),F(617);(2)若s,t都是“相异数”,其中s=100x+32,t=150+y(1≤x≤9,1≤y≤9,x,y都是正整数),规定:k=()()F sF t,当F(s)+F(t)=18时,求k的最大值.【答案】(1)F(243)=9,F(617)=14;(2)54.【解析】试题分析:(1)根据F(n)的定义式,分别将n=243和n=617代入F(n)中,即可求出结论;(2)由s=100x+32、t=150+y结合F(s)+F(t)=18,即可得出关于x、y的二元一次方程,解之即可得出x、y的值,再根据“相异数”的定义结合F(n)的定义式,即可求出F(s)、F(t)的值,将其代入k=() () F s F t中,找出最大值即可.试题解析:(1)F(243)=(423+342+234)÷111=9;F(617)=(167+716+671)÷111=14.(2)∵s,t都是“相异数”,s=100x+32,t=150+y,∴F(s)=(302+10x+230+x+100x+23)÷111=x+5,F (t)=(510+y+100y+51+105+10y)÷111=y+6.∵F(t)+F(s)=18,∴x+5+y+6=x+y+11=18,∴x+y=7.∵1≤x≤9,1≤y≤9,且x,y都是正整数,∴16xy=⎧⎨=⎩或25xy=⎧⎨=⎩或34xy=⎧⎨=⎩或43xy=⎧⎨=⎩或52xy=⎧⎨=⎩或61xy=⎧⎨=⎩.∵s是“相异数”,∴x≠2,x≠3.∵t是“相异数”,∴y≠1,y≠5,∴16xy=⎧⎨=⎩或43xy=⎧⎨=⎩或52xy=⎧⎨=⎩,∴()6()12F sF t=⎧⎨=⎩或()9()9F sF t=⎧⎨=⎩或()10()8F sF t=⎧⎨=⎩,∴k=()()F sF t=12或k=()()F sF t=1或k=()()F sF t=54,∴k的最大值为54.考点:1.因式分解的应用;2.二元一次方程的应用;3.新定义;4.阅读型;5.最值问题;6.压轴题.。
中考数学复习攻略 专题6 方程与不等式的实际应用(含答案)

专题六 方程与不等式的实际应用解决方程与不等式的实际应用题的一般步骤:①认真审题,理解题意,弄清题中的已知量、未知量以及它们之间的关系;②设未知数(合理地选择未知数是解题的关键);③列方程(组)或不等式;④解方程(组)或不等式(注意:解分式方程时必须要有“验根”这一步);⑤检验,对所求结果进行检验,看是否符合题意;⑥作答.解决方程与不等式的实际应用题时,首先要认真审题,从题中找出已知量与未知量之间的关系,然后根据题意列出关系式,进而解决相关问题.在解决问题的过程中要注意方程与不等式的解是否符合题意,涉及函数要检验自变量的取值范围,当题干中出现方案设计问题或最值问题时,往往需要根据题干中的已知条件和函数的增减性来解决方案设计或最值问题.中考重难点突破一次方程(组)的实际应用【例1】(2021·陕西中考)一家商店在销售某种服装(每件的标价相同)时,按这种服装每件标价的8折销售10件的销售额,与按这种服装每件的标价降低30元销售11件的销售额相等.求这种服装每件的标价.【解析】设这种服装每件的标价是x 元,根据“这种服装每件标价的8折销售10件的销售额,与按这种服装每件的标价降低30元销售11件的销售额相等”列出方程,然后解方程即可求解.【解答】解:设这种服装每件的标价是x 元.根据题意,得10×0.8x =11(x -30).解得x =110.答:这种服装每件的标价为110元.1.现有一条长度为359 mm 的铜管料,把它锯成长度分别为39 mm 和29 mm 的两种不同规格的小铜管(要求没有余料).每锯一次损耗1 mm 的铜管料.为了使铜管料损耗最少,应分别锯成39 mm 的小铜管__6__段,29 mm 的小铜管__4__段.2.某中学组织七年级全体学生参加社会实践,若只调配45座客车若干辆,则有15人没有座位;若只调配30座客车,则用车数量将增加3辆,且空出15个座位.(1)该学校七年级总共有多少学生?(2)若同时调配45座和30座两种车型,既保证每人有座,又保证每车不空座,则两种车型各需多少辆?解:(1)设只调配45座客车x 辆,则该学校七年级共有学生(45x +15)人,只调配30座客车需要(x +3)辆.由题意,得30(x +3)-(45x +15)=15.解得x =4.∴45x +15=45×4+15=180+15=195.答:该学校七年级共有学生195人;(2)设需要调配45座客车m 辆,30座客车n 辆,由题意,得45m +30n =195.∴n =13-3m 2. 又∵m ,n 均为正整数,∴⎩⎪⎨⎪⎧m =1,n =5 或⎩⎪⎨⎪⎧m =3,n =2. 答:需调配45座客车1辆,30座客车5辆或调配45座客车3辆,30座客车2辆.分式方程的实际应用【例2】(2021·常州中考)为落实节约用水的政策,某旅游景点进行设施改造,将手拧水龙头全部更换成感应水龙头.已知该景点在设施改造后,平均每天用水量是原来的一半,20 t 水可以比原来多用5天.该景点在设施改造后平均每天用水多少吨?【解析】本题考查了分式方程的应用,读懂题意,找到合适的等量关系是解决问题的关键.设该景点在设施改造后平均每天用水x t ,则在改造前平均每天用水2x t ,根据“20 t 水可以比原来多用5天”列出方程并解答.【解答】解:设该景点在设施改造后平均每天用水x t ,则在改造前平均每天用水2x t.根据题意,得20x -202x=5. 解得x =2.经检验,x =2是原方程的解,且符合题意.答:该景点在设施改造后平均每天用水2 t .3.(2021·徐州中考)某网店开展促销活动,其商品一律按8折销售,促销期间用400元在该网店购得某商品的数量较打折前多出2件.问:该商品打折前每件多少元?解:设该商品打折前每件x 元,则打折后每件0.8x 元.根据题意,得400x +2=4000.8x. 解得x =50.经检验,x =50是原方程的解,且符合题意.答:该商品打折前每件50元.方程与不等式的综合应用【例3】某学校为丰富同学们的课余生活,购买了一批数量相等的象棋和围棋供兴趣小组使用,其中购买象棋用了420元,购买围棋用了756元,已知每副围棋比每副象棋贵8元.(1)求每副围棋和象棋各是多少元?(2)若该校决定再次购买同种围棋和象棋共40副,且再次购买的费用不超过600元,则该校最多可再购买多少副围棋?【解析】(1)设每副围棋x 元,则每副象棋(x -8)元,根据“420元购买象棋数量=756元购买围棋数量”列出方程求解即可;(2)设购买围棋m 副,则购买象棋(40-m )副,根据题意列出不等式求解即可.【解答】解:(1)设每副围棋x 元,则每副象棋(x -8)元.根据题意,得420x -8=756x .解得x =18. 经检验,x =18是原方程的解,且符合题意.∴x -8=10.答:每副围棋18元,每副象棋10元;(2)设该校购买m 副围棋,则购买(40-m )副象棋.根据题意,得18m +10(40-m )≤600.解得m ≤25.∵m 为正整数,∴m 的最大值是25.答:该校最多可再购买25副围棋.4.(2021·玉林中考)某市垃圾处理厂利用焚烧垃圾产生的热能发电.有A ,B 两个焚烧炉,每个焚烧炉每天焚烧垃圾均为100 t ,每焚烧一吨垃圾,A 焚烧炉比B 焚烧炉多发电50度,A ,B 焚烧炉每天共发电55 000度.(1)求焚烧一吨垃圾,A 焚烧炉和B 焚烧炉各发电多少度?(2)若经过改进工艺,与改进工艺之前相比每焚烧一吨垃圾,A 焚烧炉和B 焚烧炉的发电量分别增加a %和2a %,则A ,B 焚烧炉每天共发电至少增加(5+a )%,求a 的最小值.解:(1)设焚烧一吨垃圾,A 焚烧炉发电m 度,B 焚烧炉发电n 度.根据题意,得⎩⎪⎨⎪⎧m -n =50,100(m +n )=55 000. 解得⎩⎪⎨⎪⎧m =300,n =250.答:焚烧一吨垃圾,A 焚烧炉发电300度,B 发焚烧炉发电250度;(2)由题意,得改进工艺后每焚烧一吨垃圾A 焚烧炉发电300(1+a %)度,则B 焚烧炉发电250(1+2a %)度,由题意,得100×300(1+a %)+100×250(1+2a %)≥55 000[1+(5+a )%].整理,得5a ≥55.解得a ≥11.∴a 的最小值为11.一元二次方程的实际应用【例4】(2021·烟台中考)直播购物逐渐走进了人们的生活.某电商在抖音上对一款成本价为40元的小商品进行直播销售,如果按每件60元销售,每天可卖出20件.通过市场调查发现,每件小商品售价每降低5元,日销售量增加10件.(1)若日利润保持不变,商家想尽快销售完该款商品,每件售价应定为多少元?(2)小明的线下实体商店也销售同款小商品,标价为每件62.5元.为提高市场竞争力,促进线下销售,小明决定对该商品实行打折销售,使其销售价格不超过(1)中的售价,则该商品至少需打几折销售?【解析】(1)根据日利润=每件利润×日销售量,可求出售价为60元时的原利润,设售价应定为x 元,则每件的利润为(x -40)元,日销售量为20+10(60-x )5=(140-2x )件,根据日利润=每件利润×日销售量,即可得出关于x 的一元二次方程,解之取其较小值即可得出结论;(2)设该商品需要打a 折销售,根据销售价格不超过50元,列出不等式求解即可.【解答】解:(1)设售价应定为x 元,则每件的利润为(x -40)元,日销售量为20+10(60-x )5=(140-2x )件. 由题意,得(x -40)(140-2x )=(60-40)×20.整理,得x 2-110x +3 000=0.解得x 1=50,x 2=60(舍去).答:每件售价应定为50元;(2)设该商品需要打a 折销售.由题意,得62.5×a 10≤50. 解得a ≤8.答:该商品至少需打8折销售.5.列方程(组)解应用题:某驻村工作队,为带动群众增收致富,巩固脱贫攻坚成效,决定在该村山脚下,围一块面积为600 m 2的矩形试验茶园,便于成功后大面积推广.如图,茶园一面靠墙,墙长35 m ,另外三面用69 m 长的篱笆围成,其中一边开有一扇1 m 宽的门(不包括篱笆).求这个茶园的长和宽.解:设茶园AB 边的长为x m ,则BC 边的长为(69+1-2x ) m .根据题意,得x (69+1-2x )=600.整理,得x 2-35x +300=0.解得x 1=15,x 2=20.当x =15时,70-2x =40>35,不符合题意,舍去;当x =20时,70-2x =30<35,符合题意.答:这个茶园的长和宽分别为30 m ,20 m .6.如图,某城建部门计划在新建的城市广场的一块长方形空地上修建一个面积为1 200 m 2的停车场,将停车场四周余下的空地修建成同样宽的通道,已知整个长方形空地的长为50 m ,宽为40 m.(1)求四周通道的宽度;(2)某建筑公司希望用80万元的承包金额承揽这项工程,城建部门认为金额太高需要降价,经过两次协商,最终以51.2万元达成一致,若两次降价的百分率相同,求每次降价的百分率.解:(1)设四周通道的宽度为x m ,则停车场的长为(50-2x ) m ,宽为(40-2x ) m.由题意,得(50-2x )(40-2x )=1 200.整理,得x 2-45x +200=0.解得x 1=5,x 2=40.当x =5时,40-2x =40-2×5=30,符合题意;当x =40时,40-2x =40-2×40=-40<0,不符合题意,舍去.答:四周通道的宽度为5 m ;(2)设每次降价的百分率为a .由题意,得80(1-a )2=51.2.解得a 1=0.2=20%,a 2=1.8(不合题意,舍去).答:每次降价的百分率为20%.中考专题过关1.(2021·吉林中考)港珠澳大桥是世界上最长的跨海大桥,它由桥梁和隧道两部分组成,桥梁和隧道全长共55 km.其中桥梁长度比隧道长度的9倍少4 km.求港珠澳大桥的桥梁长度和隧道长度.解:设港珠澳大桥隧道长度为x km ,桥梁长度为y km.由题意,得⎩⎪⎨⎪⎧x +y =55,y =9x -4. 解得⎩⎪⎨⎪⎧x =5.9,y =49.1. 答:港珠澳大桥的桥梁长度和隧道长度分别为49.1 km 和5.9 km.2.(2021·郴州中考)“七·一”建党节前夕,某校决定购买A ,B 两种奖品,用于表彰在“童心向党”活动中表现突出的学生.已知A 奖品比B 奖品每件多25元,预算资金为1 700元,其中800元购买A 奖品,其余资金购买B 奖品,且购买B 奖品的数量是A 奖品的3倍.(1)求A ,B 奖品的单价;(2)购买当日,正逢该店搞促销活动,所有商品均按原价八折销售,故学校调整了购买方案:不超过预算资金且购买A 奖品的资金不少于720元,A ,B 两种奖品共100件,求购买A ,B 两种奖品的数量,有哪几种方案?解:(1)设A 奖品的单价为x 元,则B 奖品的单价为(x -25)元.由题意,得800x ×3=1 700-800x -25. 解得x =40.经检验,x =40是原方程的解,且符合题意.∴x -25=15.答:A 奖品的单价为40元,B 奖品的单价为15元;(2)设购买A 奖品的数量为m 件,则购买B 奖品的数量为(100-m )件.由题意,得⎩⎪⎨⎪⎧40×0.8×m ≥720,40×0.8×m +15×0.8×(100-m )≤1 700. 解得22.5≤m ≤25.∵m 为正整数,∴m 的值为23,24,25.∴有三种方案:①购买A 奖品23件,B 奖品77件;②购买A 奖品24件,B 奖品76件;③购买A 奖品25件,B 奖品75件.3.(2021·朝阳中考)某商场以每件20元的价格购进一种商品,规定这种商品每件售价不低于进价,又不高于38元,经市场调查发现:该商品每天的销售量y (件)与每件售价x (元)之间符合一次函数关系,如图所示.(1)求y 与x 之间的函数关系式;(2)该商场销售这种商品要想每天获得600元的利润,每件商品的售价应定为多少元?(3)设商场销售这种商品每天获利w (元),当每件商品的售价定为多少元时,每天销售利润最大?最大利润是多少?解:(1)设y 与x 之间的函数关系式为y =kx +b (k ≠0).由所给函数图象可知,⎩⎪⎨⎪⎧25k +b =70,35k +b =50. 解得⎩⎪⎨⎪⎧k =-2,b =120. ∴y 与x 之间的函数关系式为y =-2x +120(20≤x ≤38);(2)根据题意,得(x -20)(-2x +120)=600.整理,得x 2-80x +1 500=0.解得x =30或x =50(不合题意,舍去).答:每件商品的售价应定为30元;(3)∵y =-2x +120,∴w =(x -20)y=(x -20)(-2x +120)=-2x 2+160x -2 400=-2(x -40)2+800.∵-2<0,20≤x ≤38,∴当x =38时,w 最大=792.∴当每件商品的售价定为38元时,每天销售利润最大,最大利润是792元.。
2017年中考真题分类解析 一元一次不等式(组)

一、选择题1..(2017浙江金华,9,3分)若关于x的一元一次不等式组⎩⎨⎧<->-mxxx,)2(312的解是x<5,则m的取值范围是A.m≥5 B.m>5 C.m≤5 D.m<5答案:A,解析:解不等式2x-1>3(x-2),得x<5,又x<m,且不等式组的解是x<5,根据解不等式组口诀“同小取小”,所以m的取值范围是m≥5 .2.(2017安徽中考·5.4分)不等式42x->0的解集在数轴上表示为()答案:D.解析:先解不等式42x->0的解集是x<2,在数轴上表示为,故选D.3.(2017山东威海,5,3分)不等式组21321,3232x xx++⎧->⎪⎨⎪-≥⎩的解集在数轴上表示正确的是()答案:B,解析:2132323-2x xx++⎧-⎪⎨⎪⎩>1①≥②解①得x<-2,解②得x≤1,所以不等式组解集是在数轴上表示为B.4.(2017四川自贡,4,3分)不等式组12,342xx+>-≤⎧⎨⎩的解集表示在数轴上正确的是()A.B.C.D.答案:C,解析:解不等式x+1>2,得x>1;解不等式3x-4≤2,得x≤2,∴不等式组的解集为1<x≤2,在数轴上表示这个解集为选项C.5.(2017重庆B ,12,4分)若a 使关于x 的不等式组⎪⎩⎪⎨⎧->++-≤-ax x x 4722122有且仅有四个整数解,且使关于y 的分式方程2222=-+-yy a 有非负数解,则所有满足条件的整数a 的值之和是 A .3B . 1C . 0D .-3答案:B ,解析:解不等式①得x ≤3,解不等式②得34+->a x ,∵仅有四个整数解,∴整数解是3,2,1,0,∴-4<a ≤3,∵分式方程有非负数解,∴a ≥-2且a ≠2,∴所有满足条件的整数a 有-2,-1,0,1,3,其和为1,故答案为B .6. (2017年四川内江,10,3分)不等式组⎩⎨⎧<-≥+192,273x x 的非负整数解是A .4B .5C .6D .7答案:C ,解析:先求出不等式组的解集,再求出不等式组的整数解. 解不等式①,得x ≥-35. 解不等式②,得x <5. ∴不等式组的解集为-35<x <5. ∴不等式组的整数解为-1,0,1,2,3,4,共6个.7. (2017山东临沂,4,3分)不等式组21,512x x ->⎧⎪⎨+≥⎪⎩中,不等式①和②的解集在数轴上表示正确的是( )答案:B解析:解不等式2-x >1,得x <1,解不等式512x +≥,得x ≥-3.所以原不等式组的解集为-3≤x <1,而x ≥-3在数轴上表示应该从-3向右画,并且用实心圆点,x <1在数轴上表示应该从1向左画,并且用空心圆圈,所以其解集在数轴上表示正确的应为选项B .8. (2017山东泰安,9,3分)不等式组29611x x x k ++⎧⎨-⎩><的解集为x <2.则k 的取值范围为A .k >1B .k <1C .k ≥1D .k ≤1答案:C ,解析:由92+x >16+x 得x <2,由k x -<1得x <1+k .因不等式组的解集为x <2,所以21≥+k ,即1≥k9.10.,11.12.13. 5.(2017江苏常州,5,3分)若3x>-3y ,则下列不等式中一定成立的是( ) A .x+y>0 B .x -y>0 C .x+y<0 D .x -y<0 【答案】A【解析】由3x>-3y ,得x+y>0.14.(2017青海西宁,5,3分)不等式组⎩⎨⎧≤+-1312xx<的解集在数轴上表示正确的是A.B.C.D.答案:B,解析:解不等式组,得到解集:-1<x≤1.15.(2017黑龙江大庆,3,3分)下列说法中,正确的是()A.若ba≠,则22ba≠B.若||ba>,则ba>C.若||||ba=,则ba=D.若||||ba>,则ba>答案:B,解析:考查绝对值的相关概念,B正确.16.(2017黑龙江大庆,9,3分)若实数3是不等式022<--ax的一个解,则a可取的最小正整数为()A. 2 B.3 C.4 D.5答案:D,解析:由题意解不等式得:x<22+a,∵3是不等式的一个解,∴22+a>3,∴a>4,即a的最小正整数解为5.17. 8.(2017湖北恩施中考·5分)关于x的不等式组⎩⎨⎧->-<-)1(213xxmx无解,那么m的取值范围是()A.m≤-1 B.m<-1 C.-1<m≤0 D.-1≤m<08.A.解析:解不等式x-m<0,得x<m;解不等式3x-1>2(x-1)得x>-1,由于这个不等式组无解,所以m≤-1,故选A.18.(2017贵州六盘水,6,4分)不等式3x+6≥9的解集在数轴上表示正确的是A.B.C.D.答案:C,解析:解不等式:3x+6≥9,3x≥9-6,3x≥3,x≥1,表示解集时实心点向右,∴本题选C选项.19.(2017贵州遵义)不等式6-4x≥3x-8的非负整数....解为()A.2个B.3个 C.4个D.5个答案:B,解析:不等式6-4x≥3x-8的解集为x≤2,所以它的非负整数解为2,1,0,共3个.20.不等式组10251xx-≤⎧⎨-<⎩的解集为C.4,二、填空题1.(2017山东滨州,14,4分)不等式组3(2)4,21152x xx x-->⎧⎪-+⎨⎪⎩≤的解集为___________.答案:-7≤x<1,解析:解不等式①得x<1;解不等式②得x≥-7,所以不等式组的解集为-7≤x<1.2. .(2017四川广安,14,3分)不等式组3(2)4,1213x x x x --<⎧⎪+⎨-≤⎪⎩的解集为______.答案:1<x ≤4,解析:⎪⎩⎪⎨⎧+≤---②①<32114)2(33x x x x ,解不等式①,得x >1,解不等式②,得x ≤4,所以这个不等式组的解集为1<x ≤4.15.(2017四川广安,15,3分)已知点P (1,2)关于x 轴的对称点为P ′,且P ′在直线y =kx +3上,把直线y =kx +3的图象向上平移2个单位,所得的直线解析式为______. 答案:y =-5x +5,解析:∵点P (1,2)关于x 轴的对称点为P ',∴点P '的坐标为(1,-2),∵点P '在直线y =kx +3上,∴k +3= -2,即y = -5x +3,∵直线y = -5x +3向上平移2个单位,∴所得直线解析式是:y = -5x +3+2,即y =-5x +5.3. 2017湖南岳阳,13,4分)不等式组()()303129x x x -≥⎧⎪⎨->+⎪⎩的解集是 .答案:x <-5,解析:由第一个不等式解得x ≤3,由第二个不等式解得x <-5;则解集为x <-5.4. (2017山东烟台,15,3分)运行程序如图所示,从“输入实数x ”到“结果是否<18”为一次程序操作,若输入x 后程序操作仅进行了一次就停止,则x 的取值范围是 .答案:x <8,解析:【思路分析】由题意,得3x -6<18. 解得x <8.5. 9. (2017湖南张家界,3分)不等式组⎩⎨⎧->≥21x x 的解集是____________.答案:x ≥1,解析:根据“大大取较大”知,x ≥1.6. (2017河南,12,3分)不等式组⎪⎩⎪⎨⎧<-≤-x x x 2102的解集是答案:21≤<-x ,解析:解不等式①,得:2≤x ;解不等式②,得:1->x ,∴不等式组的解集是21≤<-x .7. 12.(2017湖南永州,4分)满足不等式组⎩⎨⎧>+≤-01012x x 的整数解是________________.答案:0,解析:解不等式①得x≤21,解不等式②得x>-1,所以这个不等式组的解集是-1<x≤21,其整数解是0.8. 15.(2017海南,15,4分)不等式2x+1>0的解错误!未定义书签。
2017年高考数学(文)热点题型和提分秘籍专题28基本不等式及其应用Word版含解析

1.了解基本不等式的证明过程。
2.会用基本不等式解决简单的最大(小)值问题。
热点题型一 利用基本不等式求最值例1、 (1)若x <32,则y =x +82x -3的最大值为________。
(2)设x ≥0,y ≥0,x 2+y 22=1,则x 1+y 2的最大值为________。
(2)∵x ≥0,y ≥0,x 2+y 22=1,∴x 1+y 2=x2+y2=2x 2·1+y 22≤2×x 2+1+y 222=2×x 2+y 22+122=324,当且仅当x =32,y =22⎝⎛⎭⎫即x 2=1+y 22时,x 1+y 2取得最大值324。
【提分秘籍】利用基本不等式求最值的常用技巧(1)若直接满足基本不等式条件,则直接应用基本不等式。
(2)若不直接满足基本不等式条件,则需要创造条件对式子进行恒等变形,如构造“1”的代换等。
(3)若一次应用基本不等式不能达到要求,需多次应用基本不等式,但要注意等号成立的条件必须要一致。
提醒:若可用基本不等式,但等号不成立,则一般是利用函数单调性求解。
【举一反三】已知x >0,y >0,且x +y =1,则3x +4y的最小值是________。
【答案】7+4 3热点题型二 基本不等式的实际应用例2、某厂家拟在2015年举行促销活动,经调查测算,该产品的年销售量(即该厂的年产量)x 万件与年促销费用m (m ≥0)万元满足x =3-km +1(k 为常数)。
如果不搞促销活动,则该产品的年销量只能是1万件。
已知2015年生产该产品的固定投入为8万元,每生产1万件该产品需要再投入16万元,厂家将每件产品的销售价格定为每件产品年平均成本的1.5倍(产品成本包括固定投入和再投入两部分资金)。
(1)将该厂家2015年该产品的利润y 万元表示为年促销费用m 万元的函数; (2)该厂家2015年的年促销费用投入多少万元时,厂家利润最大? 【解析】(1)由题意知,当m =0时,x =1(万件), ∴1=3-k ⇒k =2,∴x =3-2m +1,每件产品的销售价格为1.5×8+16xx (元),∴2015年的利润y =1.5x ×8+16xx -8-16x -m=-⎣⎡⎦⎤16m +1+m ++29(m ≥0)。
[推荐学习]2017年中考数学试题分项版解析汇编第01期专题03方程组和不等式组含解析
![[推荐学习]2017年中考数学试题分项版解析汇编第01期专题03方程组和不等式组含解析](https://img.taocdn.com/s3/m/798fed82dd3383c4ba4cd21f.png)
专题3 方程(组)和不等式(组)一、选择题1. (2017浙江衢州第6题)二元一次方程组⎩⎨⎧-=-=+236y x y x 的解是A. ⎩⎨⎧==15y x B. ⎩⎨⎧==24y x C. ⎩⎨⎧-=-=15y x D. ⎩⎨⎧-=-=24y x【答案】B .考点:解二元一次方程组.2.(2017山东德州第8题)不等式组31+2-132+9x x x ⎧≥>⎪⎨⎪⎩的解集为( )A .x≥3B .-3≤x<4 C.-3≤x<2 D.x> 4 【答案】B 【解析】试题分析:2x+9≥3的解集是x≥-3;1+2-13xx >的解集是x<4, ∴不等式组的解集为:-3≤x<4 故选B.考点: 解不等式组3.(2017山东德州第10题)某美术社团为练习素描,他们第一次用120元买了买了若干本资料,第二次用240元在同一家商店买同一样的资料,这次商家每本优惠4元,结果比上次多买了20本。
求第一次买了多少本资料?若设第一次买了x 本资料,列方程正确的是( ) A.240120-=4-20x x B. 240120-=4+20x xC.120240-=4-20xx D. 120240-=4+20x x 【答案】D考点:列分式方程解应用题4.(2017重庆A 卷第12题)若数a 使关于x 的分式方程2411y ax x++=--的解为正数,且使关于y 的不等式组12()y 232y a y⎧+->-≤⎪⎨⎪⎩的解集为y <﹣2,则符合条件的所有整数a 的和为( ) A .10 B .12 C .14 D .16 【答案】B. 【解析】试题解析:分式方程2411y a x x ++=--的解为x=6-4a,∵关于x 的分式方程+=4的解为正数,∴6-4a>0, ∴a <6.y 123)02(2①y ②ya ⎧+>≤--⎪⎨⎪⎩, 解不等式①得:y <﹣2; 解不等式②得:y ≤a .∵关于y 的不等式组12()y 232y a y⎧+->-≤⎪⎨⎪⎩的解集为y <﹣2,∴a≥﹣2.∴﹣2≤a<6.∵a为整数,∴a=﹣2、﹣1、0、1、2、3、4、5,(﹣2)+(﹣1)+0+1+2+3+4+5=12.故选B.考点:1.分式方程的解;2.解一元一次不等式组.5.(2017甘肃庆阳第9题)如图,某小区计划在一块长为32m,宽为20m的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为570m2.若设道路的宽为xm,则下面所列方程正确的是()A.(32-2x)(20-x)=570 B.32x+2×20x=32×20-570C.(32-x)(20-x)=32×20-570 D.32x+2×20x-2x2=570【答案】A.【解析】试题解析:设道路的宽为xm,根据题意得:(32-2x)(20-x)=570,故选A.考点:由实际问题抽象出一元二次方程.6.(2017贵州安顺第8题)若关于x的方程x2+mx+1=0有两个不相等的实数根,则m的值可以是()A.0 B.﹣1 C.2 D.﹣3【答案】D.考点:根的判别式.7.(2017湖南怀化第7题)若12,x x 是一元二次方程2230x x --=的两个根,则12x x ×的值是( ) A.2B.2-C.4D.3-【答案】D. 【解析】试题解析:∵x 1,x 2是一元二次方程x 2﹣2x ﹣3=0的两个根, ∴x 1+x 2=2,x 1•x 2=﹣3. 故选D .考点:根与系数的关系.8. (2017江苏无锡第7题)某商店今年1月份的销售额是2万元,3月份的销售额是4.5万元,从1月份到3月份,该店销售额平均每月的增长率是( ) A .20% B .25% C .50% D .62.5% 【答案】C . 【解析】试题解析:设该店销售额平均每月的增长率为x ,则二月份销售额为2(1+x )万元,三月份销售额为2(1+x )2万元,由题意可得:2(1+x )2=4.5,解得:x 1=0.5=50%,x 2=﹣2.5(不合题意舍去), 答即该店销售额平均每月的增长率为50%; 故选C .考点:一元二次方程的应用.9.(2017甘肃兰州第6题)如果一元二次方程2230x x m ++=有两个相等的实数根,那么是实数m 的取值为( )A.98m >B.89m >C.98m =D.89m =【答案】98m =【解析】试题解析:∵一元二次方程2x 2+3x+m=0有两个相等的实数根, ∴△=32﹣4×2m=9﹣8m=0,解得:98m =.故选C .考点:根的判别式.10. (2017甘肃兰州第10题)王叔叔从市场上买一块长80cm ,宽70cm 的矩形铁皮,准备制作一个工具箱,如图,他将矩形铁皮的四个角各剪掉一个边长cm x 的正方形后,剩余的部分刚好能围成一个底面积为23000cm 的无盖长方形工具箱,根据题意列方程为( )A.()()80703000x x --=B.2807043000x ?=C.()()8027023000x x --=D.()28070470803000x x ?-+=【答案】C 【解析】试题解析:由题意可得, (80﹣2x )(70﹣2x )=3000, 故选C .考点:由实际问题抽象出一元二次方程.11.(2017贵州黔东南州第6题)已知一元二次方程x 2﹣2x ﹣1=0的两根分别为x 1,x 2,则1211x x的值为( ) A .2B .﹣1C .-12D .﹣2【答案】D . 【解析】试题解析:根据题意得x 1+x 2=2,x 1x 2=﹣1, 所以121212112=21x x x x x x ++==--.故选D .考点:根与系数的关系.12.(2017贵州黔东南州第7题)分式方程331x (1)1x x =-++的根为( )A .﹣1或3B .﹣1C .3D .1或﹣3【答案】C 【解析】试题解析:去分母得:3=x2+x ﹣3x , 解得:x=﹣1或x=3,经检验x=﹣1是增根,分式方程的根为x=3, 故选C考点:解分式方程.13.(2017山东烟台第10题)若21,x x 是方程01222=--+-m m mx x 的两个根,且21211x x x x -=+,则m 的值为( )A .1-或2B .1或2- C. 2- D .1 【答案】D . 【解析】试题解析:∵x 1,x 2是方程x 2﹣2mx+m 2﹣m ﹣1=0的两个根, ∴x 1+x 2=2m ,x 1•x 2=m 2﹣m ﹣1. ∵x 1+x 2=1﹣x 1x 2,∴2m=1﹣(m 2﹣m ﹣1),即m 2+m ﹣2=(m+2)(m ﹣1)=0, 解得:m 1=﹣2,m 2=1.∵方程x 2﹣2mx+m 2﹣m ﹣1=0有实数根, ∴△=(﹣2m )2﹣4(m 2﹣m ﹣1)=4m+4≥0,解得:m≥﹣1.∴m=1.故选D.考点:根与系数的关系.14.(2017四川宜宾第4题)一元二次方程4x2﹣2x+14=0的根的情况是()A.有两个不相等的实数根 B.有两个相等的实数根C.没有实数根 D.无法判断【答案】B.考点:根的判别式.15.(2017四川自贡第4题)不等式组23-42+1xx>≤⎧⎨⎩的解集表示在数轴上正确的是()【答案】C 【解析】试题解析:23-42+1①x②x>≤⎧⎨⎩解①得:x>1,解②得:x≤2,不等式组的解集为:1<x≤2,在数轴上表示为,故选C.考点:1.解一元一次不等式组;2.在数轴上表示不等式组的解集.16.(2017新疆建设兵团第7题)已知关于x 的方程x 2+x ﹣a=0的一个根为2,则另一个根是( ) A .﹣3 B .﹣2 C .3 D .6【答案】A. 【解析】试题解析:设方程的另一个根为t , 根据题意得2+t=﹣1,解得t=﹣3, 即方程的另一个根是﹣3. 故选A .考点:根与系数的关系.17. (2017新疆建设兵团第8题)某工厂现在平均每天比原计划多生产40台机器,现在生产600台机器所需的时间与原计划生产480台机器所用的时间相同,设原计划每天生产x 台机器,根据题意,下面列出的方程正确的是( ) A .60048040x x =- B .600480+40x x=C .600480+40xx =D .600480-40xx =【答案】B. 【解析】试题解析:设原计划平均每天生产x 台机器,根据题意可知现在每天生产(x+40)台机器,而现在生产600台所需时间和原计划生产4800台机器所用时间相等,从而列出方程600480+40x x=.故选B .考点:由实际问题抽象出分式方程.18. (2017浙江嘉兴第6题)若二元一次方程组3,354x y x y +=⎧⎨-=⎩的解为,,x a y b =⎧⎨=⎩则a b -=( )A .1B .3C .14-D .74【答案】D. 【解析】试题解析:∵x+y=3,3x-5y=4,∴两式相加可得:(x+y )+(3x-5y )=3+4, ∴4x -4y=7, ∴x -y=74, ∵x=a,y=b , ∴a -b=x-y=74故选D.考点:二元一次方程组的解.19.(2017浙江嘉兴第8题)用配方法解方程2210x x +-=时,配方结果正确的是( ) A .2(2)2x += B .2(1)2x +=C .2(2)3x +=D .2(1)3x +=【答案】B . 【解析】试题解析:∵x 2+2x-1=0, ∴x 2+2x-1=0, ∴(x+1)2=2. 故选B .考点:解一元二次方程-配方法. 二、填空题1.(2017山东德州第15题)方程3x(x-1)=2(x-1)的根是 【答案】x 1=1,x 2=-23. 【解析】试题解析:3x(x-1)=2(x-1) 3x(x-1)-2 (x-1) =0 (3x-2)(x-1)=0 3x-2=0,x-1=0 解得:x 1=1,x 2=-23.考点:解一元二次方程---因式分解法.2.(2017浙江宁波第14题)分式方程21332xx+=-的解是.【答案】x=1【解析】试题分析:去分母得:4x+2=9-3x解得:x=1经检验:x=1是原方程的解.考点:解分式方程.3.(2017甘肃庆阳第15题)若关于x的一元二次方程(k-1)x2+4x+1=0有实数根,则k的取值范围是【答案】k≤5且k≠1.考点:根的判别式.4.(2017江苏盐城第13题)若方程x2-4x+1=0的两根是x1,x2,则x1(1+x2)+x2的值为【答案】5.【解析】试题解析:根据题意得x1+x2=4,x1x2=1,所以x1(1+x2)+x2=x1+x1x2+x2=x1+x2+x1x2=4+1=5.考点:要有与系数的关系.5.(2017山东烟台第15题)运行程序如图所示,从“输入实数x”到“结果是否18”为一次程序操作,若输入x后程序操作仅进行了一次就停止,则x的取值范围是 .【答案】x<8.【解析】试题解析:依题意得:3x﹣6<18,解得x<8.考点:一元一次不等式的应用.考点:1.分式方程的解;2.解一元一次不等式7.(2017四川宜宾第13题)若关于x、y的二元一次方程组2m133x yx y⎧-=+⎨+=⎩的解满足x+y>0,则m的取值范围是.【答案】m>﹣2.【解析】试题解析:2m133x yx y⎧-=+⎨+=⎩,①+②得2x+2y=2m+4,则x+y=m+2,根据题意得m+2>0,解得m >﹣2.考点:1.解一元一次不等式;2.二元一次方程组的解.8.(2017四川宜宾第14题)经过两次连续降价,某药品销售单价由原来的50元降到32元,设该药品平均每次降价的百分率为x ,根据题意可列方程是 .【答案】50(1﹣x )2=32【解析】试题解析:由题意可得,50(1﹣x )2=32考点:由实际问题抽象出一元二次方程.9.(2017四川自贡第15题)我国明代数学家程大位的名著《直接算法统宗》里有一道著名算题:“一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?”意思是:有100个和尚分100个馒头,正好分完;如果大和尚一人分3个,小和尚3人分一个,试问大、小和尚各几人?设大、小和尚各有x ,y 人,则可以列方程组 . 【答案】13+=1003x+y=100x y ⎧⎪⎨⎪⎩【解析】试题解析:设大、小和尚各有x ,y 人,则可以列方程组:13+=1003x+y=100x y ⎧⎪⎨⎪⎩. 考点:由实际问题抽象出二元一次方程组.10. (2017新疆建设兵团第13题)一台空调标价2000元,若按6折销售仍可获利20%,则这台空调的进价是 元.【答案】1000.【解析】试题解析:设该商品的进价为x 元,根据题意得:2000×0.6﹣x=x ×20%,解得:x=1000.故该商品的进价是1000元.考点:一元一次方程的应用.三、解答题1.(2017浙江衢州第18题)解下列一元一次不等式组:【答案】﹣1<x≤4.考点:解一元一次不等式组.2.(2017浙江衢州第20题)根据衢州市统计局发布的统计数据显示,衢州市近5年国民生产总值数据如图1所示,2016年国民生产总值中第一产业、第二产业、第三产业所占比例如图2所示。
2017年中考数学试题分项版解析汇编(第02期)专题03 方程(组)和不等式(组)(含解析)
专题3:方程(组)和不等式(组)一、选择题1.(2017天津第8题)方程组⎩⎨⎧=+=1532y x xy 的解是( )A .⎩⎨⎧==32y x B .⎩⎨⎧==34y x C. ⎩⎨⎧==84y x D .⎩⎨⎧==63y x 【答案】D. 【解析】试题分析:把方程①代入方程②可得,3x+2x=15,解得x=3,把x=3代入方程①可得y=6,所以方程组的解为⎩⎨⎧==63y x ,故选D.2.(2017福建第6题) 不等式组:⎩⎨⎧>+≤-0302x x 的解集是( )A .32x -<≤B .32x -≤<C . 2x ≥D .3x <- 【答案】A【解析】由①得x ≤2,由②得x>-3,所以解集为:-3<x ≤2,故选A. 3.(2017河南第4题)解分式方程13211x x-=--,去分母得( ) A .12(1)3x --=- B .12(1)3x --= C.1223x --=- D .1223x -+= 【答案】A. 【解析】试题分析:方程两边同乘以x-1得到12(1)3x --=-,故选A. 考点:解分式方程.4.(2017河南第6题)一元二次方程22520x x --=的根的情况是( ) A .有两个相等的实数根 B .有两个不相等的实数根 C. 只有一个实数根 D .没有实数根 【答案】B. 【解析】试题分析:这里a=2,b=-5,c=-2,所以△=2(5)42(2)2516410--⨯⨯-=+=,即可得方程22520x x --=有有两个不相等的实数根,故选B. 考点:根的判别式.6.(2017广东广州第5题)关于x 的一元二次方程280x x q ++=有两个不相等的实数根,则q 的取值范围是( )A .16q <B .16q > C. 4q ≤ D .4q ≥ 【答案】A 【解析】试题分析:根的判别式为△=6440q ->,解得:16q <.故选答案A. 考点:一元二次方程根的判别式的性质7.(2017湖南长沙第11题)中国古代数学著作《算法统宗》中有这样一段记载:“三百七十八里关,初健步不为难,次日脚痛减一半,六朝才得到其关.”其大意是,有人要去某关口,路程378里,第一天健步行走,第二天起,由于脚痛,每天走的路程都为前一天的一半,一共走了六天才到达目的地,则此人第六天走的路程为( )A .24里B .12里C .6里D .3里 【答案】C考点:等比数列9.(2017山东临沂第4题)不等式组21,512x x ->⎧⎪⎨+≥⎪⎩①②中,不等式①和②的解集在数轴上表示正确的是( )A. B.C. D.【答案】B【解析】试题分析:解不等式①可得x<1,解不等式②得x≥-3,根据不等式解集的确定法“都大取大,都小取小,大小小大取中间,大大小小无解了”,得到不等式组的解集为:-3≤x<1,由此可知用数轴表示为:故选:B.考点:解不等式组10. (2017山东临沂第8题)甲、乙二人做某种机械零件.已知甲每小时比乙多做6个,甲做90个所用时间与乙做60个所用时间相等,求甲、乙每小时各做零件多少个.如果设乙每小时做x个,那么所列方程是()A.90606x x=+B.90606x x=+C.90606x x=-D.90606x x=-【答案】B考点:分式方程的应用11. (2017山东滨州第9题)某车间有27名工人,生产某种由一个螺栓套两个螺母的产品,每人每天生产螺母16个或螺栓22个.若分配x名工人生产螺栓,其他工人生产螺母,恰好使每天生产的螺栓和螺母配套,则下面所列方程中正确的是()A.22x=16(27-x) B.16x=22(27-x)C.2×16x=22(27-x) D.2×22x=16(27-x)【答案】D【解析】设分配x 名工人生产螺栓,则(27-x )人生产螺母,根据一个螺栓要配两个螺母可得方程2×22x=16(27-x ),故选D.12.(2017山东滨州第6题)分式方程311(1)(2)x x x x -=--+的解为( )A .x =1B .x =-1C .无解D .x =-2【答案】C.【解析】方程两边同乘以(x-1)(x+2)得,x (x+2)-(x-1)(x+2)=3,解得x=1,经检验,x=1不是原方程的根,原分式方程无解,故选C.13. (2017江苏宿迁第5题)已知45m <<,则关于x 的不等式组0420x m x -<⎧⎨-<⎩的整数解共有A .1个B .2个 C.3个 D .4个 【答案】B.14. (2017江苏苏州第8题)若二次函数21y ax =+的图像经过点()2,0-,则关于x 的方程()2210a x -+=的实数根为A .10x =,24x =B .12x =-,26x = C.132x =,252x = D .14x =-,20x = 【答案】A. 【解析】试题分析:14104a a +=⇒=- 则:()21212100,44x x x --+=⇒==,故答案选A. 考点:一元二次方程的解法15. (2017江苏苏州第4题)关于x 的一元二次方程220x x k -+=有两个相等的实数根,则k 的值为 A .1 B .1- C.2 D .2- 【答案】A. 【解析】试题分析:=4401k k ∆-=⇒= 故答案选A. 考点:根的判别式的性质.16. (2017浙江湖州第4题)一元一次不等式组21112x x x >-⎧⎪⎨≤⎪⎩的解是( )A .1x >-B .2x ≤ C.12x -<≤ D .1x >-或2x ≤ 【答案】C考点:解不等式组17. (2017湖南湘潭第3题)不等式组21x x <⎧⎨>-⎩的解集在数轴上表示为( )A .B .C .D .【答案】B. 【解析】试题分析:x<2,不包括2,画空心圆圈,小于向左拐;x >-1,不包括-1,画空心圆圈,大于向右拐,故选B.18. (2017浙江舟山第6题)若二元一次方程组⎩⎨⎧=-=+4533y x y x 的解为⎩⎨⎧==b y ax ,则=-b a ( )A .1B .3 C. 41- D .47【答案】D. 【解析】试题分析:将两个方程相加,可得(x+y)+(3x-5y)=3+4,整理得4x-4y=7,即x-y=74,所以a-b=74,故选D. 考点:二元一次方程组的解,解二元一次方程组.19. (2017浙江台州第9题)滴滴快车是一种便捷的出行工具,计价规则如下表:小王与小张各自乘坐滴滴快车,行车里程分别为6公里与8.5公里,如果下车时两人所付车费相同,那么这两辆滴滴快车的行车时间相差( )A . 10分钟B .13分钟 C. 15分钟 D .19分钟 【答案】D考点:1、列代数式,2、二元一次方程的应用,3、根据数量关系列出方程20. (2017浙江金华第9题)若关于x 的一元一次不等式组()2132,x x x m ->-⎧⎪⎨<⎪⎩的解是5x <,则m 的取值范围是( )A .5m ≥B .5m > C.5m ≤ D .5m < 【答案】A. 【解析】试题分析:解第一个不等式得:x <5;解第二个不等式得:x <m ;因为不等式组的解是x <5,根据不等式组解集的判定方法即可得m ≥5,故选A.21. (2017浙江舟山第8题)用配方法解方程0122=-+x x 时,配方结果正确的是( )A .2)2(2=+xB .2)1(2=+x C. 3)2(2=+x D .3)1(2=+x【答案】B. 【解析】试题分析::方程两边都加2,得x 2+2x+1=2,则(x+1)2=2,故选B. 考点:解一元二次方程-配方法. 二、填空题1.(2017北京第12题)某活动小组购买了4个篮球和5个足球,一共花费了435元,其中篮球的单价比足球的单价多3元,求篮球的单价和足球的单价.设篮球的单价为x 元,足球的单价为y 元,依题意,可列方程组为____________. 【答案】454353x y x y +=⎧⎨-=⎩ .【解析】试题分析:由题意得:4个篮球和5个足球共花费435元,可列方程:4x+5y=435,篮球的单价比足球的单价多3元,可列方程:x-y=3,联立方程即可. 考点:二元一次方程组的应用.2.(2017河南第12题)不等式组20,12x x x -≤⎧⎪⎨-<⎪⎩的解集是 .【答案】-1<x ≤2. 【解析】试题分析:解不等式①得,x ≤2;解不等式②得,x>-1;所以不等式组的解集为-1<x ≤2. 考点:一元一次不等式组的解法.3.(2017湖南长沙第14题)方程组⎩⎨⎧=-=+331y x y x 的解是 .【答案】1x y =⎧⎨=⎩【解析】试题分析:利用加减消元法,用方程①+方程②可得x=1,代入方程x+y=1可得y=0,解得方程组的解为1x y =⎧⎨=⎩.故答案为:1x y =⎧⎨=⎩考点:加减消元法解二元一次方程组 4. (2017四川泸州第15题)关于x 的分式方程2322x m mx x++=--的解为正实数,则实数m 的取值范围是 . 【答案】m<6且m ≠2. 【解析】试题分析:方程两边同乘以x-2可得,x+m-2m=3(x-2),解得x=62m --,因方程的解为正实数,且x-2≠0,所以62m -->0且m ≠2,即m<6且m ≠2. 5. (2017山东滨州第14题)不等式组3(2)4,21152x x x x -->⎧⎪-+⎨⎪⎩≤的解集为___________.【答案】-7≤x<1.【解析】解不等式①得,x<1;解不等式②得,x ≥-7,所以原不等式组的解集为-7≤x<1. 6. (2017江苏宿迁第14题)若关于x 的分式方程1322m xx x-=---有增根,则实数m 的值是 . 【答案】1. 【解析】试题分析:方程两边同乘以x-2,可得m=x-1-3(x-2),解得m=-2x+5,因分式方程1322m xx x-=---有增根,可得x=2,所以m=1.7. (2017山东菏泽第10题)关于x 的一元二次方程06)1(22=-++-k k x x k 的一个根式0,则k 的值是_______. 【答案】0. 【解析】试题分析:把x=0代入06)1(22=-++-k k x x k ,得02=-k k ,解得k=1(舍去),或k=0;8. (2017浙江台州第14题)商家花费760元购进某种水果80千克,销售中有5%的水果正常损耗,为了避免亏本,售价至少定为 元/千克.【答案】10 【解析】试题分析:设售价至少应定为x 元/千克,依题可得方程x (1-5%)×80≥760,从而得出x≥10. 故答案为:10.考点:一元一次不等式的应用 三、解答题1.(2017北京第18题) 解不等式组:()21571023x x x x ⎧+>-⎪⎨+>⎪⎩【答案】x<2.考点:解一元一次不等式组.2.(2017北京第21题)关于x 的一元二次方程()23220x k x k -+++=.(1)求证:方程总有两个实数根;(2)若方程有一根小于1,求k 的取值范围. 【答案】.(1)见解析,(2)k<0 【解析】试题分析:(1)由方程根的判别式△≥0,可求解;(2)由因式分解法可将方程化为(x-2)(x-k-1)的形式,解出两根即可.本题解析:(1)证明:∵△=[]222(3)4(22)21(1)0k k k k k -+-+=-+=-≥ ,∴方程总有两个实数根.(2) ∵2(3)22(2)(1)x k x k x x k -+++=---=0 , ∴122,1x x k ==+ , ∵方程总有一根小于1,∴k+1<1, ∴k<0.即k 的取值范围为:k<0.考点:根判别式;因式分解法解一元二次方程;解一元一次不等式组. 3.(2017天津第19题)解不等式组⎩⎨⎧+≤≥+34521x x x请结合题意填空,完成本题的解答. (1)解不等式①,得 ; (2)解不等式②,得 ;(3)把不等式①和②的解集在数轴上表示出来:(4)原不等式组的解集为 .【答案】(1)x ≥1;(2)x ≤3;(3)详见解析;(4)1≤x ≤3. 【解析】试题分析:(1)移项、合并同类项即可求得答案;(2)移项、合并同类项、系数化为1即可求得答案;(3)根据不等式解集在数轴上的表示方法,画出即可;(4)找出这两个不等式解集的公共部分,即可得不等式组的解集. 试题解析: (1)x ≥1; (2)x ≤3;(3);(4)1≤x ≤3.4.(2017福建第20题)我国古代数学著作《孙子算经》中有“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足.问鸡兔各几何.”其大意是:“有若干只鸡和兔关在同一笼子里,它们一共有35个头,94条腿.问笼中的鸡和兔各有多少只?”试用列方程(组)解应用题的方法求出问题的解. 【答案】鸡有23只,兔有12只. 【解析】试题分析:设鸡有x 只,兔有y 只,由等量关系:鸡兔共有35只,共有足94足,列出方程组,解方程组即可得.试题解析:设鸡有x 只,兔有y 只,由题意得:352494x y x y +=⎧⎨+=⎩ ,解得2312x y =⎧⎨=⎩ ,答:鸡有23只,兔有12只.5.(2017广东广州第17题)解方程组:52311x y x y +=⎧⎨+=⎩【答案】41x y =⎧⎨=⎩考点:用加减消元法解二元一次方程组.6.(2017湖南长沙第20题)解不等式组⎩⎨⎧+>---≥)1(31592x x x x ,并把它的解集在数轴上表示出来.【答案】x >2【解析】试题分析:分别接两个不等式,然后画出数轴,再取其公共部分即可求解集.试题解析:⎩⎨⎧+>---≥)1(31592x x x x ①②由①得,x ≥-3由②得,x >2解集如图所示:故原不等式组的解集为x >2考点:解不等式组7. (2017广东广州第21题)甲、乙两个工程队均参与某筑路工程,先由甲队筑路60公里,再由乙队完成剩下的筑路工程,已知乙队筑路总公里数是甲队筑路总公里数的43倍,甲队比乙队多筑路20天.(1)求乙队筑路的总公里数;(2)若甲、乙两队平均每天筑路公里数之比为5:8,求乙队平均每天筑路多少公里.【答案】(1)80公里;(2)乙队每天筑路45公里 【解析】试题分析:(1)求一个数的几分之几是多少,用乘法运算;(2)依据等量关系,列出分式方程考点:列分式方程解应用题.8. (2017山东青岛第16题)(本小题满分8分,每题4分)(1)解不等式组⎪⎩⎪⎨⎧-+≥-23221<x x x (2)化简:b b a a b a 222)(-÷-; 【答案】(1)x <-10;(2)a ab + 【解析】试题分析:(1)分别解两个不等式,利用知识点:同小取小,得不等式组的解集;(2)先对每个分式的分子、分母分解因式,再约分化简计算.试题解析: (1)由①得:1-<x ;由②得:x <10-。
中考数学 第一部分 考点研究复习 第二章 方程(组)与不等式(组)第7课时 一元二次方程及其应用真
江苏省2017年中考数学第一部分考点研究复习第二章方程(组)与不等式(组)第7课时一元二次方程及其应用真题精选(含解析)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(江苏省2017年中考数学第一部分考点研究复习第二章方程(组)与不等式(组)第7课时一元二次方程及其应用真题精选(含解析))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为江苏省2017年中考数学第一部分考点研究复习第二章方程(组)与不等式(组)第7课时一元二次方程及其应用真题精选(含解析)的全部内容。
第二章方程(组)与不等式(组)第7课时一元二次方程及其应用江苏近4年中考真题精选(2013~2016)命题点1 一元二次方程及其解法(2015年3次,2014年4次,2013年5次)1. (2016泰州14题3分)方程2x-4=0的解也是关于x的方程x2+mx+2=0的一个解,则m 的值为________.2. (2015徐州20(1)题5分)解方程:x2-2x-3=0。
3。
(2014泰州17(2)题6分)解方程:2x2-4x-1=0.命题点2 一元二次方程根的判别式及根与系数的关系(2016年5次,2015年7次,2014年6次,2013年3次)4。
(2014苏州7题3分)下列关于x的方程有实数根的是( )A。
x2-x+1=0 B. x2+x+1=0C. (x-1)(x+2)=0 D。
(x-1)2+1=05. (2016淮安14题3分)若关于x的一元二次方程x2+6x+k=0有两个相等的实数根,则k=________.6. (2016宿迁12题3分)若一元二次方程x2-2x+k=0有两个不相等的实数根,则k的取值范围是________.7。
全国各地2017年中考数学分类解析专题24_方程、不等式和函数的综合
2017年全国中考数学试题分类解析汇编(159套63专题)专题24:方程、不等式和函数的综合一、选择题1. (2017福建龙岩4分)下列函数中,当x <0时,函数值y 随x 的增大而增大的有【 】 ①y=x ②y=-2x +1 ③1y=x -④2y=3x A .1个B .2个C .3个D . 4个 【答案】B 。
【考点】一次函数、反比例函数和二次函数的性质。
【分析】根据一次函数、反比例函数和二次函数的性质作出判断:①∵y=x 的k >0,∴当x <0时,函数值y 随x 的增大而增大;②∵y=-2x +1的k <0,∴当x <0时,函数值y 随x 的增大而减小;③∵1y=x-的k <0,∴当x <0时,函数值y 随x 的增大而增大; ④∵2y=3x 的a >0,对称轴为x=0,∴当x <0时,函数值y 随x 的增大而减小。
∴正确的有2个。
故选B 。
2. (2017四川广元3分) 已知关于x 的方程22(x 1)(x b)2++-=有唯一实数解,且反比例函数1b y x+=的图象在每个象限内y 随x 的增大而增大,那么反比例函数的关系式为【 】 A. 3y x =- B. 1y x = C. 2y x = D. 2y x=- 【答案】D 。
【考点】一元二次方程根的判别式,反比例函数的性质。
【分析】关于x 的方程22(x 1)(x b)2++-=化成一般形式是:2x 2+(2-2b )x +(b 2-1)=0,∵它有唯一实数解,∴△=(2-2b )2-8(b 2-1)=-4(b +3)(b -1)=0,解得:b=-3或1。
∵反比例函数1b y x+= 的图象在每个象限内y 随x 的增大而增大, ∴1+b<0。
∴b<-1。
∴b=-3。
∴反比例函数的解析式是13y x -=,即2y x=-。
故选D 。
3. (2017山东菏泽3分)已知二次函数2y ax bx c =++的图象如图所示,那么一次函数y bx c =+和反比例函数a y x=在同一平面直角坐标系中的图象大致是【 】A .B .C . D【答案】C 。
2017届中考数学试题分项版解析汇编第01期专题03方程组和不等式组含解析
专题3 方程(组)和不等式(组)一、选择题1. (2017浙江衢州第6题)二元一次方程组⎩⎨⎧-=-=+236y x y x 的解是A. ⎩⎨⎧==15y x B. ⎩⎨⎧==24y x C. ⎩⎨⎧-=-=15y x D. ⎩⎨⎧-=-=24y x【答案】B .考点:解二元一次方程组.2.(2017山东德州第8题)不等式组31+2-132+9x x x ⎧≥>⎪⎨⎪⎩的解集为( )A .x≥3B .-3≤x<4 C.-3≤x<2 D .x> 4 【答案】B 【解析】试题分析:2x+9≥3的解集是x≥-3;1+2-13xx >的解集是x<4, ∴不等式组的解集为:-3≤x<4 故选B.考点: 解不等式组3.(2017山东德州第10题)某美术社团为练习素描,他们第一次用120元买了买了若干本资料,第二次用240元在同一家商店买同一样的资料,这次商家每本优惠4元,结果比上次多买了20本。
求第一次买了多少本资料?若设第一次买了x 本资料,列方程正确的是( ) A.240120-=4-20x x B. 240120-=4+20x xC.120240-=4-20xx D. 120240-=4+20x x 【答案】D考点:列分式方程解应用题4.(2017重庆A 卷第12题)若数a 使关于x 的分式方程2411y ax x++=--的解为正数,且使关于y 的不等式组12()y 232y a y⎧+->-≤⎪⎨⎪⎩的解集为y <﹣2,则符合条件的所有整数a 的和为( ) A .10 B .12 C .14 D .16 【答案】B. 【解析】试题解析:分式方程2411y a x x ++=--的解为x=6-4a,∵关于x 的分式方程+=4的解为正数,∴6-4a>0, ∴a <6.y 123)02(2①y ②ya ⎧+>≤--⎪⎨⎪⎩, 解不等式①得:y <﹣2; 解不等式②得:y ≤a .∵关于y 的不等式组12()y 232y a y⎧+->-≤⎪⎨⎪⎩的解集为y <﹣2,∴a≥﹣2.∴﹣2≤a<6.∵a为整数,∴a=﹣2、﹣1、0、1、2、3、4、5,(﹣2)+(﹣1)+0+1+2+3+4+5=12.故选B.考点:1.分式方程的解;2.解一元一次不等式组.5.(2017甘肃庆阳第9题)如图,某小区计划在一块长为32m,宽为20m的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为570m2.若设道路的宽为xm,则下面所列方程正确的是()A.(32-2x)(20-x)=570 B.32x+2×20x=32×20-570C.(32-x)(20-x)=32×20-570 D.32x+2×20x-2x2=570【答案】A.【解析】试题解析:设道路的宽为xm,根据题意得:(32-2x)(20-x)=570,故选A.考点:由实际问题抽象出一元二次方程.6.(2017贵州安顺第8题)若关于x的方程x2+mx+1=0有两个不相等的实数根,则m的值可以是()A.0 B.﹣1 C.2 D.﹣3【答案】D.考点:根的判别式.7.(2017湖南怀化第7题)若12,x x 是一元二次方程2230x x --=的两个根,则12x x ×的值是( ) A.2B.2-C.4D.3-【答案】D. 【解析】试题解析:∵x 1,x 2是一元二次方程x 2﹣2x ﹣3=0的两个根, ∴x 1+x 2=2,x 1•x 2=﹣3. 故选D .考点:根与系数的关系.8. (2017江苏无锡第7题)某商店今年1月份的销售额是2万元,3月份的销售额是4.5万元,从1月份到3月份,该店销售额平均每月的增长率是( ) A .20% B .25% C .50% D .62.5% 【答案】C . 【解析】试题解析:设该店销售额平均每月的增长率为x ,则二月份销售额为2(1+x )万元,三月份销售额为2(1+x )2万元,由题意可得:2(1+x )2=4.5,解得:x 1=0.5=50%,x 2=﹣2.5(不合题意舍去), 答即该店销售额平均每月的增长率为50%; 故选C .考点:一元二次方程的应用.9.(2017甘肃兰州第6题)如果一元二次方程2230x x m ++=有两个相等的实数根,那么是实数m 的取值为( ) A.98m >B.89m >C.98m =D.89m =【答案】98m =【解析】试题解析:∵一元二次方程2x 2+3x+m=0有两个相等的实数根, ∴△=32﹣4×2m=9﹣8m=0, 解得:98m =.故选C .考点:根的判别式.10. (2017甘肃兰州第10题)王叔叔从市场上买一块长80cm ,宽70cm 的矩形铁皮,准备制作一个工具箱,如图,他将矩形铁皮的四个角各剪掉一个边长cm x 的正方形后,剩余的部分刚好能围成一个底面积为23000cm 的无盖长方形工具箱,根据题意列方程为( )A.()()80703000x x --=B.2807043000x ?=C.()()8027023000x x --=D.()28070470803000x x ?-+=【答案】C 【解析】试题解析:由题意可得, (80﹣2x )(70﹣2x )=3000, 故选C .考点:由实际问题抽象出一元二次方程.11.(2017贵州黔东南州第6题)已知一元二次方程x 2﹣2x ﹣1=0的两根分别为x 1,x 2,则1211x x的值为( ) A .2B .﹣1C .-12D .﹣2【答案】D . 【解析】试题解析:根据题意得x 1+x 2=2,x 1x 2=﹣1, 所以121212112=21x x x x x x ++==--.故选D .考点:根与系数的关系.12.(2017贵州黔东南州第7题)分式方程331x (1)1x x =-++的根为( )A .﹣1或3B .﹣1C .3D .1或﹣3【答案】C 【解析】试题解析:去分母得:3=x2+x ﹣3x , 解得:x=﹣1或x=3,经检验x=﹣1是增根,分式方程的根为x=3, 故选C考点:解分式方程.13.(2017山东烟台第10题)若21,x x 是方程01222=--+-m m mx x 的两个根,且21211x x x x -=+,则m 的值为( )A .1-或2B .1或2- C. 2- D .1 【答案】D . 【解析】试题解析:∵x 1,x 2是方程x 2﹣2mx+m 2﹣m ﹣1=0的两个根, ∴x 1+x 2=2m ,x 1•x 2=m 2﹣m ﹣1. ∵x 1+x 2=1﹣x 1x 2,∴2m=1﹣(m 2﹣m ﹣1),即m 2+m ﹣2=(m+2)(m ﹣1)=0, 解得:m 1=﹣2,m 2=1.∵方程x 2﹣2mx+m 2﹣m ﹣1=0有实数根, ∴△=(﹣2m )2﹣4(m 2﹣m ﹣1)=4m+4≥0,解得:m≥﹣1.∴m=1.故选D.考点:根与系数的关系.14.(2017四川宜宾第4题)一元二次方程4x2﹣2x+14=0的根的情况是()A.有两个不相等的实数根 B.有两个相等的实数根C.没有实数根 D.无法判断【答案】B.考点:根的判别式.15.(2017四川自贡第4题)不等式组23-42+1xx>≤⎧⎨⎩的解集表示在数轴上正确的是()【答案】C 【解析】试题解析:23-42+1①x②x>≤⎧⎨⎩解①得:x>1,解②得:x≤2,不等式组的解集为:1<x≤2,在数轴上表示为,故选C.考点:1.解一元一次不等式组;2.在数轴上表示不等式组的解集.16.(2017新疆建设兵团第7题)已知关于x 的方程x 2+x ﹣a=0的一个根为2,则另一个根是( ) A .﹣3 B .﹣2 C .3 D .6【答案】A. 【解析】试题解析:设方程的另一个根为t , 根据题意得2+t=﹣1,解得t=﹣3, 即方程的另一个根是﹣3. 故选A .考点:根与系数的关系.17. (2017新疆建设兵团第8题)某工厂现在平均每天比原计划多生产40台机器,现在生产600台机器所需的时间与原计划生产480台机器所用的时间相同,设原计划每天生产x 台机器,根据题意,下面列出的方程正确的是( ) A .60048040x x =- B .600480+40x x=C .600480+40xx =D .600480-40xx =【答案】B. 【解析】试题解析:设原计划平均每天生产x 台机器,根据题意可知现在每天生产(x+40)台机器,而现在生产600台所需时间和原计划生产4800台机器所用时间相等,从而列出方程600480+40x x=.故选B .考点:由实际问题抽象出分式方程.18. (2017浙江嘉兴第6题)若二元一次方程组3,354x y x y +=⎧⎨-=⎩的解为,,x a y b =⎧⎨=⎩则a b -=( )A .1B .3C .14-D .74【答案】D. 【解析】试题解析:∵x+y=3,3x-5y=4,∴两式相加可得:(x+y )+(3x-5y )=3+4, ∴4x -4y=7, ∴x -y=74, ∵x=a,y=b , ∴a -b=x-y=74故选D.考点:二元一次方程组的解.19.(2017浙江嘉兴第8题)用配方法解方程2210x x +-=时,配方结果正确的是( ) A .2(2)2x += B .2(1)2x +=C .2(2)3x +=D .2(1)3x +=【答案】B . 【解析】试题解析:∵x 2+2x-1=0, ∴x 2+2x-1=0, ∴(x+1)2=2. 故选B .考点:解一元二次方程-配方法. 二、填空题1.(2017山东德州第15题)方程3x(x-1)=2(x-1)的根是 【答案】x 1=1,x 2=-23. 【解析】试题解析:3x(x-1)=2(x-1) 3x(x-1)-2 (x-1) =0 (3x-2)(x-1)=0 3x-2=0,x-1=0 解得:x 1=1,x 2=-23.考点:解一元二次方程---因式分解法.2.(2017浙江宁波第14题)分式方程21332xx+=-的解是.【答案】x=1【解析】试题分析:去分母得:4x+2=9-3x解得:x=1经检验:x=1是原方程的解.考点:解分式方程.3.(2017甘肃庆阳第15题)若关于x的一元二次方程(k-1)x2+4x+1=0有实数根,则k的取值范围是【答案】k≤5且k≠1.考点:根的判别式.4.(2017江苏盐城第13题)若方程x2-4x+1=0的两根是x1,x2,则x1(1+x2)+x2的值为【答案】5.【解析】试题解析:根据题意得x1+x2=4,x1x2=1,所以x1(1+x2)+x2=x1+x1x2+x2=x1+x2+x1x2=4+1=5.考点:要有与系数的关系.5.(2017山东烟台第15题)运行程序如图所示,从“输入实数x”到“结果是否18”为一次程序操作,若输入x后程序操作仅进行了一次就停止,则x的取值范围是 .【答案】x<8.【解析】试题解析:依题意得:3x﹣6<18,解得x<8.考点:一元一次不等式的应用.考点:1.分式方程的解;2.解一元一次不等式7.(2017四川宜宾第13题)若关于x、y的二元一次方程组2m133x yx y⎧-=+⎨+=⎩的解满足x+y>0,则m的取值范围是.【答案】m>﹣2.【解析】试题解析:2m133x yx y⎧-=+⎨+=⎩,①+②得2x+2y=2m+4,则x+y=m+2,根据题意得m+2>0,解得m >﹣2.考点:1.解一元一次不等式;2.二元一次方程组的解.8.(2017四川宜宾第14题)经过两次连续降价,某药品销售单价由原来的50元降到32元,设该药品平均每次降价的百分率为x ,根据题意可列方程是 .【答案】50(1﹣x )2=32【解析】试题解析:由题意可得,50(1﹣x )2=32考点:由实际问题抽象出一元二次方程.9.(2017四川自贡第15题)我国明代数学家程大位的名著《直接算法统宗》里有一道著名算题:“一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?”意思是:有100个和尚分100个馒头,正好分完;如果大和尚一人分3个,小和尚3人分一个,试问大、小和尚各几人?设大、小和尚各有x ,y 人,则可以列方程组 . 【答案】13+=1003x+y=100x y ⎧⎪⎨⎪⎩【解析】试题解析:设大、小和尚各有x ,y 人,则可以列方程组:13+=1003x+y=100x y ⎧⎪⎨⎪⎩. 考点:由实际问题抽象出二元一次方程组.10. (2017新疆建设兵团第13题)一台空调标价2000元,若按6折销售仍可获利20%,则这台空调的进价是 元.【答案】1000.【解析】试题解析:设该商品的进价为x 元,根据题意得:2000×0.6﹣x=x ×20%,解得:x=1000.故该商品的进价是1000元.考点:一元一次方程的应用.三、解答题1.(2017浙江衢州第18题)解下列一元一次不等式组:【答案】﹣1<x≤4.考点:解一元一次不等式组.2.(2017浙江衢州第20题)根据衢州市统计局发布的统计数据显示,衢州市近5年国民生产总值数据如图1所示,2016年国民生产总值中第一产业、第二产业、第三产业所占比例如图2所示。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
不等式及其应用一、选择题1.不等式5﹣2x>0的解集是()A. B. C. D.2.在四川抗震救灾中,某抢险地段需实行爆破.操作人员点燃导火线后,要在炸药爆炸前跑到400米以外的安全区域.已知导火线的燃烧速度是1.2厘米/秒,操作人员跑步的速度是5米/秒.为了保证操作人员的安全,导火线的长度要超过()A.66厘米B.76厘米C.86厘米D.96厘米3.四个小朋友玩跷跷板,他们的体重分别为P、Q、R、S,如图所示,则他们的体重大小关系是()A.P>R>S>Q B.Q>S>P>R C.S>P>Q>R D.S>P>R>Q4.不等式2x﹣5≥﹣1的解集在数轴上表示正确的是()A. B. C. D.5.如果a<b<0,下列不等式中错误的是()A.ab>0 B.a+b<0 C.<1 D.a﹣b<06.若2a+3b﹣1>3a+2b,则a,b的大小关系为()A.a<b B.a>b C.a=b D.不能确定7.不等式3x﹣5<3+x的正整数解有()A.1个B.2个C.3个D.4个8.不等式>1的解集是()A.x>﹣B.x>﹣2 C.x<﹣2 D.x<﹣9.用abc表示三种不同的物体,现放在天平上比较两次,情况如图所示,那么abc这三种物体按质量从大到小的顺序排列应为()A.a=b>c B.b>a>c C.a>c>b D.c>b>a二、填空题10.x的2倍与5的差<0,用不等式表示为.11.不等式3x+1<﹣2的解集是.12.苹果的进价为每千克3.8元,销售中估计有5%的苹果正常损耗,为避免亏本,商家把售价应该至少定为每千克元.13.不等式2﹣x<x﹣6的解集为.三、解答题14.解不等式5x﹣12≤2(4x﹣3),并把它的解集在数轴上表示出来.15.解不等式4x﹣6<x,并将不等式的解集表示在数轴上.16.解不等式:10x﹣3(20﹣x)≥7017.解不等式:2(x+)﹣1≤﹣x+9.18.为了更好治理洋澜湖水质,保护环境,市治污公司决定购买10台污水处理设备.现有A,B两种型号的设备,其中每台的价格,月处理污水量如下表:经调查:购买一台A型设备比购买一台B 型设备多2万元,购买2台A型设备比购买3台B型设备少6万元.(1)求a,b的值;(2)经预算:市治污公司购买污水处理设备的资金不超过105万元,你认为该公司有哪几种购买方案;(3)在(2)问的条件下,若每月要求处理洋澜湖的污水量不低于1860吨,为了节约资金,请你为治污公司设计一种最省钱的购买方案.不等式及其应用参考答案与试题解析一、选择题1.不等式5﹣2x>0的解集是()A. B. C. D.【考点】解一元一次不等式.【专题】计算题.【分析】利用不等式的基本性质,将两边不等式同时减去5再除以﹣2,不等号的方向改变.【解答】解:不等式移项,得﹣2x>﹣5,系数化1,得x<;故选A.【点评】本题考查了解简单不等式的能力,解答这类题学生往往在解题时不注意移项要改变符号这一点而出错.解不等式要依据不等式的基本性质,在不等式的两边同时加上或减去同一个数或整式不等号的方向不变;在不等式的两边同时乘以或除以同一个正数不等号的方向不变;在不等式的两边同时乘以或除以同一个负数不等号的方向改变.2.在四川抗震救灾中,某抢险地段需实行爆破.操作人员点燃导火线后,要在炸药爆炸前跑到400米以外的安全区域.已知导火线的燃烧速度是1.2厘米/秒,操作人员跑步的速度是5米/秒.为了保证操作人员的安全,导火线的长度要超过()A.66厘米B.76厘米C.86厘米D.96厘米【考点】一元一次不等式的应用.【专题】应用题;压轴题.【分析】操作人员所用时间应<导火线所用时间.据此可列出不等式求解.【解答】解:设导火线的长度为x厘米,可列不等式:400÷5<x÷1.2,解得x>96厘米.故选D.【点评】解决本题的关键是读懂题意,找到符合题意的不等关系式.3.四个小朋友玩跷跷板,他们的体重分别为P、Q、R、S,如图所示,则他们的体重大小关系是()A.P>R>S>Q B.Q>S>P>R C.S>P>Q>R D.S>P>R>Q【考点】一元一次不等式组的应用.【专题】压轴题;图表型.【分析】由三个图分别可以得到,由①式可得Q+S>Q+P,代入③式得到P+R>Q+P,所以R>Q.所以它们的大小关系为S>P>R>Q.【解答】解:观察前两幅图易发现S>P>R,再观察第一幅和第三幅图可以发现R>Q,所以S>P>R>Q.故选:D.【点评】本题考查了不等式的相关知识,利用“跷跷板”的不平衡来判断四个数的大小关系,体现了“数形结合”的数学思想.4.不等式2x﹣5≥﹣1的解集在数轴上表示正确的是()A. B. C. D.【考点】在数轴上表示不等式的解集.【分析】不等式2x﹣5≥﹣1的解集是x≥2,大于应向右画,且包括2时,应用实心表示,据此可判断答案.【解答】解:不等式2x﹣5≥﹣1的解集为x≥2.故选B.【点评】在数轴上表示不等式的解集时,大于向右,小于向左,有等于号的画实心原点,没有等于号的画空心圆圈.5.如果a<b<0,下列不等式中错误的是()A.ab>0 B.a+b<0 C.<1 D.a﹣b<0【考点】不等式的性质.【分析】根据不等式的性质分析判断.【解答】解:A、如果a<b<0,则a、b同是负数,因而ab>0,故A正确;B、因为a、b同是负数,所以a+b<0,故B正确;C、a<b<0,则|a|>|b|,则>1,也可以设a=﹣2,b=﹣1代入检验得到<1是错误的.故C错误;D、因为a<b,所以a﹣b<0,故D正确;故选:C.【点评】利用特殊值法验证一些式子错误是有效的方法.6.若2a+3b﹣1>3a+2b,则a,b的大小关系为()A.a<b B.a>b C.a=b D.不能确定【考点】解一元一次不等式.【专题】计算题.【分析】解不等式2a+3b﹣1>3a+2b得b﹣1>a,即b>a+1,故可求得a与b的关系.【解答】解:∵2a+3b﹣1>3a+2b,∴移项,得:3b﹣2b﹣1>3a﹣2a,即b﹣1>a,∴b>a+1,则a<b;故选:A.【点评】解不等式要依据不等式的基本性质,在不等式的两边同时加上或减去同一个数或整式,不等号的方向不变.7.不等式3x﹣5<3+x的正整数解有()A.1个B.2个C.3个D.4个【考点】一元一次不等式组的整数解.【分析】先求出不等式的解集,在取值范围内可以找到正整数解.【解答】解:解不等式3x﹣5<3+x的解集为x<4,所以其正整数解是1,2,3,共3个.故选:C.【点评】解答此题要先求出不等式的解集,再确定正整数解.解不等式要用到不等式的性质:(1)不等式的两边加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;(3)不等式的两边乘(或除以)同一个负数,不等号的方向改变.8.不等式>1的解集是()A.x>﹣B.x>﹣2 C.x<﹣2 D.x<﹣【考点】解一元一次不等式.【分析】利用不等式的基本性质,将两边不等式同时乘以﹣2,不等号的方向改变.得到不等式的解集为:x<﹣2.【解答】解:不等式3x+2≥5得,3x≥3,解得x≥1.故选C.【点评】本题考查不等式的性质3,在不等式的两边乘以﹣2,不等号要改变方向.此题容易错解选B.9.用abc表示三种不同的物体,现放在天平上比较两次,情况如图所示,那么abc这三种物体按质量从大到小的顺序排列应为()A.a=b>c B.b>a>c C.a>c>b D.c>b>a【考点】一元一次不等式的应用.【专题】压轴题.【分析】根据图示三种物体的质量列出不等关系式是关键.【解答】解:依据第二个图得到a+c=b+c⇒a=b,依图一得:a+c+c<a+b+c,则b>c,则a=b>c;故选A.【点评】本题考查一元一次不等式组的应用,将现实生活中的事件与数学思想联系起来,读懂题列出不等式关系式即可求解.二、填空题10.x的2倍与5的差<0,用不等式表示为2x﹣5<0 .【考点】由实际问题抽象出一元一次不等式.【分析】理解:x的2倍,即2x.【解答】解:根据题意,得2x﹣5<0.【点评】用不等式表示不等关系是研究不等式的基础,把文字语言的不等关系转化为用数学符号表示的不等式.11.不等式3x+1<﹣2的解集是x<﹣1 .【考点】解一元一次不等式.【分析】利用不等式的基本性质,将两边不等式同时减去1再除以3,不等号的方向不变.得到不等式的解集为:x<﹣1.【解答】解:解不等式3x+1<﹣2,得3x<﹣3,解得x<﹣1.【点评】本题考查了解简单不等式的能力,解答这类题学生往往在解题时不注意移项要改变符号这一点而出错.解不等式要依据不等式的基本性质,在不等式的两边同时加上或减去同一个数或整式不等号的方向不变;在不等式的两边同时乘以或除以同一个正数不等号的方向不变;在不等式的两边同时乘以或除以同一个负数不等号的方向改变.12.苹果的进价为每千克3.8元,销售中估计有5%的苹果正常损耗,为避免亏本,商家把售价应该至少定为每千克 4 元.【考点】一元一次不等式的应用.【分析】设商家把售价应该定为每千克x元,因为销售中估计有5%的苹果正常损耗,故每千克苹果损耗后的价格为x(1﹣5%),根据题意列出不等式即可.【解答】解:设商家把售价应该定为每千克x元,根据题意得:x(1﹣5%)≥3.8,解得,x≥4,所以为避免亏本,商家把售价应该至少定为每千克4元.【点评】本题考查一元一次不等式组的应用,将现实生活中的事件与数学思想联系起来,读懂题意,根据“去掉损耗后的售价≥进价”列出不等式即可求解.13.不等式2﹣x<x﹣6的解集为x>4 .【考点】解一元一次不等式.【专题】压轴题.【分析】解这个不等式首先要移项,再合并同类项得即可解得不等式的解集.【解答】解:移项得:﹣x﹣x<﹣6﹣2,合并同类项得:﹣2x<﹣8,解得:x>4.【点评】本题难度中等,考查解不等式.2﹣x<x﹣6,移项得﹣x﹣x<﹣6﹣2,合并同类项﹣2x<﹣8,不等式两边同时除以﹣2得x>4,要注意不等式两边同时除以一个负数,不等号方向要改变.三、解答题14.解不等式5x﹣12≤2(4x﹣3),并把它的解集在数轴上表示出来.【考点】解一元一次不等式;在数轴上表示不等式的解集.【分析】解不等式5x﹣12≤2(4x﹣3),先去括号,5x﹣12≤8x﹣6,不等式两边同时减8x+12得﹣3x≤6,再化系数为1便可求出不等式的解集.【解答】解:去括号得,5x﹣12≤8x﹣6,移项得,5x﹣8x≤﹣6+12,合并同类项得,﹣3x≤6.系数化为1得,x≥﹣2.不等式的解集在数轴上表示如图:.【点评】本题易错点是:在数轴上表示最后的解集时,要注意数轴上这个点是实心点还是空心点.15.解不等式4x﹣6<x,并将不等式的解集表示在数轴上.【考点】解一元一次不等式;在数轴上表示不等式的解集.【专题】计算题.【分析】本题可先将方程移项,进行化简,最后得出x的取值,然后在数轴上表示出来.【解答】解:移项,得4x﹣x<6,合并,得3x<6,∴不等式的解集为x<2;其解集在数轴上表示如下:【点评】本题考查了解简单不等式的能力,解不等式要依据不等式的基本性质,在不等式的两边同时加上或减去同一个数或整式不等号的方向不变;在不等式的两边同时乘以或除以同一个正数不等号的方向不变;在不等式的两边同时乘以或除以同一个负数不等号的方向改变.16.解不等式:10x﹣3(20﹣x)≥70【考点】解一元一次不等式.【专题】计算题.【分析】根据不等式的性质:先去括号,再移项合并同类项,最后系数化1解答即可.【解答】解:去括号得,10x﹣60+3x≥70,合并同类项得,13x≥130系数化1得,x≥10.【点评】本题考查了解简单不等式的能力,解答这类题学生往往在解题时不注意移项要改变符号这一点而出错.解不等式要依据不等式的基本性质,在不等式的两边同时加上或减去同一个数或整式不等号的方向不变;在不等式的两边同时乘以或除以同一个正数不等号的方向不变;在不等式的两边同时乘以或除以同一个负数不等号的方向改变.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).17.解不等式:2(x+)﹣1≤﹣x+9.【考点】解一元一次不等式.【分析】先根据不等式的基本性质去掉括号,再移项、合并同类项、化系数为1,便可求出不等式的解集.【解答】解:去括号得2x+1﹣1≤﹣x+9,移项、合并同类项得3x≤9,两边都除以3得x≤3.【点评】解一元一次不等式的步骤与解一元一次方程的步骤是类似的,要根据具体的题目灵活应用,比如本题是先去括号,而不是先去分母,由此看来,解一元一次不等式的步骤是灵活的,而不是死板的.本题考查不等式的解法,在不等式变形时要注意正确使用不等式的基本性质.18.为了更好治理洋澜湖水质,保护环境,市治污公司决定购买10台污水处理设备.现有A,B两种型号的设备,其中每台的价格,月处理污水量如下表:经调查:购买一台A型设备比购买一台B 型设备多2万元,购买2台A型设备比购买3台B型设备少6万元.(1)求a,b的值;(2)经预算:市治污公司购买污水处理设备的资金不超过105万元,你认为该公司有哪几种购买方案;(3)在(2)问的条件下,若每月要求处理洋澜湖的污水量不低于1860吨,为了节约资金,请你为治污公司设计一种最省钱的购买方案.【考点】一元一次不等式组的应用;二元一次方程组的应用.【专题】压轴题;阅读型;方案型;图表型.【分析】(1)因为购买一台A型设备比购买一台B型设备多2万元,购买2台A型设备比购买3台B型设备少6万元,所以有,解之即可;(2)可设购买污水处理设备A型设备x台,B型设备(10﹣x)台,则有12x+10(10﹣x)≤105,解之确定x的值,即可确定方案;(3)因为每月要求处理洋澜湖的污水量不低于1860吨,所以有240x+180(10﹣x)≥1860,解之即可由x的值确定方案,然后进行比较,作出选择.【解答】解:(1)根据题意得,解得.(2)设购买污水处理设备A型设备x台,B型设备(10﹣x)台,根据题意得,12x+10(10﹣x)≤105,∴x≤2.5,∵x取非负整数,∴x=0,1,2,∴10﹣x=10,9,8,∴有三种购买方案:①A型设备0台,B型设备10台;②A型设备1台,B型设备9台;③A型设备2台,B型设备8台.教育精品学习资源(3)由题意:240x+180(10﹣x)≥1860,∴x≥1,又∵x≤2.5,∴x为1,2.当x=1时,购买资金为12×1+10×9=102(万元),当x=2时,购买资金为12×2+10×8=104(万元),∴为了节约资金,应选购A型设备1台,B型设备9台.【点评】解决本题的关键是读懂题意,找到符合题意的不等关系式及所求量的等量关系.要会用分类的思想来讨论求得方案的问题.教育精品学习资源。