2012高三数学一轮复习单元练习题:数列(3)
2012高三数学一轮复习阶段性测试题(6):数列

阶段性测试题六(数 列)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
满分150分。
考试时间120分钟。
第Ⅰ卷(选择题 共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符号题目要求的。
)1.(文)(2011·北京朝阳区期末)已知数列{a n }的前n 项和为S n ,且S n =2a n -2,则a 2等于( )A .4B .2C .1D .-2[答案] A[解析] S 1=2a 1-2=a 1,∴a 1=2,S 2=2a 2-2=a 1+a 2,∴a 2=4.(理)(2011·江西南昌市调研)已知等差数列{a n }的前n 项和为S n ,且满足S 33-S 22=1,则数列{a n }的公差是( )A.12B .1C .2D .3[答案] C[解析] 设{a n }的公差为d ,则S n =na 1+n (n -1)2d ,∴{S n n }是首项为a 1,公差为d2的等差数列,∵S 33-S 22=1,∴d2=1,∴d =2. 2.(2011·北京西城区期末)设等比数列{a n }的前n 项和为S n ,若8a 2+a 5=0,则下列式子中数值不能确定的是( )A.a 5a 3B.S 5S 3C.a n +1a nD.S n +1S n[答案] D[解析] 等比数列{a n }满足8a 2+a 5=0,即a 2(8+q 3)=0,∴q =-2,∴a 5a 3=q 2=4,a n +1a n=q =-2,S 5S 3=a 1(1-q 5)1-q a 1(1-q 3)1-q =1-q 51-q 3=113,都是确定的数值,但S n +1S n =1-q n +11-q n的值随n 的变化而变化,故选D.3.(文)(2011·巢湖质检)设数列{a n }满足a 1=0,a n +a n +1=2,则a 2011的值为( ) A .2 B .1 C .0 D .-2[答案] C[解析] ∵a 1=0,a n +a n +1=2,∴a 2=2,a 3=0,a 4=2,a 5=0,…,即a 2k -1=0,a 2k =2,∴a 2011=0.(理)(2011·辽宁沈阳二中检测,辽宁丹东四校联考)已知数列{a n }满足log 3a n +1=log 3a n +1(n ∈N *)且a 2+a 4+a 6=9,则log 13(a 5+a 7+a 9)的值是( )A .-5B .-15C .5 D.15[答案] A[分析] 根据数列满足log 3a n +1=log 3a n +1(n ∈N *).由对数的运算法则,得出a n +1与a n 的关系,判断数列的类型,再结合a 2+a 4+a 6=9得出a 5+a 7+a 9的值.[解析] 由log 3a n +1=log 3a n +1(n ∈N *)得,a n +1=3a n ,∴数列{a n }是公比等于3的等比数列,∴a 5+a 7+a 9=(a 2+a 4+a 6)×33=35, ∴log 13(a 5+a 7+a 9)=-log 335=-5.4.(2011·辽宁丹东四校联考)已知两个等差数列{a n }和{b n }的前n 项和分别为A n 和B n ,且A n B n =7n +45n +3,则使得a n b n为正偶数时,n 的值可以是( ) A .1 B .2 C .5 D .3或11[答案] D[解析] ∵{a n }与{b n }为等差数列,∴a n b n =2a n 2b n =a 1+a 2n -1b 1+b 2n -1=A 2n -1B 2n -1=14n +382n +2=7n +19n +1,将选项代入检验知选D.5.(2011·安徽百校论坛联考)已知a >0,b >0,A 为a ,b 的等差中项,正数G 为a ,b 的等比中项,则ab 与AG 的大小关系是( )A .ab =AGB .ab ≥AGC .ab ≤AGD .不能确定[答案] C[解析] 由条件知,a +b =2A ,ab =G 2,∴A =a +b2≥ab =G >0,∴AG ≥G 2,即AG ≥ab ,故选C.6.(2011·潍坊一中期末)各项都是正数的等比数列{a n }的公比q ≠1,且a 2,12a 3,a 1成等差数列,则a 3+a 4a 4+a 5的值为( )A.1-52B.5+12C.5-12D.5+12或5-12[答案] C[解析] ∵a 2,12a 3,a 1成等差数列,∴a 3=a 2+a 1,∵{a n }是公比为q 的等比数列,∴a 1q 2=a 1q +a 1,∴q 2-q -1=0,∵q >0,∴q =5+12. ∴a 3+a 4a 4+a 5=1q=5-12,故选C.7.(文)(2011·四川资阳模拟)数列{a n }的通项公式为a n =2n -49,当该数列的前n 项和S n达到最小时,n 等于( )A .24B .25C .26D .27[答案] A[解析] 解法1:a 1=-47,d =2,∴S n =-47n +n (n -1)2×2=n 2-48n =(n -24)2-576,故选A.解法2:由a n =2n -49≤0得n ≤24.5,∵n ∈Z ,∴n ≤24,故选A.(理)(2011·山东实验中学期末)已知数列{a n }为等差数列,若a 11a 10<-1,且它们的前n 项和S n有最大值,则使得S n >0的最大值n 为( )A .11B .19C .20D .21 [答案] B[解析] ∵S n 有最大值,∴a 1>0,d <0,∵a 11a 10<-1,∴a 11<0,a 10>0,∴a 10+a 11<0, ∴S 20=20(a 1+a 20)2=10(a 10+a 11)<0,又S 19=19(a 1+a 19)2=19a 10>0,故选B.8.(文)(2011湖北荆门市调研)数列{a n }是等差数列,公差d ≠0,且a 2046+a 1978-a 22012=0,{b n }是等比数列,且b 2012=a 2012,则b 2010·b 2014=( )A .0B .1C .4D .8[答案] C[解析] ∵a 2046+a 1978=2a 2012,∴2a 2012-a 22012=0, ∴a 2012=0或2,∵{b n }是等比数列,b 2012=a 2012,∴b 2012=2, ∴b 2010·b 2014=b 22012=4.(理)(2011·豫南九校联考)设数列{a n }是以2为首项,1为公差的等差数列,{b n }是以1为首项,2为公比的等比数列,则ab 1+ab 2+…+ab 10=( )A .1033B .1034C .2057D .2058[答案] A[解析] a n =2+(n -1)×1=n +1,b n =1×2n -1=2n -1,ab 1+ab 2+…+ab 10=a 1+a 2+a 4+…+a 29=(1+1)+(2+1)+(22+1)+…+(29+1)=10+1×(210-1)2-1=210+9=1033.9.(2011·重庆南开中学期末)已知各项均为正数的等比数列{a n }的首项a 1=3,前三项的和为21,则a 3+a 4+a 5=( )A .33B .72C .84D .189[答案] C[解析] ∵a 1=3,a 1+a 2+a 3=21,∴q 2+q -6=0,∵a n >0,∴q >0,∴q =2,∴a 3+a 4+a 5=(a 1+a 2+a 3)·q 2=84,故选C.10.(2011·四川广元诊断)已知等差数列{a n }的前n 项和为S n ,若a 1=1,S 3=a 5,a m =2011,则m =( )A .1004B .1005C .1006D .1007 [答案] C[解析] 由条件知⎩⎪⎨⎪⎧a 1=13a 1+3×22d =a 1+4d ,∴⎩⎪⎨⎪⎧a 1=1d =2, ∵a m =a 1+(m -1)d =1+2(m -1)=2m -1=2011,∴m =1006,故选C.11.(2011·辽宁铁岭六校联考)设{a n }是由正数组成的等差数列,{b n }是由正数组成的等比数列,且a 1=b 1,a 2003=b 2003,则( )A .a 1002>b 1002B .a 1002=b 1002C .a 1002≥b 1002D .a 1002≤b 1002[答案] C[解析] a 1002=a 1+a 20032≥2a 1a 20032=b 1b 2003=b 1002,故选C.12.(2011·蚌埠二中质检)已知数列{a n }的通项公式为a n =6n -4,数列{b n }的通项公式为b n =2n ,则在数列{a n }的前100项中与数列{b n }中相同的项有( )A .50项B .34项C .6项D .5项[答案] D[解析] a 1=2=b 1,a 2=8=b 3,a 3=14,a 4=20,a 5=26,a 6=32=b 5,又b 10=210=1024>a 100,b 9=512,令6n -4=512,则n =86,∴a 86=b 9,b 8=256,令6n -4=256,∵n ∈Z ,∴无解,b 7=128,令6n -4=128,则n =22,∴a 22=b 7,b 6=64=6n -4无解,综上知,数列{a n }的前100项中与{b n }相同的项有5项.第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4个小题,每小题4分,共16分,把正确答案填在题中横线上) 13.(2011·四川广元诊断)已知数列{a n }满足:a n +1=1-1a n,a 1=2,记数列{a n }的前n 项之积为P n ,则P 2011=________.[答案] 2[解析] a 1=2,a 2=1-12=12,a 3=1-2=-1,a 4=1-(-1)=2,∴{a n }的周期为3,且a 1a 2a 3=-1,∴P 2011=(a 1a 2a 3)670·a 2011=(-1)670·a 1=2.14.(2011·湖北荆门调研)秋末冬初,流感盛行,荆门市某医院近30天每天入院治疗流感的人数依次构成数列{a n },已知a 1=1,a 2=2,且a n +2-a n =1+(-1)n (n ∈N *),则该医院30天入院治疗流感的人数共有________人.[答案] 255[解析] ∵a n +2-a n =1+(-1)n (n ∈N *),∴n 为奇数时,a n +2=a n ,n 为偶数时,a n +2-a n =2,即数列{a n }的奇数项为常数列,偶数项构成以2为首项,2为公差的等差数列.故这30天入院治疗流感人数共有15+(15×2+15×142×2)=255人.15.(2011·辽宁沈阳二中检测)已知等比数列{a n }中,各项都是正数,且a 1,12a 3,2a 2成等差数列,则a 3+a 10a 1+a 8=________.[答案] 3-2 2[解析] ∵a 1,12a 3,2a 2成等差数列,∴a 3=a 1+2a 2,设数列{a n }公比为q ,则a 1q 2=a 1+2a 1q ,∵a 1≠0,∴q 2-2q -1=0,∴q =-1±2,∵a n >0,∴q =2-1,∴a 3+a 10a 1+a 8=q 2=3-2 2. 16.(文)(2011·浙江宁波八校联考)在如图的表格中,每格填上一个数字后,使每一横行成等差数列,每一纵列成等比数列,且从上到下所有公比相等,则a +b +c 的值为________.[答案] 22[解析] 由横行成等差数列知,6下边为3,从纵列成等比数列及所有公比相等知,公比q =2,∴b =2×2=4由横行等差知c 下边为4+62=5,故c =5×2=10,由纵列公比为2知a =1×23=8,∴a +b +c =22.(理)(2011·华安、连城、永安、泉港、漳平、龙海六校联考)有一个数阵排列如下:则第20行从左至右第10个数字为________. [答案] 426[解析] 第1斜行有一个数字,第2斜行有2个数字,…第n 斜行有n 个数字,第20行从左向右数第10个数字在第29斜行,为倒数第10个数字,∵29×(29+1)2=435,∴第20行从左向右数第10个数字为435-9=426.三、解答题(本大题共6个小题,共74分,解答应写出文字说明,证明过程或演算步骤)17.(本小题满分12分)(2011·四川广元诊断)已知数列{a n }的前n 项和S n =2n 2-2n ,数列{b n }的前n 项和T n =3-b n .①求数列{a n }和{b n }的通项公式;②设c n =14a n ·13b n ,求数列{c n }的前n 项和R n 的表达式.[解析] ①由题意得a n =S n -S n -1=4n -4(n ≥2) 而n =1时a 1=S 1=0也符合上式 ∴a n =4n -4(n ∈N +)又∵b n =T n -T n -1=b n -1-b n , ∴b n b n -1=12∴{b n }是公比为12的等比数列,而b 1=T 1=3-b 1,∴b 1=32,∴b n =32⎝⎛⎭⎫12n -1=3·⎝⎛⎭⎫12n (n ∈N +). ②C n =14a n ·13b n =14(4n -4)×13×3⎝⎛⎭⎫12n=(n -1)⎝⎛⎭⎫12n,∴R n =C 1+C 2+C 3+…+C n=⎝⎛⎭⎫122+2·⎝⎛⎭⎫123+3·⎝⎛⎭⎫124+…+(n -1)·⎝⎛⎭⎫12n ∴12R n =⎝⎛⎭⎫123+2·⎝⎛⎭⎫124+…+(n -2)⎝⎛⎭⎫12n +(n -1)⎝⎛⎭⎫12n +1 ∴12R n =⎝⎛⎭⎫122+⎝⎛⎭⎫123+…+⎝⎛⎭⎫12n -(n -1)·⎝⎛⎭⎫12n +1, ∴R n =1-(n +1)⎝⎛⎭⎫12n.18.(本小题满分12分)(2011·甘肃天水期末)已知等差数列{a n }的前n 项和为S n =pn 2-2n +q (p ,q ∈R ),n ∈N *.(1)求q 的值;(2)若a 3=8,数列{b n }满足a n =4log 2b n ,求数列{b n }的前n 项和. [解析] (1)当n =1时,a 1=S 1=p -2+q ,当n ≥2时,a n =S n -S n -1=pn 2-2n +q -p (n -1)2+2(n -1)-q =2pn -p -2 ∵{a n }是等差数列,∴p -2+q =2p -q -2,∴q =0. (2)∵a 3=8,a 3=6p -p -2,∴6p -p -2=8,∴p =2, ∴a n =4n -4,又a n =4log 2b n ,得b n =2n -1,故{b n }是以1为首项,2为公比的等比数列.所以数列{b n }的前n 项和T n =(1-2n )1-2=2n-1.19.(本小题满分12分)(2011·华安、连城、永安、漳平、龙海、泉港六校联考)已知数列{b n }前n 项和为S n ,且b 1=1,b n +1=13S n .(1)求b 2,b 3,b 4的值; (2)求{b n }的通项公式;(3)求b 2+b 4+b 6+…+b 2n 的值.[解析] (1)b 2=13S 1=13b 1=13,b 3=13S 2=13(b 1+b 2)=49,b 4=13S 3=13(b 1+b 2+b 3)=1627.(2)⎩⎨⎧b n +1=13S n ①b n=13Sn -1②①-②解b n +1-b n =13b n ,∴b n +1=43b n ,∵b 2=13,∴b n =13·⎝⎛⎭⎫43n -2(n ≥2)∴b n =⎩⎪⎨⎪⎧1 (n =1)13·⎝⎛⎭⎫43n -2(n ≥2).(3)b 2,b 4,b 6…b 2n 是首项为13,公比⎝⎛⎭⎫432的等比数列, ∴b 2+b 4+b 6+…+b 2n =13[1-(43)2n ]1-⎝⎛⎭⎫432=37[(43)2n -1]. 20.(本小题满分12分)(2011·湖南长沙一中月考)已知f (x )=m x (m 为常数,m >0且m ≠1).设f (a 1),f (a 2),…,f (a n )…(n ∈N )是首项为m 2,公比为m 的等比数列.(1)求证:数列{a n }是等差数列;(2)若b n =a n f (a n ),且数列{b n }的前n 项和为S n ,当m =2时,求S n ;(3)若c n =f (a n )lg f (a n ),问是否存在m ,使得数列{c n }中每一项恒小于它后面的项?若存在,求出m 的取值范围;若不存在,请说明理由.[解析] (1)由题意f (a n )=m 2·m n -1,即ma n =m n +1.∴a n =n +1,∴a n +1-a n =1,∴数列{a n }是以2为首项,1为公差的等差数列.(2)由题意b n =a n f (a n )=(n +1)·m n +1,当m =2时,b n =(n +1)·2n +1,∴S n =2·22+3·23+4·24+…+(n +1)·2n +1①①式两端同乘以2得,2S n =2·23+3·24+4·25+…+n ·2n +1+(n +1)·2n +2②②-①并整理得,S n =-2·22-23-24-25-…-2n +1+(n +1)·2n +2=-22-(22+23+24+…+2n +1)+(n +1)·2n +2=-22-22(1-2n )1-2+(n +1)·2n +2=-22+22(1-2n )+(n +1)·2n +2=2n +2·n .(3)由题意c n =f (a n )·lg f (a n )=m n +1·lg m n +1=(n +1)·m n +1·lg m ,要使c n <c n +1对一切n ∈N *成立,即(n +1)·m n +1·lg m <(n +2)·m n +2·lg m ,对一切n ∈N *成立,①当m >1时,lg m >0,所以n +1<m (n +2)对一切n ∈N *恒成立; ②当0<m <1时,lg m <0,所以n +1n +2>m 对一切n ∈N *成立,因为n +1n +2=1-1n +2的最小值为23,所以0<m <23.综上,当0<m <23或m >1时,数列{c n }中每一项恒小于它后面的项.21.(本小题满分12分)(2011·烟台调研)将函数f (x )=sin 14x ·sin 14(x +2π)·sin 12(x +3π)在区间(0,+∞)内的全部极值点按从小到大的顺序排成数列{a n }(n ∈N *).(1)求数列{a n }的通项公式;(2)设b n =2n a n ,数列{b n }的前n 项和为T n ,求T n 的表达式. [解析] (1)化简f (x )=sin 14x ·sin 14(x +2π)·sin 12(x +3π)=sin x 4cos x 4·⎝⎛⎭⎫-cos x 2=-14sin x 其极值点为x =k π+π2(k ∈Z ),它在(0,+∞)内的全部极值点构成以π2为首项,π为公差的等差数列,a n =π2+(n -1)·π=2n -12π(n ∈N *).(2)b n =2n a n =π2(2n -1)·2n∴T n =π2[1·2+3·22+…+(2n -3)·2n -1+(2n -1)·2n ]2T n =π2[1·22+3·23+…+(2n -3)·2n +(2n -1)·2n +1]相减得,-T n =π2[1·2+2·22+2·23+…+2·2n -(2n -1)·2n +1]∴T n =π[(2n -3)·2n +3].22.(本小题满分12分)(文)(2011·重庆南开中学期末)已知各项均为正数的数列{a n }满足:a 1=3,a n +1+a n n +1=8a n +1-a n(n ∈N *),设b n =1a n ,S n =b 21+b 22+…+b 2n . (1)求数列{a n }的通项公式; (2)求证:S n <14.[解析] (1)∵a n +1+a n n +1=8a n +1-a n,∴a 2n +1-a 2n =8(n +1),∴a 2n =(a 2n -a 2n -1)+(a 2n -1-a 2n -2)+…+(a 22-a 21)+a 21=8[n +(n -1)+…+2]+9=(2n +1)2,∴a n =2n +1. (2)b 2n=1a 2n=1(2n +1)2<14n (n +1)=14⎝⎛⎭⎫1n -1n +1 ∴S n <14[(1-12)+(12-13)+…+(1n -1n +1)]=14(1-1n +1)<14.(理)(2011·四川资阳模拟)数列{a n }的前n 项和为S n ,且S n =n (n +1)(n ∈N *). (1)求数列{a n }的通项公式;(2)若数列{b n }满足:a n =b 13+1+b 232+1+b 333+1+…+b n3n +1,求数列{b n }的通项公式;(3)令c n =a n b n4(n ∈N *),求数列{c n }的前n 项和T n .[解析] (1)当n =1时,a 1=S 1=2,当n ≥2时,a n =S n -S n -1=n (n +1)-(n -1)n =2n ,知a 1=2满足该式 ∴数列{a n }的通项公式为a n =2n .(2)a n =b 13+1+b 232+1+b 333+1+…+b n3n +1(n ≥1)①∴a n +1=b 13+1+b 232+1+b 333+1+…+b n3n +1+b n +13n +1+1②②-①得,b n +13n +1+1=a n +1-a n =2,b n +1=2(3n +1+1), 故b n =2(3n +1)(n ∈N *).(3)c n =a n b n 4=n (3n +1)=n ·3n +n , ∴T n =c 1+c 2+c 3+…+c n =(1×3+2×32+3×33+…+n ×3n )+(1+2+…+n ) 令H n =1×3+2×32+3×33+…+n ×3n ,① 则3H n =1×32+2×33+3×34+…+n ×3n +1② ①-②得,-2H n =3+32+33+…+3n -n ×3n +1=3(1-3n )1-3-n ×3n +1 ∴H n =(2n -1)×3n +1+34, ∴数列{c n }的前n 项和T n =(2n -1)×3n +1+34+n (n +1)2.。
高三数学一轮复习备考试题:数列(含答案)

高考一轮复习备考试题(附参考答案)数列一、填空题1、(2014年江苏高考)在各项均为正数的等比数列}{n a 中,若12=a ,2682a a a +=,则6a 的值是 ▲2、(2013年江苏高考)在正项等比数列}{n a 中,215=a ,376=+a a ,则满足n n a a a a a a 2121>+++的最大正整数n 的值为 。
3、(2012年江苏高考)现有10个数,它们能构成一个以1为首项,3-为公比的等比数列,若从这10个数中随机抽取一个数,则它小于8的概率是 ▲ .4、(2015届江苏南京高三9月调研)记数列{a n }的前n 项和为S n .若a 1=1,S n =2(a 1+a n )(n ≥2,n ∈N *),则S n = ▲5、(2015届江苏南通市直中学高三9月调研)已知等比数列{}n a 的前n 项和为n S ,且1324412a a a a S +=++=,,则数列{}n a 的公比q 为 ▲6、(2015届江苏苏州高三9月调研)已知等比数列{}n a 的各项均为正数,3614,,2a a ==则45a a += ▲7、(南京市2014届高三第三次模拟)已知数列{a n }满足a n =a n -1-a n -2(n ≥3,n ∈N *),它的前n 项和为S n .若S 9=6,S 10=5,则a 1的值为 ▲8、(南通市2014届高三第三次调研)设数列{a n }为等差数列,数列{b n }为等比数列.若12a a <,12b b <,且2(1,2,3)i i b a i ==,则数列{b n }的公比为 ▲ .9、(苏锡常镇四市2014届高三5月调研(二))已知S n 为等差数列{a n }的前n 项和,a 1 = -1,S 3 =6,则S 6 = ▲10、(徐州市2014届高三第三次模拟)在等比数列{}n a 中,已知11a =,48a =.设3n S 为该数列的前3n 项和,n T 为数列{}3n a 的前n 项和.若3n n S tT =,则实数t 的值为 ▲11、(南京、盐城市2014届高三第二次模拟(淮安三模))已知等差数列{a n }的公差d 不为0,且a 1,a 3,a 7成等比数列,则a 1d 的值为 ▲二、解答题1、(2014年江苏高考)设数列{}的前n 项和为.若对任意的正整数n,总存在正整数m,使得,则称{}是“H 数列。
2012年高考第一轮复习数学3.3等比数列

3.3 等比数列●知识梳理 1.定义数列{a n }从第2项起,每一项与它前一项的比等于同一个常数的数列称作等比数列.常数叫公比.2.通项公式:a n =a 1q n -1,推广形式:a n =a m q n -m .变式:q =mn mna a -(n 、m ∈N *). 3.前n 项和S n =⎪⎩⎪⎨⎧≠≠--=--=).10(11)1(),1(111q q q qa a q q a q na n n 或注:q ≠1时,m n S S =mnq q --11.4.等比中项:若a 、b 、c 成等比数列,则b 为a 、c 的等比中项,且b =±ac .5.三个数或四个数成等比数列且又知积时,则三个数可设为q a 、a 、aq ,四个数可设为3qa、qa、aq 、aq 3为好. 6.证明等比数列的方法:(1)用定义:只需证nn a a 1+=常数;(2)用中项性质:只需a n +12=a n ·a n +2或n n a a 1+=12++n n a a . ●点击双基1.一个直角三角形三内角的正弦值成等比数列,其最小内角是A.arccos215- B.arcsin215- C.arccos 251-D.arcsin 251-解析:设Rt △ABC 中,C =2π,则A 与B 互余且A 为最小内角.又由已知得sin 2B =sin A ,即cos 2A =sin A ,1-sin 2A =sin A ,解之得sin A =215-或sin A =215--(舍).答案:B2.设{a n }是由正数组成的等比数列,公比q =2,且a 1·a 2·a 3·…·a 30=230,那么a 3·a 6·a 9·…·a 30等于A.210B.220C.216D.215解析:由等比数列的定义,a 1·a 2·a 3=(q a 3)3,故a 1·a 2·a 3·…·a 30=(1030963qa a a a ⋅⋅⋅⋅⋅⋅)3.又q =2,故a 3·a 6·a 9·…·a 30=220.答案:B3.某纯净水制造厂在净化水过程中,每增加一次过滤可减少水中杂质20%,要使水中杂质减少到原来的5%以下,则至少需过滤的次数为A.5B.10C.14D.15解析:由题意列式(1-20%)n <5%,两边取对数得n >2lg 3112lg -+≈13.4.故n ≥14.答案:C4.(2004年全国,文14)已知等比数列{a n }中,a 3=3,a 10=384,则该数列的通项a n =___________________.解析:由已知得q 7=aa 10=128=27,故q =2.∴a n =a 3·q n -3=3·2n -3. 答案:3·2n -35.如下图,在杨辉三角中,从上往下数共有n (n ∈N *)行,在这些数中非1的数字之和是___________________.1 1 1 12 1 13 3 1 14 6 4 1……解析:观察可知,第n (n ∈N *)行中有n 个数,从左向右依次是二项式系数C 01-n ,C 11-n ,C 21-n ,…,C 11--n n ,故当n ≥3时,除了1外,第n 行各数的和为a n =C 11-n +C 21-n +…+C 21--n n =2n -1-2.又前两行全部为数字1,故前n 行非1的数字之和为a 3+a 4+…+a n =21)21(42---n -2(n -2)=2n -2n .答案:2n -2n ●典例剖析【例1】 已知等比数列{a n }中,a 1+a 2+a 3=7,a 1a 2a 3=8,求a n . 剖析:利用等比数列的基本量a 1,q ,根据条件求出a 1和q . 解:设{a n }的公比为q ,由题意知⎪⎩⎪⎨⎧=⋅⋅=++,8,721112111q a q a a q a q a a解得⎩⎨⎧==2,11q a 或⎪⎩⎪⎨⎧==.21,41q a ∴a n =2n -1或a n =23-n.评述:转化成基本量解方程是解决数列问题的基本方法.思考讨论用a 2和q 来表示其他的量好解吗?该题的{a n }若成等差数列呢?【例2】 已知数列{a n }为等差数列,公差d ≠0,{a n }的部分项组成下列数列:a 1k ,a 2k ,…,a n k ,恰为等比数列,其中k 1=1,k 2=5,k 3=17,求k 1+k 2+k 3+…+k n .剖析:运用等差(比)数列的定义分别求得a n k ,然后列方程求得k n .解:设{a n }的首项为a 1,∵a 1k 、a 2k 、a 3k 成等比数列,∴(a 1+4d )2=a 1(a 1+16d ). 得a 1=2d ,q =12k k a a =3.∵a n k =a 1+(k n -1)d ,又a n k =a 1·3n -1,∴k n =2·3n -1-1.∴k 1+k 2+…+k n =2(1+3+…+3n -1)-n=2×3131--n-n =3n -n -1.评述:运用等差(比)数列的定义转化为关于k n 的方程是解题的关键,转化时要注意:a n k 是等差数列中的第k n 项,而是等比数列中的第n 项.【例3】 设各项均为正数的数列{a n }和{b n }满足5n a ,5n b ,51+n a 成等比数列,lg b n ,lg a n +1,lg b n +1成等差数列,且a 1=1,b 1=2,a 2=3,求通项a n 、b n .剖析:由等比中项、等差中项的性质得a n +1=1+⋅n n b b 递推出a n =n n b b ⋅-1(n ≥2). 解:∵5n a ,5n b ,51+n a 成等比数列, ∴(5n b )2=5n a ·51+n a ,即2b n =a n +a n +1.①又∵lg b n ,lg a n +1,lg b n +1成等差数列, ∴2lg a n +1=lg b n +lg b n +1,即a n +12=b n ·b n +1.②由②及a i >0,b j >0(i 、j ∈N *)可得 a n +1=1+⋅n n b b .③∴a n =n n b b 1-(n ≥2).④将③④代入①可得2b n =n n b b ⋅-1+1+⋅n n b b (n ≥2), ∴2n b =1-n b +1+n b (n ≥2). ∴数列{n b }为等差数列. ∵b 1=2,a 2=3,a 22=b 1·b 2,∴b 2=29. ∴n b =2+(n -1)(29-2) =21(n +1)(n =1也成立).∴b n =2)1(2+n .∴a n =n n b b ⋅-1=2)1(222+⋅n n =2)1(+n n (n ≥2). 又当n =1时,a 1=1也成立.∴a n =2)1(+n n .评述:由S n 求a n 时要注意验证a 1与S 1是否一致. 特别提示1.{a n }为等比数列是a n +12=a n ·a n +2的充分但不必要条件.2.若证{a n }不是等比数列,只需证a k 2≠a k -1a k +1(k 为常数,k ∈N ,且k ≥2). ●闯关训练 夯实基础1.若等比数列{a n }的公比q <0,前n 项和为S n ,则S 8a 9与S 9a 8的大小关系是 A.S 8a 9>S 9a 8 B.S 8a 9<S 9a 8 C.S 8a 9=S 9a 8D.不确定 解析:由等比数列通项公式和前n 项和公式得 S 8·a 9-S 9·a 8=-q q a --1)1(81·a 1q 3-qq a --1)1(91·a 1q 7=q a q q q a ----1)]()[(16716821=qq q a --1)(7821=-a 12q 7.又q <0,则S 8·a 9-S 9·a 8>0,即S 8·a 9>S 9·a 8. 答案:A2.银行一年定期的年利率为r ,三年定期的年利率为q ,银行为吸收长期资金,鼓励储户存三年定期的存款,那么q 的值应略大于A.1)1(3-+rB.31[(1+r )3-1] C.(1+r )3-1D.r解析:由题意得(1+r )3<1+3q ,故q >31[(1+r )3-1]. 答案:B3.(2003年上海,8)若首项为a 1,公比为q 的等比数列{a n }的前n 项和总小于这个数列的各项和,则首项a 1,公比q 的一组取值可以是(a 1,q )=___________.解析:由题意知q q a n --1)1(1<qa-11且|q |<1对n ∈N 都成立,∴a 1>0,0<q <1.答案:(1,21)(a 1>0,0<q <1的一组数) 4.设{a n }是首项为1的正项数列,且(n +1)a n +12-na n 2+a n +1a n =0(n ∈N *),则它的通项公式a n =___________________.解析:分解因式可得[(n +1)a n +1-na n ]·[a n +1+a n ]=0,又a n >0,则(n +1)a n +1-na n =0,即n n a a 1+=1+n n .又a 1=1,由累积法可得a n =n 1. 答案:n15.定义一种运算“*”对于任意非零自然数n 满足以下运算性质: (1)1*1=1; (2)(n +1)*1=3(n *1). 试求n *1关于n 的代数式. 解:“n *1”是一个整体,联想数列通项形式,设n *1=a n ,则a 1=1,a n +1=3a n ,得a n =3n-1,即n *1=3n -1.6.等比数列{a n }的各项均为正数,其前n 项中,数值最大的一项是54,若该数列的前n 项之和为S n ,且S n =80,S 2n =6560,求:(1)前100项之和S 100. (2)通项公式a n .解:设公比为q ,∵S 2n -S n =6480>S n ,∴q >1.则最大项是a n =a 1q n -1(∵a n >0). ①又S n =qq a n --1)1(1=80,②S 2n =qq a n --1)1(21=6560,③由①②③解得a 1=2,q =3,则(1)前100项之和S 100=13)13(2100--=3100-1.(2)通项公式为a n =2·3n -1. 培养能力7.数列{a n }的前n 项和为S n ,数列{b n }中,b 1=a 1,b n =a n -a n -1(n ≥2),若a n +S n =n . (1)设c n =a n -1,求证:数列{c n }是等比数列; (2)求数列{b n }的通项公式.(1)证明:∵a 1=S 1,a n +S n =n ,∴a 1+S 1=1,得a 1=21.又a n +1+S n +1=n +1,两式相减得2(a n +1-1)=a n -1,即111--+n n a a =21,也即n n c c 1+=21,故数列{c n }是等比数列.(2)解:∵c 1=a 1-1=-21, ∴c n =-n 21,a n =c n +1=1-n 21,a n -1=1-121-n .故当n ≥2时,b n =a n -a n -1=121-n -n 21=n 21.又b 1=a 1=21,即b n =n 21(n ∈N *).8.设数列{a n }、{b n }(b n >0,n ∈N*),满足a n =nb b b nlg lg lg 21+⋅⋅⋅++(n ∈N*),证明:{a n }为等差数列的充要条件是{b n }为等比数列.证明:充分性:若{b n }为等比数列,设公比为q ,则a n =n q q q b n n )lg(lg 121-⋅⋅⋅⋅⋅⋅+=nq b n n n 2)1(1lg lg -+=lg b 1+(n -1)lg q 21,a n +1-a n =lg q 21为常数,∴{a n }为等差数列.必要性:由a n =nb b b nlg lg lg 21+⋅⋅⋅++得na n =lg b 1+lg b 2+…+lg b n ,(n +1)a n +1=lg b 1+lg b 2+…+lg b n +1,∴n (a n +1-a n )+a n +1=lg b n +1.若{a n }为等差数列,设公差为d , 则nd +a 1+nd =lg b n +1,∴b n +1=10nd a 21+,b n =10d n a )1(21-+. ∴nn b b 1+=102d 为常数. ∴{b n }为等比数列. 探究创新9.有点难度哟!设数列{a n },a 1=65,若以a 1,a 2,…,a n 为系数的二次方程:a n -1x 2-a n x +1=0(n ∈N*且n ≥2)都有根α、β满足3α-αβ+3β=1.(1)求证:{a n -21}为等比数列;(2)求a n ;(3)求{a n }的前n 项和S n .(1)证明:∵α+β=1-n n a a ,αβ=11-n a 代入3α-αβ+3β=1得a n =31a n -1+31, ∴21211---n n a a =2121313111--+--n n a a =31为定值. ∴数列{a n -21}是等比数列. (2)解:∵a 1-21=65-21=31,∴a n -21=31×(31)n -1=(31)n .∴a n =(31)n +21.(3)解:S n =(31+231+…+n 31)+2n =311)311(31--n +2n =21+n -n 321⨯. ●思悟小结1.深刻理解等比数列的定义,紧扣从“第二项起”和“比是同一常数”这两点.2.运用等比数列求和公式时,需对q =1和q ≠1进行讨论.3.证明数列{a n }是等差数列的两种基本方法是: (1)利用定义,证明1-n na a (n ≥2)为常数; (2)利用等比中项,即证明a n 2=a n -1·a n +1(n ≥2). ●教师下载中心 教学点睛1.等比数列的性质在求解中有着十分重要的作用,应让学生熟练掌握、灵活运用.2.解决等比数列有关问题的常见思想方法:(1)方程的思想:等比数列中五个元素a 1、a n 、n 、q 、S n 可以“知三求二”;(2)分类讨论的思想:当a 1>0,q >1或a 1<0,0<q <1时为递增数列,当a 1<0,q >1或a 1>0,0<q <1时为递减数列;当q <0时为摆动数列;当q =1时为常数列.3.转化为“基本量”是解决问题的基本方法. 拓展题例【例1】 数列{a n }中,a 1=1,a n =21a n -1+1(n ≥2),求通项公式a n . 解:由a n =21a n -1+1,得a n -2=21(a n -1-2). 令b n =a n -2,则b n -1=a n -1-2,∴有b n =21b n -1.∴b n =21b n -1=21·21b n -2=21·21·21b n -3 =…=b 1=(21)n -1·b 1. ∵a 1=1,∴b 1=a 1-2=-1.∴b n =-(21)n -1.∴a n =2-121 n .【例2】 已知数列{a n }中,a 1=65,a 2=3619并且数列log 2(a 2-31a ),log 2(a 3-32a ),…,log 2(a n +1-3n a )是公差为-1的等差数列,而a 2-21a ,a 3-22a,…,a n +1-2n a 是公比为31的等比数列,求数列{a n }的通项公式. 分析:由数列{log 2(a n +1-3n a)}为等差数列及等差数列的通项公式,可求出a n +1与a n的一个递推关系式①;由数列{a n +1-2n a}为等比数列及等比数列的通项公式,可求出a n +1与a n 的另一个递推关系式②.解两个关系式的方程组,即可求出a n .解:∵数列{log 2(a n +1-3n a)}是公差为-1的等差数列,∴log 2(a n +1-3n a )=log 2(a 2-31a 1)+(n -1)(-1)=log 2(3619-31×65)-n +1=-(n +1),于是有a n +1-3n a =2-(n +1).①又∵数列{a n +1-21a n }是公比为31的等比数列,∴a n +1-21a n =(a 2-21a 1)·3-(n -1)=(3619-21×65)·3-(n -1)=3-(n +1).于是有a n +1-21a n =3-(n +1).②由①-②可得61a n =2-(n +1)-3-(n +1), ∴a n =n 23-n 32.。
(完整版)高三数学第一轮复习单元测试--数列

高三数学第一轮复习单元测试(2)— 《数列》一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若互不相等的实数a 、b 、c 成等差数列,c 、a 、b 成等比数列,且103=++c b a , 则a = ( )A .4B .2C .-2D .-42.已知等差数列共有10项,其中奇数项之和15,偶数项之和为30,则其公差是 ( ) A .5 B .4 C .3 D .2 3.在等差数列{}n a 中,已知1232,13,a a a =+=则456a a a ++等于 ( )A .40B .42C .43D .454.在等差数列{a n }中,若a a+a b =12,S N 是数列{a n }的前n 项和,则S N 的值为 ( ) A .48 B .54 C .60 D .665.设S n 是等差数列{a n }的前n 项和,若S 3S 6=13,则S 6S 12= ( )A .310B .13C .18D .196.设{}n a 是公差为正数的等差数列,若12315a a a ++=,12380a a a =,则111213a a a ++=( )A .120B .105C .90D .757.已知等差数列{a n }的前n 项和为S n ,若a a 2001+=,且A 、B 、C 三点共线 (该直线不过原点O ),则S 200= ( )A .100B .101C .200D .2018.在等比数列{}n a 中,12a =,前n 项和为n S ,若数列{}1n a +也是等比数列,则n S 等于( )A .122n +- B .3n C .2n D .31n -9.设4710310()22222()n f n n N +=+++++∈L ,则()f n 等于( )A .2(81)7n- B .12(81)7n +- C .32(81)7n +- D .42(81)7n +- 10.弹子跳棋共有60棵大小相同的球形弹子,现在棋盘上将它叠成正四面体球垛,使剩下的弹子尽可能的少,那么剩下的弹子有 ( ) A .3 B .4 C .8 D .9 11.设数列{}n a 的前n 项和为n S ,令12nn S S S T n+++=L ,称n T 为数列1a ,2a ,……,n a 的“理想数”,已知数列1a ,2a ,……,500a 的“理想数”为2004,那么数列2, 1a ,2a ,……,500a 的“理想数”为 ( )A .2002B .2004C .2006D .200812.已知数列{}n a 对任意的*p q ∈N ,满足p q p q a a a +=+,且26a =-,那么10a 等于( )A .165-B .33-C .30-D .21-二、填空题:本大题共4小题,每小题4分,共16分,把答案填在题中横线上. 13.数列{a n }中,若a 1=1,a n +1=2a n +3 (n ≥1),则该数列的通项a n = .14.=⎪⎭⎫⎝⎛++⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+=1110113112111,244)(f f f f x f xx Λ则设 . 15.在德国不莱梅举行的第48届世乒赛期间,某商场橱窗里用同样的乒乓球堆成若干准“正 三棱锥”形的展品,其中第一堆只有一层, 就一个乒乓球;第2、3、4、…堆最底层(第 一层)分别按右图所示方式固定摆放.从第一 层开始,每层的小球自然垒放在下一层之上,第n 堆第n 层就放一个乒乓球,以)(n f 表示第n 堆的乒乓球总数,则=)3(f ;=)(n f (答案用n 表示).16.已知整数对排列如下()()()()()()()()()()()()Λ,4,2,5,1,1,4,2,3,3,2,4,1,1,3,2,23,1,1,2,2,1,1,1, 则第60个整数对是_______________.三、解答题:本大题共6小题,共74分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)数列{a n }的前n 项和记为S n ,()111,211n n a a S n +==+≥(1)求{a n }的通项公式;(2)等差数列{b n }的各项为正,其前n 项和为T n ,且315T =,又112233,,a b a b a b +++成等比数列,求T n 18.(本小题满分12分) 设数列}{n a 、}{n b 、}{n c 满足:2+-=n n n a a b ,2132++++=n n n n a a a c (n =1,2,3,…),证明:}{n a 为等差数列的充分必要条件是}{n c 为等差数列且1+≤n n b b (n =1,2,3,…)19.(本小题满分12分)已知数列3021,,,a a a Λ,其中1021,,,a a a Λ是首项为1,公差为1的等差数列;201110,,,a a a Λ是公差为d 的等差数列;302120,,,a a a Λ是公差为2d 的等差数列(0≠d ). (1)若4020=a ,求d ;(2)试写出30a 关于d 的关系式,并求30a 的取值范围;(3)续写已知数列,使得403130,,,a a a Λ是公差为3d 的等差数列,……,依次类推,把已知数列推广为无穷数列. 提出同(2)类似的问题((2)应当作为特例),并进行研究,你能得到什么样的结论? 20.(本小题满分12分) 某市去年11份曾发生流感,据统计,11月1日该市新的流感病毒感染者有20人,此后,每天的新感染者平均比前一天的新感染者增加50人,由于该市医疗部门采取措施,使该种病毒的传播得到控制,从某天起,每天的新感染者平均比前一天的新感染者减少30人,到11月30日止,该市在这30日内感染该病毒的患者总共8670人,问11月几日,该市感染此病毒的新患者人数最多?并求这一天的新患者人数. 21.(本小题满分12分)等差数列{}n a 中,12a =,公差d 是自然数,等比数列{}n b 中,1122,b a b a ==.(Ⅰ)试找出一个d 的值,使{}n b 的所有项都是{}n a 中的项;再找出一个d 的值,使{}n b 的项不都是{}n a 中的项(不必证明);(Ⅱ)判断4d =时,是否{}n b 所有的项都是{}n a 中的项, 并证明你的结论;(Ⅲ)探索当且仅当d 取怎样的自然数时,{}n b 的所有项都是{}n a 中的项,并说明理由. 22.(本小题满分14分)已知数列{n a }中,112--=n n a a (n ≥2,+∈N n ),(1)若531=a ,数列}{n b 满足11-=n n a b (+∈N n ),求证数列{n b }是等差数列; (2)若531=a ,求数列{n a }中的最大项与最小项,并说明理由; (3)(理做文不做)若211<<a ,试证明:211<<<+n n a a .参考答案(2)1.D .依题意有22,,310.a c b bc a a b c +=⎧⎪=⎨⎪++=⎩4,2,8.a b c =-⎧⎪=⎨⎪=⎩2.C . 3302551520511=⇒⎩⎨⎧=+=+d d a d a ,故选C . 3.B . ∵等差数列{}n a 中12a =,2313a a += ∴公差3d =. ∴45613345a a a a d d d ++=+++=1312a d +=42. 4.B . 因为461912a a a a +=+=,所以1999()2a a S +==54,故选B . 5.A . 由等差数列的求和公式可得31161331,26153S a d a d S a d +===+可得且0d ≠ 所以6112161527312669010S a d d S a d d +===+,故选A . 6.B .12322153155a a a a a ++=⇒=⇒=,()()1232228080a a a a d a a d =⇒-+=,将25a =代入,得3d =,从而()()11121312233103530105a a a a a d ++==+=⨯+=.选B .7.A . 依题意,a 1+a 200=1,故选A .8.C .因数列{}n a 为等比,则12n n a q -=,因数列{}1n a +也是等比数列,则22121122212(1)(1)(1)22(12)01n n n n n n n n n n n n n a a a a a a a a a a a a a q q q +++++++++=++⇒+=++⇒+=⇒+-=⇒=即2n a =,所以2n S n =,故选择答案C .9.D . f (n )=3(1)432[12]2(81)127n n ++-=--,选D . 10.B . 正四面体的特征和题设构造过程,第k 层为k 个连续自然数的和,化简通项再裂项用公式求和.依题设第k层正四面体为(),k k k k k 2213212+=+=++++Λ则前k 层共有()()()()6062121212121222≤++=+++++++k k k k k L ,k 最大为6,剩4,选B .11.A .认识信息,理解理想数的意义有,20025014984995002501,5004984995002004500321500321=+++++⨯∴++++=a a a a a a a a ΛΛ,选A .12.C .由已知4a =2a +2a = -12,8a =4a +4a =-24,10a =8a +2a = -30,选C .13.由112332(3)n n n n a a a a ++=+⇔+=+,即133n n a a +++=2,所以数列{n a +3}是以(1a +3)为首项,以2为公比的等比数列,故n a +3=(1a +3)12n -,n a =12n +-3. 14.由()()11=+-x f x f ,整体求和所求值为5.15.2)1()()(111211+==-++-+=⇒+=--+n n a a a a a a n a a n n n n n ΛΛ )(n f 的规律由)2(2)1()1()(≥+==--n n n a n f n f n ,所以22)1()(223)2()3(222)1()2(1)1(222+=--+=-+=-=n n f n f f f f f f Λ所以)]321()321[(21)(222n n n f +++++++++=ΛΛ 6)2)(1(]2)1(6)12)(1([21++=++++=n n n n n n n n 16.观察整数对的特点,整数对和为2的1个,和为3的2个,和为4的3个,和为5的4个,和n 为的 n -1个,于是,借助()21321+=++++n n n Λ估算,取n=10,则第55个整数对为()1,11,注意横坐标递增,纵坐标递减的特点,第60个整数对为()7,517.(1)由121n n a S +=+可得()1212n n a S n -=+≥,两式相减得()112,32n n n n n a a a a a n ++-==≥ 又21213a S =+= ∴213a a = 故{a n }是首项为1,公比为3得等比数列 ∴13n n a -=. (2)设{b n }的公差为d ,由315T =得,可得12315b b b ++=,可得25b =, 故可设135,5b d b d =-=+又1231,3,9a a a ===由题意可得()()()2515953d d -+++=+解得122,10d d == ∵等差数列{b n }的各项为正,∴0d >,∴2d = ∴()213222n n n T n n n-=+⨯=+18.ο1必要性:设数列}{n a 是公差为1d 的等差数列,则:--=-+++)(311n n n n a a b b )(2+-n n a a =--+)(1n n a a )(23++-n n a a =1d -1d =0,∴1+≤n n b b (n =1,2,3,…)成立; 又2)(11+-=-++n n n n a a c c )(12++-n n a a )(323++-+n n a a =61d (常数)(n =1,2,3,…) ∴数列}{n c 为等差数列.ο2充分性:设数列}{n c 是公差为2d 的等差数列,且1+≤n n b b (n =1,2,3,…), ∵2132++++=n n n n a a a c ……① ∴432232++++++=n n n n a a a c ……②①-②得:)(22++-=-n n n n a a c c )(231++-+n n a a )(342++-+n n a a =2132++++n n n b b b ∵+-=-++)(12n n n n c c c c 2212)(d c c n n -=-++∴2132++++n n n b b b 22d -=……③ 从而有32132+++++n n n b b b 22d -=……④ ④-③得:0)(3)(2)(23121=-+-+-+++++n n n n n n b b b b b b ……⑤ ∵0)(1≥-+n n b b ,012≥-++n n b b ,023≥-++n n b b , ∴由⑤得:01=-+n n b b (n =1,2,3,…),由此,不妨设3d b n =(n =1,2,3,…),则2+-n n a a 3d =(常数) 故312132432d a a a a a c n n n n n n -+=++=+++……⑥ 从而3211324d a a c n n n -+=+++31524d a a n n -+=+……⑦ ⑦-⑥得:3112)(2d a a c c n n n n --=-++,故311)(21d c c a a n n n n +-=-++3221d d +=(常数)(n =1,2,3,…), ∴数列}{n a 为等差数列.综上所述:}{n a 为等差数列的充分必要条件是}{n c 为等差数列且1+≤n n b b (n =1,2,3,…). 19.(1)3,401010.102010=∴=+==d d a a . (2)())0(11010222030≠++=+=d d d d a a , ⎥⎥⎦⎤⎢⎢⎣⎡+⎪⎭⎫ ⎝⎛+=432110230d a ,当),0()0,(∞+∞-∈Y d 时,[)307.5,a ∈+∞.(3)所给数列可推广为无穷数列{}n a ,其中1021,,,a a a Λ是首项为1,公差为1的等差数列,当1≥n时,数列)1(1011010,,,++n n n a a a Λ是公差为n d 的等差数列.研究的问题可以是:试写出)1(10+n a 关于d 的关系式,并求)1(10+n a 的取值范围. 研究的结论可以是:由()323304011010d d d d a a +++=+=, 依次类推可得 ()⎪⎩⎪⎨⎧=+≠--⨯=+++=++.1),1(10,1,11101101)1(10d n d d d d d a n nn Λ 当0>d 时,)1(10+n a 的取值范围为),10(∞+等.20.设第n 天新患者人数最多,则从n+1天起该市医疗部门采取措施,于是,前n 天流感病毒感染者总人数,构成一个首项为20,公差为50的等差数列的n 项和,()()N n ,n n n n n n S n∈≤≤-=⨯-+=3015255021202,而后30-n 天的流感病毒感染者总人数,构成一个首项为()60503050120-=-⨯-+n n ,公差为30,项数为30-n 的等差数列的和,()()()()(),n n n n n n Tn148502445653026050306050302-+-=-⨯--+--=依题设构建方程有,(),n n n n ,T S n n 867014850244565525867022=-+-+-∴=+化简,120588612=∴=+-n ,n n 或49=n (舍),第12天的新的患者人数为 20+(12-1)·50=570人.故11月12日,该市感染此病毒的新患者人数最多,新患者人数为570人.21.(1)0d =时,{}n a 的项都是{}n b 中的项;(任一非负偶数均可); 1d =时,{}n a 的项不都是{}n b 中的项.(任一正奇数均可); (2) 4d =时,422(21),n a n n =-=-123n n b -=⨯131 2(21)2n m a -+=⨯-=131(2n m -+=为正整数),{}n b 的项一定都是{}n a 中的项 (3)当且仅当d 取2(*)k k ∈N (即非负偶数)时,{}n b 的项都是{}n a 中的项. 理由是:①当2(*)d k k =∈N 时,2(1)22[1(1)],n a n k n k =+-⋅=+-⋅2n >时,11122112(1)2(C C 1)n n n n n n n b k k k k ------=⋅+=++⋅⋅⋅++,其中112211C C n n n n n k k k-----++⋅⋅⋅+ 是k 的非负整数倍,设为Ak (*A ∈N ),只要取1m A =+即(m 为正整数)即可得n m b a =, 即{}n b 的项都是{}n a 中的项;②当21,()d k k =+∈N 时,23(23)2k b +=不是整数,也不可能是{}n a 的项. 22.(1)1111111121n n n n n a b a a a ---===----,而1111-=--n n a b ,∴11111111=-=-=-----n n n n n a a a b b .)(+∈N n∴{n b }是首项为251111-=-=a b ,公差为1的等差数列. (2)依题意有nn b a 11=-,而5.31)1(25-=-+-=⋅n n b n ,∴5.311-=-n a n .对于函数5.31-=x y ,在x >3.5时,y >0,0)5.3(12<--=x y',在(3.5,∞+) 上为减函数. 故当n =4时,5.311-+=n a n 取最大值3. 而函数5.31-=x y 在x <3.5时,y <0, 0)5.3(12<--=x y',在(∞-,3.5)上也为减函数.故当n =3时,取最小值,3a =-1. (3)先用数学归纳法证明21<<n a ,再证明n n a a <+1. ①当1=n 时,211<<a 成立; ②假设当k n =时命题成立,即21<<k a ,当1+=k n 时,1121<<ka )23,1(121∈-=⇒+kk a a ⇒211<<+k a 故当1+=k n 时也成立,综合①②有,命题对任意+∈N n 时成立,即21<<n a . (也可设x x f 12)(-=(1≤x ≤2),则01)(2'>=xx f , 故=1)1(f 223)2()(1<=<=<+f a f a k k ).下证: n n a a <+10122)1(21=⋅-<+-=-+kk k k n n a a a a a a ⇒n n a a <+1.。
高三一轮复习数列测试题及答案(K12教育文档)

高三一轮复习数列测试题及答案(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高三一轮复习数列测试题及答案(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高三一轮复习数列测试题及答案(word版可编辑修改)的全部内容。
数列一.选择题:1.等差数列{b n }中,b 1=1, b 1+b 2+b 3+……+b 10=145, 则数列{b n }的通项公式b n 是( )。
(A )3n -2 (B )4-3n (C )16n -15 (D )37310-n 2.在公比为q 且各项均为正数的等比数列{a n }中,若a n -3 ·a n +1=a k 2(n , k 均为自然数),则a k 为( )。
(A )a 1q n -1 (B )a 1q n -2 (C )a 1q n -3 (D )以上答案都不正确3.在等差数列{a n }中,a 3+a 7-a 10=8, a 11-a 4=4, 记S n =a 1+a 2+a 3+……+a n ,则S 13等于( )。
(A )168 (B )156 (C )78 (D )1524.数列{a n }的前n 项和是S n ,如果S n =3+2a n (n ∈N ),则这个数列一定是( ). (A )等比数列 (B )等差数列(C )除去第一项后是等比数列 (D )除去第一项后是等差数列5.等差数列{a n }的前n 项和是S n ,a 3+a 8>0, S 9<0, 则S 1, S 2, S 3, ……,S n 中最小的是( )。
2012高考数学第一轮复习等比数列

将递推公式变形转化为等比数列问题
例3:已知数列an 满足:a1 1,an 1 2an n 1,n N* .
1 设bn an n 2,证明:数列bn 是等比数列; 2 若数列an 的前n项和为Sn,求an和Sn .
解析: 证明:由于bn an n 2, 1 bn 1 an 1 n 1 2 2an n 1 n 1 2 则 2. bn an n 2 an n 2 的等比数列.
反思小结:本题是由给出的递推公式来求数列的通项 公式及其前n项和公式,主要考查灵活变形的能力. 本题的解法是利用bn an n 2作为桥梁,构造一个 等比数列来解决问题,其实是告诉我们这样一个方法: 将an 1 2an n 1变形为an 1 n 1 2 2 an n 2 , 则数列an n 2 是一个首项为a1 1 2 4,公比为2 的等比数列.我们在练习中要不断积累、不断总结, 另外,本题还介绍了证明数列bn 是等比数列的方法 bn 1 ——定义法:求得 是一个与n无关的常数. bn 善于看出问题的实质,发现bn an n 2这个“桥梁”.
解析: 设递增的正项等比数列an 的公比为q. 1
2 证明:因为S7 27 1,S14 214 1,S21 221 1,
所以S14 S7 27 27 1,S 21 S14 214 27 1, 所以S7 S 21 S14 2 2 1 S14 S7 ,
反思小结:本题是课本改编题,主要考查三个方面: 一是由两个给出的等式,解方程组求出等比数列的 首项和公比,进而求得通项公式及前n项和公式,要 求记牢公式和细心运算;二是用等比中项的方法证 明三个数成等比数列.一般的,三个非零实数a、b、 c满足b 2 ac,则a、b、c成等比数列;三是考查等比 数列的图象.此题不难,但较全面地考查了等比数列 的有关知识,对复习基础知识是很有帮助的.
2012年高三数学复习——数列
专题五 数 列一.知识梳理等差数列1.等差数列的通项公式与前n 项和公式⑴通项公式d n a a n )1(1-+=,1a 为首项,d 为公差. ⑵前n 项和公式2)(1n n a a n S +=或dn n na S n )1(211-+=.2.等差数列的判定方法⑴定义法:d a a n n =-+1(+∈N n ,d 是常数)⇔{}n a 是等差数列; ⑵中项法:212+++=n n n a a a (+∈N n )⇔{}n a 是等差数列. 3.等差数列的常用性质 (1)d m n a a m n )(-+=(2)若),,,(+∈+=+N q p n m q p n m ,则q p n m a a a a +=+;(3)若等差数列{}n a 的前n 项和n S ,则k S 、k k S S -2、k k S S 23-、k k S S 34-是等差数列. 等比数列1.等比数列的通项公式与前n 项和公式⑴通项公式:11-=n n q a a ,1a 为首项,q 为公比 . ⑵前n 项和公式:①当1=q 时,1na S n =②当1≠q 时,qq a a qq a S n nn --=--=11)1(11.2.等比数列的判定方法 ⑴定义法:q a a nn =+1(+∈N n ,0≠q 是常数)⇔{}n a 是等比数列;⑵中项法:221++⋅=n n n a a a (+∈N n )且0≠n a ⇔{}n a 是等比数列. 3.等比数列的常用性质(1)),(+-∈⋅=N m n q a a m n m n(2)若),,,(+∈+=+N q p n m q p n m ,则q p n m a a a a ⋅=⋅;(3)若等比数列{}n a 的前n 项和n S ,则k S 、k k S S -2、k k S S 23-、k k S S 34-是等比数列.n a 与n S 的关系⎩⎨⎧≥-==-)2()1(11n S S n S a n n n 数列求和n S1.公式法:等差数列求和公式:dn n na a a n S n n 2)1(2)(11-+=+=等比数列求和公式:⎪⎩⎪⎨⎧≠--=--==)1(11)1()1(111q q q a a q q a q na S n nn2.分组求和:有一类数列可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可.3.裂项相消法求和:裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的. 通项分解(裂项)如: (1)111)1(1+-=+=n n n n a n (2)1111()(21)(21)22121n a n n n n ==--+-+(3) 111n nn n =+-++4.反序相加法求和:这是推导等差数列的前n 项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n 个)(1n a a +.5.错位相减法求和:这种方法主要用于求数列{a n · b n }的前n 项和,其中{ a n }、{ b n }分别是等差数列和等比数列.二.例题1.等差数列{}n a 中,410a =且3610a a a ,,成等比数列,求数列{}n a 的通项公式n a 和前n 项和n S2.(10新课标17)设等差数列{}n a 满足35a =,109a =-。
2012届高考数学第一轮复习——第八单元 数列
3 b, n 1 当b 1时,a 2 3 , n 2.
n n 1
学后反思数列的通项 a 与前n项和s 的关系是
n n
s n 1, a 此公式经常使用,应引 起足够的重视,已知 s s , n 2, a 求s 时方法千差万别,但已 知s 求a 时方法却是高度统一, 当
2
题型四 数列与函数
n 【例4】( 分)已知数列的通项公 式为a 12 . n 1 (1)0.98是不是它的项?
n 2
2
(2)判断此数列的增减性.
分析 (1)令an=0.98,看能否求出整数n;
(2)判断an+1-an的正负.
n 解(1 )令 0.98, 解得n 7,5 n 1 0.98是此数列的项. 6
2 2
( 2) ∵ a a
n 1
n
n 1 n 8 n 1 1 n 1
2 2 2 2 2
2n 1 0, 10 n 1 1n 1 a a , 故此数列是递增数列. 12
n n
a 2 ,当n 2时,a s s a 2 ( 2)由 2 s 得s 2 8 a 2 2 a 2 , 8a (a a 4)( a a ), 8 8 ( a a )( a a 4) 0,
2 n n n n n n 2 n n 1 n n n 1 n n 1 n n 1 n n 1
1, n n n 1 n n n n
n 2时,求出 a 也适合n 1时,可直接写成 a s s , 否则分段
n n n n 1
表示.
举一反三
3.(1)已知数列a 的前n项和s 满足log (1 s ) n 1, 求
2012届高三数学一轮复习 专题3 数列综合测试(三)
专题三:数列 阶段质量评估(三)一、选择题(本大题共12小题,每小题5分,总分60分) 1.已知()225n a n n n N +=-+∈,则数列{}n a 的最大项是( )A.12aB.13aC.1213a a 或D.1011a a 或2.在数列{}n a 中,12a =, 11ln(1)n n a a n+=++,则n a =( )A .2ln n +B .2(1)ln n n +-C .2ln n n +D .1ln n n ++3.公差不为零的等差数列}{n a 中,02211273=+-a a a ,数列}{n b 是等比数列,且==8677,b b a b 则( )(A )2 (B )4(C )8(D )164. (2010·广州高三六校联考)等差数列}{n a 中,若12011,a a 为方程210160x x -+=的两根,则210062010a a a ++等于( )A .10B .15C .20D .405.根据市场调查结果,预测某种家用商品从年初开始的n 个月内累积的需求量S n (万件)近似地满足关系式S n =90n (21n -n 2-5)(n =1,2,…,12),按此预测,在本年度内,需求量超过 1.5万件的月份是( )A.5、6月B.6、7月C.7、8月D.8、9月6.将正偶数集合{}......6,4,2从小到大按第n 组有n 2个偶数进行分组,{}4,2, {}12,10,8,6, {}24,22,20,18,16,14 第一组 第二组 第三组 则2010位于第( )组。
.A 30 .B 31 .C 32 .D 337.已知等差数列{}n a 的公差为正数,且1273-=a a ,464-=+a a ,则20S 为( ).A 180.B 180- .C 90.D 90-8. 执行如图的程序框图,若9p =,则输出的S =( )(A )910 (B )718(C )89(D )259.设函数ax x x f m+=)(的导函数12)(+='x x f ,则数列*)}()(1{N n n f ∈的前n 项和是( ) (A )1+n n (B )12++n n (C )1-n n (D )nn 1+ 10. 已知{}n a 是首项为1的等比数列,n s 是{}n a 的前n 项和,且369s s =,则数列1n a ⎧⎫⎨⎬⎩⎭的前5项和为 ( ) (A )158或5 (B )3116或5 (C )3116 (D )15811. 在等比数列1020144117,5,6,}{a a a a a a a n 则中=+=⋅等于 ( )A .32B .23C .3223或D .2332--或 12.等差数列{a n }中,a 1=-5,它的前11项的平均值是5,若从中抽取1项,余下10项的平均值是4,则抽取的是 ( ) A .a 11 B .a 10 C .a 9 D .a 8 二、填空题(本大题共4小题,每小题4分,总分16分)13.整数数列{}n a 满足12111114,22111n n n na a a a a n n +++=+<<+-+,则数列{}n a 的通项n a =__. 14. (2010·苏、锡、常、镇四市高三调研)已知{}n a 是等差数列,设12||||||n n T a a a =+++()n *∈N .某学生设计了一个求n T 的部分算法流程图(如图),图中空白处理框中是用n 的表达式对n T 赋值,则空白处理框中应填入:n T ← .15.已知等比数列{a n }中,a 1=3,a 4=81,若数列{b n }满足b n =log 3 a n , 则数列 }1{1+n n b b 的前n 项和Sn= 。
2012届高考数学第一轮数列专项复习
2012届高考数学第一轮数列专项复习复习数列时目标综合运用等差数列与等比数列的有关知识,解决数列综合问题和实际问题.一、选择题1.在如图的表格中,每格填上一个数字后,使每一横行成等差数列,每一纵列成等比数列,则a+b+的值为()12121abA1 B.2 .3 D.42.已知等比数列{an},a1=3,且4a1、2a2、a3成等差数列,则a3+a4+a等于()A.33 B.72.84 D.1893.已知一个等比数列首项为1,项数为偶数,其奇数项和为8,偶数项之和为170,则这个数列的项数为()A.4 B.6 .8 D.104.在公差不为零的等差数列{an}中,a1,a3,a7依次成等比数列,前7项和为3,则数列{an}的通项an等于()A.n B.n+1.2n-1 D.2n+1.在数列{an}中,a1=1,anan-1=an-1+(-1)n (n≥2,n∈N+),则a3a的值是()A116 B18 34 D386.已知等比数列{an}的各项均为正数,数列{bn}满足bn=ln an,b3=18,b6=12,则数列{bn}前n项和的最大值等于()A.126 B.130.132 D.134二、填空题7.三个数成等比数列,它们的和为14,积为64,则这三个数按从小到大的顺序依次为__________.8.一个等差数列的前12项和为34,前12项中偶数项与奇数项和之比为32∶27,则这个等差数列的公差是________.9.如果b是a,的等差中项,是x与z的等比中项,且x,,z都是正数,则(b-)lgx+(-a)lg+(a-b)lgz=______10 等比数列{an}中,S3=3,S6=9,则a13+a14+a1=__________三、解答题11.设{an}是等差数列,bn=12an,已知:b1+b2+b3=218,b1b2b3=18,求等差数列的通项an12.已知等差数列{an}的首项a1=1,公差d>0,且第二项、第五项、第十四项分别是一个等比数列的第二项、第三项、第四项.(1)求数列{an}的通项公式;(2)设bn=1n(an+3) (n∈N+),Sn=b1+b2+…+bn,是否存在t,使得对任意的n均有Sn>t36总成立?若存在,求出最大的整数t;若不存在,请说明理由.能力提升13.已知数列{an}为等差数列,公差d≠0,其中a1,a2,…,an恰为等比数列,若1=1,2=,3=17,求1+2+…+n14.设数列{an}的首项a1=1,前n项和Sn满足关系式:3tSn-(2t+3)Sn-1=3t (t>0,n=2,3,4,…).(1)求证:数列{an}是等比数列;(2)设数列{an}的公比为f(t),作数列{bn},使b1=1,bn=f1bn-1 (n =2,3,4,…).求数列{bn}的通项bn;(3)求和:b1b2-b2b3+b3b4-b4b+…+b2n-1b2n-b2n•b2n +11.等差数列和等比数列各有五个量a1,n,d,an,Sn或a1,n,q,an,Sn一般可以“知三求二”,通过列方程(组)求关键量a1和d(或q),问题可迎刃而解.2.数列的综合问题通常可以从以下三个角度去考虑:①建立基本量的方程(组)求解;②巧用等差数列或等比数列的性质求解;③构建递推关系求解.复习数列答案作业设计1.A[由题意知,a=12,b=16,=316,故a+b+=1]2.[由题意可设公比为q,则4a2=4a1+a3,又a1=3,∴q=2∴a3+a4+a=a1q2(1+q+q2)=3×4×(1+2+4)=84]3.[设项数为2n,公比为q由已知S奇=a1+a3+…+a2n-1①S偶=a2+a4+…+a2n ②②÷①得,q=1708=2,∴S2n=S奇+S偶=2=a1(1-q2n)1-q=1-22n1-2,∴2n=8] 4.B[由题意a23=a1a7,即(a1+2d)2=a1(a1+6d),得a1d=2d2 又d≠0,∴a1=2d,S7=7a1+7×62d=3d=3∴d=1,a1=2,an=a1+(n-1)d=n+1].[由已知得a2=1+(-1)2=2,∴a3•a2=a2+(-1)3,∴a3=12,∴12a4=12+(-1)4,∴a4=3,∴3a=3+(-1),∴a=23,∴a3a=12×32=34]6.[∵{an}是各项不为0的正项等比数列,∴{bn}是等差数列.又∵b3=18,b6=12,∴b1=22,d=-2,∴Sn=22n+n(n-1)2×(-2)=-n2+23n,=-(n-232)2+2324∴当n=11或12时,Sn最大,∴(Sn)ax=-112+23×11=132]7.2,4,8解析设这三个数为aq,a,aq由aq•a•aq=a3=64,得a=4由aq+a+aq=4q+4+4q=14解得q=12或q=2∴这三个数从小到大依次为2,4,88.解析S偶=a2+a4+a6+a8+a10+a12;S奇=a1+a3+a+a7+a9+a11则S奇+S偶=34S偶÷S奇=32∶27,∴S奇=162,S偶=192,∴S偶-S奇=6d=30,d=9.0解析∵a,b,成等差数列,设公差为d,则(b-)lgx+(-a)lg+(a-b)lgz=-dlgx+2dlg-dlgz=dlg2xz=dlg1=010.48解析易知q≠1,∴S3=a1(1-q3)1-q=3S6=a1(1-q6)1-q=9,∴S6S3=1+q3=3,∴q3=2∴a13+a14+a1=(a1+a2+a3)q12=S3•q12=3×24=48 11.解设等差数列{an}的公差为d,则bn+1bn=12an+112an=12an+1-an=12d∴数列{bn}是等比数列,公比q=12d∴b1b2b3=b32=18,∴b2=12∴b1+b3=178b1•b3=14,解得b1=18b3=2或b1=2b3=18 当b1=18b3=2时,q2=16,∴q=4(q=-4<0舍去)此时,bn=b1qn-1=18•4n-1=22n-由bn=12-2n=12an,∴an=-2n当b1=2b3=18时,q2=116,∴q=14q=-14<0舍去此时,bn=b1qn-1=2•14n-1=122n-3=12an,∴an=2n-3综上所述,an=-2n或an=2n-312.解(1)由题意得(a1+d)(a1+13d)=(a1+4d)2,整理得2a1d=d2∵d>0,∴d=2∵a1=1∴an=2n-1 (n∈N+).(2)bn=1n(an+3)=12n(n+1)=121n-1n+1,∴Sn=b1+b2+…+bn=121-12+12-13+…+1n-1n+1=121-1n+1=n2(n+1)假设存在整数t满足Sn>t36总成立,又Sn+1-Sn=n+12(n+2)-n2(n+1)=12(n+2)(n+1)>0,∴数列{Sn}是单调递增的.∴S1=14为Sn的最小值,故t36<14,即t<9又∵t∈Z,∴适合条的t的最大值为813.解由题意知a2=a1a17,即(a1+4d)2=a1(a1+16d).∵d≠0,由此解得2d=a1公比q=aa1=a1+4da1=3∴an=a1•3n-1又an=a1+(n-1)d=n+12a1,∴a1•3n-1=n+12a1∵a1≠0,∴n=2•3n-1-1,∴1+2+…+n=2(1+3+…+3n-1)-n=3n-n-114.(1)证明由a1=S1=1,S2=1+a2,得a2=3+2t3t,a2a1=3+2t3t又3tSn-(2t+3)Sn-1=3t,①3tSn-1-(2t+3)Sn-2=3t②①-②,得3tan-(2t+3)an-1=0∴anan-1=2t+33t,(n=2,3,…).∴数列{an}是一个首项为1,公比为2t+33t的等比数列.(2)解由f(t)=2t+33t=23+1t,得bn=f1bn-1=23+bn-1∴数列{bn}是一个首项为1,公差为23的等差数列.∴bn=1+23(n-1)=2n+13(3)解由bn=2n+13,可知{b2n-1}和{b2n}是首项分别为1和3,公差均为43的等差数列.于是b1b2-b2b3+b3b4-b4b+…+b2n-1b2n-b2nb2n+1=b2(b1-b3)+b4(b3-b)+b6(b-b7)+…+b2n(b2n-1-b2n+1)=-43(b2+b4+…+b2n)=-43•12n3+4n+13=-49(2n2+3n).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2012高三数学一轮复习单元练习题:数列(Ⅲ)
一、选择题:本大题共5小题,每小题5分,满分25分. 1. 等比数列}{n a 中,11
2
a =
,公比1q =-,则8S =( ) A.12 B.1
2
- C.0 D.1 2. 数列}{n a 中,12,111+==+n n a a a ,则}{n a 的通项公式为( )
A.n
2 B.12+n
C.12-n
D.1
2
+n
3. 若数列}{n a 的前n 项的和32n n S =-,那么这个数列的通项公式为( ) A.1
3
()
2
n n a -=
B.1
13()
2n n a -=⨯ C.32n a n =-
D.1
1,123,2
n n n a n -=⎧=⎨⋅≥⎩ 4. 等差数列{a n }的前n 项和记为S n ,若3711a a a ++为一个确定的常数,则下列各数中也是常数的是( ) A.S 6
B.S 11
C.S 12
D.S 13 5. 已知等差数列{}n a ,首项为19,公差是整数,从第6项开始为负值,则公差为( ). A.5- B.4- C.3-
D.2-
二、填空题:本大题共3小题,每小题5分,满分15分.
6. 在等差数列{n a }中,前15项的和1590S =,则8a = .
7. 有纯酒精(1)aL a >,从中取出1L ,再用水加满;然后再取出1L ,再用水加满,如此反复进行,则第九次取出 L 酒精.
8. 观察下表中的数字排列规律,第n 行(2n ≥)第2个数是__________.
三、解答题:本大题共3小题,满分40分,第9小题12分,第10.11小题各14分. 解答须写出文字说明.证明过程或演算步骤.
9. 设}{n a 为等差数列,n S 为数列}{n a 的前n 项和,已知75,7157==S S ,求数列}{n a 的通项公式.
10. 数列}{n a 的前n 项和为n S ,且)1(3
1
-=n n a S (1)求 1a ,2a 及3a ;(2)证明:数列}{n a 是等比数列,并求n a .
11. 数列{n a }是公比为q 的等比数列,11a =,12()2
n n
n a a a n N *+++=∈ (1)求公比q ;
(2)令n n b na =,求{n b }的前n 项和n S .
参考答案: 1~5 CCDDB
6. 6
7. 811a ⎛⎫
- ⎪⎝⎭
8. 2
22n n -+
9. 解:由题意知71151
76772151415752S a d S a d ⨯⎧
=+=⎪⎪⎨⨯⎪=+=⎪⎩
,解得121a d =-⎧⎨=⎩,所以3n a n =-.
10. 解:(1)当1n =时,()111113a S a ==-,得11
2
a =-;
当2n =时,()2122113S a a a =+=-,得214a =,同理可得31
8
a =-.
(2)当2n ≥时,()()1111111
113333
n n n n n n n a S S a a a a ---=-=---=-,所以112n n a a -=-.
故数列}{n a 是等比数列,12n
n a ⎛⎫
=- ⎪⎝⎭
.
11. 解:(1)∵{a n }为公比为q 的等比数列,a n+2=
12
n n a a ++(n ∈N *
) ∴a n ·q 2=2n n a q a +,即2q 2
―q ―1=0,解得q =-12
或 q =1
(2)当a n=1时,b n=n, S n=1+2+3+…+n=
()1
2 n n+
当a n=
1
1
2
n-
⎛⎫
- ⎪
⎝⎭
时,b n=n·
1
1
2
n-
⎛⎫
- ⎪
⎝⎭
,
S n=1+2·(-1
2
)+3·
2
1
2
⎛⎫
- ⎪
⎝⎭
+…+(n-1)·
2
1
2
n-
⎛⎫
-
⎪
⎝⎭
+n·
1
1
2
n-
⎛⎫
- ⎪
⎝⎭
①
-1
2
S n=(-
1
2
)+2·
2
1
2
⎛⎫
- ⎪
⎝⎭
+…+(n-1)·
1
1
2
n-
⎛⎫
- ⎪
⎝⎭
+n
1
2
n
⎛⎫
- ⎪
⎝⎭
②
①—②得3
2
S n=1+
1
2
⎛⎫
- ⎪
⎝⎭
+
2
1
2
⎛⎫
- ⎪
⎝⎭
+…+
1
1
2
n-
⎛⎫
- ⎪
⎝⎭
-n
1
2
n
⎛⎫
- ⎪
⎝⎭
=
1
1
2
1
1
2
n
⎛⎫
-- ⎪
⎝⎭
+
-n·
1
2
n
⎛⎫
- ⎪
⎝⎭
=
2211
3322
n n
n
⎛⎫⎛⎫
----
⎪ ⎪
⎝⎭⎝⎭
S n=44121
99232
n n
n
⎛⎫⎛⎫
----
⎪ ⎪
⎝⎭⎝⎭。