生物化学复习资料
生物化学复习资料

生物化学复习资料1、氨基酸属于酸性氨基酸的是谷氨酸2、维系蛋白质二级结构的主要化学键是肽键3、蛋白质对紫外线的最大吸收峰在哪一波长附近280nm4、变性蛋白质的主要特点是生物学活性丧失5、核酸的基本组成单位是核苷酸6、tRNA的二级结构为三叶草形7、DNA变性是指互补碱基之间氢键断裂8、维持DNA双螺旋结构稳定,在横向上的作用力是氢键9、酶能加速化学反应的进行是因为降低反应的活化能10、竞争性抑制剂的酶促反应动力学特点是K m值增高,V max不变11、饥饿时,肝脏内糖异生途径的酶活性增强12、糖分解产生ATP的主要方式是有氧氧化13、糖异生最重要的生理意义是饥饿时维持血糖浓度的相对恒定14、蚕豆病是由于体内缺乏葡萄糖-6-磷酸脱氢酶所引起15、酮体和胆固醇合成的共同原料是乙酰CoA16、脂蛋白中含胆固醇最多的是LDL17、合成甘油三酯能力最强的场所是肝脏18、能抑制脂肪动员的激素是胰岛素19、呼吸链中不具有质子泵功能的是复合体Ⅱ20、体内产生ATP的最主要方式是氧化磷酸化21、蛋白质的营养价值取决于必需氨基酸的种类、数量和比例22、转氨酶催化氨基酸脱氨基作用中氨基的载体是磷酸吡哆醛23、哺乳类动物体内氨的主要去路是在肝中合成尿素24、体内转运一碳单位的载体是四氢叶酸25、肝脏进行生物转化时葡萄糖醛酸的活性供体是UDPGA26、血浆游离胆红素主要是与血浆中何种物质结合转运到肝脏的清蛋白27、体内胆红素主要来源是血红蛋白28、属于游离胆汁酸的是鹅脱氧胆酸29、人体内嘌呤碱分解的终产物是尿酸30、别嘌醇治疗痛风的机制是能够抑制黄嘌呤氧化酶31、为氨基酸编码的密码子具有简并性是指一个氨基酸可以有多个密码子32、紫外线照射引起的DNA损伤,最常见的是嘧啶二聚体的形成33、DNA复制时,不需要的是限制性内切酶34、下列是密码子的特点,例外的是间断性35、维生素A缺乏时可能发生夜盲症36、冈崎片段是指随从链上合成的DNA片段37、不对称转录指的是基因中只有一条DNA链是模板链38、真核生物复制和转录的叙述,正确的是都在细胞核内进行。
生物化学复习资料

生物化学复习资料氨基酸的等电点:在某一pH的溶液中,氨基酸解离成阳离子和阴离子的趋势及程度相等,所带净电荷为零,呈电中性,此时溶液的pH称为该氨基酸的等电点。
(P40)茚三酮反应:在加热条件下,所有氨基酸及具有游离α-氨基的肽与茚三酮反应都产生紫色物质的反应。
只有脯氨酸和羟脯氨酸与茚三酮反应产生(亮)黄色物质。
(P43) 氨基酸残基:肽链中的氨基酸由于参加肽键的形成已不是原来完整的分子,因此称为氨基酸残基。
(P45)必需脂肪酸:指人体维持机体正常代谢不可缺少而自身又不能合成、或合成速度慢无法满足机体需要,必须通过食物供给的脂肪酸。
(亚油酸和亚麻酸)(P25)必需氨基酸:指人体自身不能合成或合成速度不能满足人体需要,必须从食物中摄取的氨基酸。
(P39)超二级结构:也称之基元。
在蛋白质中,特别是球蛋白中,经常可以看到由若干相邻的二级结构单元组合在一起,彼此相互作用,形成的有规则、在空间上能辨认的二级结构组合体。
(P53)分子病:由于遗传上的原因而造成的蛋白质分子结构或合成量的异常所引起的疾病。
(P60) DNA变性:指DNA分子由稳定的双螺旋结构松解为无规则线性结构的现象。
(P98)解链温度:双链DNA或RNA分子丧失半数双螺旋结构时的温度。
符号:Tm。
每种DNA或RNA分子都有其特征性的Tm值,由其自身碱基组成所决定,G+C含量越多,Tm值越高。
(P98)增色效应:核酸(DNA和RNA)分子解链变性或断链,其紫外吸收值(一般在260nm处测量) 增加的现象。
(P98)酶的活性中心:在酶蛋白分子中直接参与和底物结合并起催化作用的区域称为酶的活性部位或活性中心。
酶的活性中心一般包括结合部位和催化部位。
(P147)酶的别构效应:调节物与酶分子的调节部位结合后,引起酶分子构象发生变化,从而提高或降低酶活性的效应称为别构效应。
提高酶活性的别构效应,称为别构激活或正协同效应;降低酶活性的别构效应,称为别构抑制或负协同效应。
生物化学-复习资料

《生物化学》一、单项选择题1、组成天然蛋白质的氨基酸共有(B )A.10B.20种C.30种D.40种2、测得某一蛋白质样品的氮含量为0.40 克,此样品约含蛋白质为( B )A.2.00克B.2.50克C.3.00 克D.6.25克3、缺乏可导致夜盲症的维生素是( D )A.维生素AB.维生素E C、维生素 D.维生素K4、脂肪的主要生理功能是( A )A、储能和供能B、膜结构重要组分C、转变为生理活性物质D、传递细胞间信息5、酶的活性中心是指( C )A. 酶分子上的几个必需基团B.酶分子与底物结合的部位C.酶分子结合底物并发挥催化作用的关键性三维结构区D.酶分子中心部位的一种特殊结构6、DNA 分子中碱基互补配对的方式是( B )A.A与G配对B.A与C配对C.A与T配对D.A与U配对7、下列哪个激素可使血糖浓度下降? ( D )A、肾上腺素B、胰高血糖素C、生长素D、胰岛素8、脂肪酸彻底氧化的产物是: ( D )A. 乙酰CoAB.脂酰CoAC.丙酰CoAD.H20、002 及释出的能量9、关于酮体的叙述,哪项是正确的? ( C )A.酮体是肝内脂肪酸大量分解产生的异常中间产物,可造成酮症酸中B,各组织细胞均可利用乙酰CoA 合成酮体,但以肝内合成为主C.酮体只能在肝内生成,肝外氧化D.合成酮体的关键酶是HMG CoA 还原酶10、体内C0来自(C )A.碳原子被氧原子氧化B.呼吸链的氧化还原过程C.有机酸的脱羧D.糖原的分解11、在糖原合成中作为葡萄糖体的是:( D )A.ADPB.GDPC.CDPD. UDP12、体内转运一碳单位的载体是:( A )A.四氢叶酸B.维生素BzC.硫胺素D.生物素13、长期饥饿时大脑的能量来源主要是:( D )A.葡萄糖B.氨基酸C,甘油 D.酮体14、糖与脂肪酸及氨基酸三者代谢的交叉点是:( D )A.磷酸烯醇式丙酮酸B,丙酮酸C.延胡紫酸D.乙酰CoA15、下列关于DNA 复制和转录的描述中哪项是错误的:( D )A.在体内以一条DNA 链为模板转录,而以两条DNA 链为模板复制B.在这两个过程中合成方向都为5'-3'C.复制的产物通常情况下大于转录的产物D.两过程均需RNA 引物二、多项选择题1、蛋白质的二级结构包括: :( ABCD )A.a-螺旋B,日-片层 C.B-转角 D.无规卷曲2、酶与一般催化剂的不同点,在于酶具有:(BCD )A,酶可改变反应平衡常数B.极高催化效率C.对反应环境的高度不稳定D.高度专一性3、糖异生的原料有: :(ABCD )A.乳酸B.甘油C.部分氨基酸D,丙酮酸4、关于核酸的叙述,正确的有:( ABD )A.是生物大分子B.是生物信息分子C.是生物必需营养物质D.是生物遗传的物质基础5、肽链合成的三步为:( ACD )A.进位B.脱氢C.成肤D.转位三、判断题1、蛋白质分子中所有氨基酸都是L构型。
生物化学复习资料

⽣物化学复习资料第六章⽣物氧化与氧化磷酸化(⼀)名词解释1、⽣物氧化(biological oxidation):有机物质在⽣物体内氧化分解⽣成⼆氧化碳和⽔并释放能量的过程。
2、电⼦传递链⼜称呼吸链(electron transter chain ETC):指存在于线粒体内膜(原核⽣物存在于质膜)上的⼀系列氢传递体和电⼦递体,按⼀定的顺序组成了从供氢体到氧之间传递电⼦的链。
3、氧化磷酸化作⽤(oxidative phosphorylation):指电⼦在电⼦传递链上传递和ATP形成相互偶联的过程。
即与⽣物氧化作⽤相伴⽽⽣的磷酸化作⽤。
4、磷氧⽐(P/O ratio):指在⽣物氧化中,每消耗⼀个氧原⼦所⽣成的ATP分⼦数,或每消耗⼀摩尔原⼦氧⽣成的ATP摩尔数。
(⼆)问答题1、何谓⽣物氧化?它有何特点?其作⽤的关键是什么?⽣物氧化的⽅式?①见名词解释“⽣物氧化”;②特点:A、活细胞内,反应条件温和;B、⼀系列酶的催化下逐步进⾏;C、能量逐步释放,部分能量可被利⽤,利⽤效率较⾼;③作⽤的关键;⼀是代谢物分⼦中的氢如何脱出,⼆是脱出的氢如何与分⼦氧结合成⽔并释放能量;④⽅式:通常为三种氧化⽅式A:加氧:在⼀种物质分⼦上直接加氧NH3-CH2-COOH+1/2O2→O=CHCOOH+NH4+H2O -2HB:脱氢:加⽔脱氢:CH3CHO——→CH3 – CH – OH——→CH3COOH|OH-2H直接脱氢:HOOC—CH2—CH2—COOH——→HOOC—CH=CH—COOHC:脱电⼦:-eCyt(Fe2+)——→Cyt(Fe3+)2、举例说明⾼能化合物可分为哪⼏种键型。
(1)磷氧键型,如1,3—⼆磷酸⽢油酸、ATP、磷酸烯醇式丙酮酸;(2)磷氮键型,如磷酸肌酸;(3)硫脂键型,如⼄酰CoA;(4)甲硫键型,如S—腺苷甲硫氨酸;(5)碳氧键型,如氨酰——tRNA。
3、电⼦传递链上有哪⼏类电⼦传递体?各如何作⽤?(1)烟酰胺核苷酸类。
生物化学复习题及答案

生物化学复习题及答案生物化学是研究生命体内化学过程和物质转化的科学,它涉及到细胞内各种生物分子的结构、功能和代谢途径。
以下是一些生物化学的复习题及答案,供学习者参考。
题目1:简述酶的催化机制。
答案:酶是生物体内具有催化作用的蛋白质,其催化机制通常涉及酶的活性部位与底物的结合。
酶降低反应的活化能,从而加速反应速率。
酶的活性部位通常具有与底物相匹配的形状,使得底物能够精确地与酶结合,形成酶-底物复合物。
在复合物形成后,底物分子发生化学变化,生成产物,随后产物从酶的活性部位释放,酶恢复其原始状态,准备进行下一轮催化。
题目2:解释DNA复制的保真性。
答案:DNA复制的保真性指的是复制过程中新合成的DNA链与模板链的高度一致性。
这种高保真性主要依赖于DNA聚合酶的高度选择性,它能够识别并正确地将互补的核苷酸与模板链配对。
此外,DNA聚合酶还具有校对功能,能够检测并纠正配对错误,从而确保复制过程的准确性。
题目3:描述细胞呼吸过程中的能量转换。
答案:细胞呼吸是细胞内将有机物质氧化分解,释放能量的过程。
这个过程主要分为三个阶段:糖酵解、克雷布斯循环(柠檬酸循环)和电子传递链。
在糖酵解阶段,葡萄糖分解为丙酮酸,释放少量能量。
在克雷布斯循环中,丙酮酸进一步氧化,产生更多的高能电子和二氧化碳。
最后,在电子传递链中,这些高能电子通过一系列氧化还原反应传递,最终将电子传递给氧气,形成水,同时释放大量能量。
这些能量部分以ATP的形式储存,供细胞使用。
题目4:简述蛋白质合成的基本原理。
答案:蛋白质合成主要在细胞质中的核糖体上进行,这个过程称为翻译。
首先,mRNA携带遗传信息从细胞核转移到核糖体。
核糖体识别mRNA上的起始密码子,然后tRNA携带相应的氨基酸与mRNA上的密码子配对。
核糖体沿着mRNA移动,逐个添加氨基酸,形成多肽链。
当遇到终止密码子时,蛋白质合成结束,新合成的多肽链随后折叠成其特定的三维结构,形成具有生物活性的蛋白质。
生物化学复习材料

生物化学复习材料1.氨基酸、蛋白质等电点?Pl和ph的关系氨基酸等电点:不同的氨基酸结构不同,等电点也不同。
在水溶液中,氨基和羧基的解离程度不同,所以氨基酸的水溶液一般不呈中性。
一般来讲,所谓中性氨基酸,酸性比碱性稍微强一点,正离子浓度小于负离子浓度,要调节到等电点,需要向溶液中加酸,抑制羧酸的解离。
中性氨基酸的等电点一般在5.0-6.3之间,酸性氨基酸在2.8-3.2,碱性氨基酸为7.6-10.9.氨基酸的两性电解质性质,氨基酸可以作为缓冲试剂使用。
在等电点时,氨基酸的偶极离子浓度最大,溶解度最小。
可以根据等电点分离氨基酸的混合物。
第一种方法:利用等电点时溶解度最小,将某种氨基酸沉淀出来;第二种方法:利用同一ph下,不同氨基酸所带的电荷不同而分离。
蛋白质的等电点:2.蛋白质的1-4级结构分别是什么,有什么特点,有哪些类型第一结构:多肽链中的氨基酸序列,氨基酸序列的多样性决定了蛋白质空间结构和功能的多样性。
特点:是蛋白质最基本的结构。
第二结构:多肽主链有一定的周期性,由氢键维持的局部空间结构。
a-螺旋、b-折叠、b-转角。
特点:有周期性,有规则。
类型:(1)a-螺旋:最常见的结构,广泛的存在于纤维状蛋白和球蛋白中。
在水溶液中,a螺旋的N端带有部分正电荷,C端带有部分负电荷,a螺旋可构成偶极矩。
L型氨基酸组成的a螺旋多为右手螺旋,D型氨基酸组成的多为左手螺旋,右手螺旋比左手螺旋稳定。
(2)b-折叠:是一种重复性的结构。
可有多条肽链组成也可由一条肽链组成。
折叠的两种方式:平行式(相邻肽链是同向的)(更规则)和反平行式(相邻肽链是反向的)。
(3)b-转角(b-弯曲、发夹结构):简单的二级结构。
多肽链需要经过弯曲和回折才能形成稳定的球形结构。
是比较稳定的结构。
(4)b凸起:是一种小的非重复性结构,能单独存在,大多数为b折叠中的一种不规则的情况,可引起多肽链方向的改变,但改变程度不如b转角。
(5)无规卷曲:没有一定规律的松散肽链结构(但对于一定的球蛋白来说,特定的区域有特定的卷曲方式,因而归入二级结构),酶的功能结构常处于该构象中,故而受到人们的重视。
生物化学复习重点

⽣物化学复习重点⽣物化学复习重点第⼀章蛋⽩质1.蛋⽩质的元素组成:C、H、O、N、S及其他微量元素,蛋⽩质含氮量:16%公式:每克样品含氮量×6.25×100=100克样品蛋⽩质含量(克%)2.氨基酸通式特点:α-L -氨基酸,只有⽢氨酸没有⼿性(旋光性),脯氨酸为亚氨基酸。
3.氨基酸分类:(1)、酸性氨基酸:⼀氨基⼆羧基氨基酸,有天冬氨酸、⾕氨酸,带负电荷(2)、碱性氨基酸:⼆氨基⼀羧基氨基酸,有赖氨酸、精氨酸、组氨酸,带正电荷(3)、中性氨基酸:⼀氨基⼀羧基氨基酸,有⽢氨酸、丙氨酸、缬氨酸、亮氨酸、异亮氨酸、甲硫氨酸、半胱氨酸、苯丙氨酸、⾊氨酸、酪氨酸、脯氨酸、天冬酰胺、⾕氨酰胺、丝氨酸、苏氨酸。
不带电荷。
(4)含S氨基酸:甲硫氨酸、半胱氨酸(5)含羟基氨基酸:丝氨酸、苏氨酸(6)芳⾹族氨基酸:苯丙氨酸、⾊氨酸、酪氨酸(7)含酰胺基氨基酸:天冬酰胺、⾕氨酰胺4.氨基酸的等电点PI:氨基酸所带正负电荷相等时的溶液pH。
pI=(pK1,+pK2,)/25.氨基酸紫外吸收:280nm,苯丙氨酸、⾊氨酸、酪氨酸有紫外吸收6.蛋⽩质的⼀级结构(Primary structure):它是指蛋⽩质中的氨基酸按照特定的排列顺序通过肽键连接起来的多肽链结构。
肽键:⼀个氨基酸的a-COOH 和相邻的另⼀个氨基酸的a-NH2脱⽔形成共价键。
7.蛋⽩质⼆级结构的概念:多肽链在⼀级结构的基础上,按照⼀定的⽅式有规律的旋转或折叠形成的空间构象。
其实质是多肽链在空间的排列⽅式蛋⽩质⼆级结构主要类型有:a-螺旋、β-折叠、β-转⾓维持⼆级结构的作⽤⼒:氢键a-螺旋(a-Helix)⼜称为3.613螺旋,Φ= -57。
,Ψ= -47。
结构要点:(1)、多个肽键平⾯通过α-碳原⼦旋转,主链绕⼀条固定轴形成右⼿螺旋。
(2)、每3.6个氨基酸残基上升⼀圈,相当于0.54nm。
(3)、相邻两圈螺旋之间借肽键中C=O和N-H形成许多链内氢健,即每⼀个氨基酸残基中的NH和前⾯相隔三个残基的C=O 之间形成氢键,这是稳定α-螺旋的主要键。
生物化学复习资料

第一章绪论生物化学:简单来讲,研究生物体内物质组成(化学本质)和化学变化规律的学科。
生物化学的研究内容:生物分子的结构及功能(静态生化);物质代谢及其调节(动态生化);生命物质的结构及功能的关系及环境对机体代谢的影响(功能生化)。
第二章糖类化学一、糖的定义及分类糖类是一类多羟基醛(或酮),或通过水解能产生这些多羟基醛或多羟基酮的物质。
糖类分类:(大体分为简单糖和复合糖)单糖:基本单位,自身不能被水解成更简单的糖类物质。
最简单的多羟基醛或多羟基酮的化合物。
Eg:半乳糖寡糖:2~10个单糖分子缩合而成,水解后可得到几分子单糖。
Eg:乳糖多糖:由许多单糖分子缩合而成。
如果单糖分子相同就称为同聚多糖或均一多糖;由不同种类单糖缩合而成的多糖为杂多糖或不均一多糖。
复合糖:是指糖和非糖物质共价结合而成的复合物,分布广泛,功能多样,具有代表性的有糖蛋白或蛋白聚糖,糖脂或脂多糖。
二单糖1、单糖的构型:在糖的化学中,采用D/L法标记单糖的构型。
单糖构型的确定以甘油醛为标准。
距羰基最远的手性碳及D-(+)-甘油醛的手性碳构型相同时,为D型;及L-(-)-甘油醛构型相同时,为L型。
2、对映异构体:互为镜像的旋光异构体。
如:D-Glu及L-Glu3、旋光异构现象:不对称分子中原子或原子团在空间的不同排布对平面偏振光的偏正面发生不同影响所引起的异构现象。
4、差向异构体:具有两个以上不对称碳原子的的分子中仅一个不对称碳原子上的羟基排布方式不同。
如:葡萄糖及甘露糖;葡萄糖及半乳糖。
5、环状结构异构体的规定:根据半缩醛羟基及决定直链DL构型的手性碳上羟基处于同侧为α,异侧为β。
(只在羰基碳原子上构型不同的同分异构体)6、还原糖:能还原Fehling试剂或Tollens试剂的糖叫还原糖。
分子结构中含有还原性基团(如游离醛基半缩醛羟基或游离羰基)的糖,还原糖是指具有还原性的糖类,叫还原糖。
1)单糖和寡糖的游离羰基,有还原性。
2)以开链结构存在的单糖中除了二羟丙酮外均具有游离羰基。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章蛋白质2.2.3 氨基酸的分类在中性pH条件下按其R侧链极性和所带电荷的不同,分为四大类,不带电荷极性氨基酸:Gly, Ser, Thr, Cys,Thr,Asn,Gln带负电荷极性氨基酸:Asp, Glu带正电荷极性氨基酸:His, Arg, Lys非极性氨基酸:Ala, Val, Leu, Ile, Pro, Phe, Trp, Met含非极性侧链基团:Gly, G Ala, A Val, V Leu, L Met, M Ile, I含极性侧链基团:Ser, S Thr, T Cys, C Pro, P Asn, N Gln, Q含芳香基团:Phe, F; Tyr, Y; Trp, W含碱性侧链基团(带正电荷):Lys, K; Arg, R; His, H含酸性侧链基团(带负电荷):Asp, D; Glu, E2.2.4 氨基酸的主要理化性质光吸收特性各种氨基酸在可见区都没有光吸收。
在紫外光区芳香族氨基酸在280nm处有最大吸收峰(色氨酸、酪氨酸、苯丙氨酸的最大吸收波长分别为279、278、259nm )氨基酸的等电点对某一种氨基酸而言,当溶液在某一个特定的pH,氨基酸以两性离子的形式存在,并且其所带的正电荷数与负电荷数相等,即净电荷为零。
在直流电场中,它既不向正极,也不向负极移动。
此时溶液的pH称为这种氨基酸的等电点(pI)。
3.蛋白质的化学结构和高级结构肽键:指蛋白质分子中,由一个氨基酸的α-COOH和另一个氨基酸的α-NH2之间脱水缩合而成的酰胺键,它是蛋白质结构中的主要共价键。
肽由氨基酸通过肽键形成的聚合物(二肽、三肽、寡肽、…多肽)在多肽链中,氨基酸残基按一定的顺序排列,这种排列顺序称为氨基酸序列,多肽链上不完整的氨基酸,称为氨基酸残基(amino acid residue)二面角(dihedral angle):肽平面的连接处为α碳原子。
它与相邻的两个参与肽键形成的C 和N原子之间的单键可以在一定范围内转动,Cα-N之间称φ角,在Cα-C之间称ψ角,这就是α-碳原子上的一对二面角。
这对二面角决定了相邻肽平面的相对位置。
一级结构(primary structure):即蛋白质的化学结构,是指多肽链上各种氨基酸残基的种类和排列顺序,也包括二硫键的数目。
蛋白质的高级结构:指一条或数条多肽链上所有原子和基团在三维空间上的排布,即构象(conformation)或空间结构。
构象由单键旋转产生的各种立体结构,而构型(configuration )是通过改变共价键形成的结构。
蛋白质的高级结构由明显的结构层次。
一级结构是空间结构的基础。
3.4.1 蛋白质结构层次蛋白质结构极其复杂,但具有明显的结构层次一级结构(多肽链上的氨基酸排列顺序)二级结构(多肽链主链骨架的局部空间结构)二级结构(secondary structure):指多肽链主链在一级结构的基础上进一步的盘旋或折叠,形成的周期性构象,维系二级结构的力是氢键。
二级结构主要形式有:α-螺旋、β-折叠、β-转角、无规卷曲。
α-螺旋(α-helix):是在角蛋白中最常见的构象,为右手螺旋。
每圈螺旋3.6个氨基酸残基。
侧链基团R在螺旋外侧。
主链内部形成H-键,不涉及侧链R。
典型的α-螺旋是3.613螺旋,一周螺旋3.6个氨基酸,跨越13个原子。
β-折叠(β-sheet):存在于丝心蛋白、角蛋白。
呈平行的和反平行的比较伸展的构象。
主链之间形成H键,侧链基团R交替地位于片层的上、下。
β-转角(β-turn):肽链1800的回折无规卷曲(random coil):指蛋白质的肽链中没有确定规律性的那部分肽段构象。
超二级结构(二级结构单位的集合体)超二级结构(super secondary structure):在蛋白质中经常存在由若干相邻的二级结构单元按一定规律组合在一起,形成有规则的二级结构集合体,超二级结构又称模体(motif)。
四种类型的超二级结构:螺旋-环-螺旋,折叠-螺旋-折叠,发夹,希腊钥匙结构域(多肽链上可以明显区分的球状区域)结构域(domain):在较大的蛋白质分子里,多肽链的空间折叠常常形成两个或多个近似球状的三维实体,它们之间由舒展的肽链连接。
三级结构(多肽链上所有原子和基团的空间排布)三级结构(tertiary structure):指一条多肽链在二级结构(超二级结构及结构域)的基础上,进一步盘绕、折叠而成的具有特定肽链走向的紧密球状结构, 或者说三级结构是指多肽链中所有原子和基团在三维空间的排布。
三级结构的稳定主要靠非共价相互作用,S-S键也发挥重要作用。
氨基酸亲水的基团倾向于分布在分子的表面,疏水的基团在分子的内部。
四级结构(由球状亚基或分子缔合而成的集合体)四级结构(quaternary structure):多个具有三级结构的多肽链(称亚基,Subunit)的聚合。
或者说,四级结构指亚基的种类、数目及各个亚基在寡聚蛋白中的空间排布和亚基之间的相互作用。
四级结构的稳定主要靠是疏水作用力,另外还有离子键、氢键、范德华引力等。
4.多肽、蛋白结构与功能的关系4.1 一级结构与功能的关系:氨基酸组成变化改变其功能,一级结构改变引起分子病。
基因突变导致蛋白质一级结构的突变,导致蛋白质生物功能的下降或丧失,就会产生疾病,这种病称为分子病(molecular disease)。
蛋白质前体的激活,动物体内有些蛋白质是以无活性的前体形式产生和贮存的。
这些前体在机体需要时,经过某种蛋白质的水解,切去部分段肽后,才变成有活性的蛋白质。
4.2 高级结构与功能的关系蛋白质的变性与复性:变性(denaturation)是指一些理化因素,如热、光、机械力、酸碱、有机溶剂、重金属离子、变性剂(如尿素等),破坏了维持蛋白质空间构象的非共价作用力,使其空间结构发生改变,结果导致其生物活性的丧失。
变性一般并不引起肽键的断裂,但蛋白质的溶解度可能降低,可能凝固和沉淀。
变性有时是可逆的。
消除变性的因素,有些蛋白质的生物活性可能得以恢复,称为复性(renaturation)。
肽链的正确折叠或者亚基的装配常常需要由一些蛋白质,例如热激蛋白(Heat shock protein , Hsp)和某些酶的帮助,并且消耗ATP。
但是,这样的蛋白质与酶并不加入到最终的折叠产物或装配复合物中。
它们被称为分子伴侣(molecular chaperone)。
蛋白质的变构与血红蛋白的输氧功能变构作用(Allosteric effect )是指效应剂(变构剂)作用于多亚基的蛋白质或酶的某个亚基后,导致其构象改变,继而引起其他亚基构象的改变,结果引起蛋白质或酶的生物活性发生变化。
有的结果是变构激活,有的则是变构抑制。
例如,在血红蛋白中,其4个亚基与氧分子的亲和性不同。
氧分子与血红蛋白的一个亚基结合(比较难)后,引起其构象发生改变,这种变化在亚基之间传递,从而改变了其他亚基与氧的结合能力,使它们与氧的结合变得容易。
其动力学曲线呈S型。
第四章核酸4.1.4 核苷酸核苷酸除了作为核酸的基本结构单位外,体内很多重要的活性物质都含有核苷酸,它们具有重要的功能:a. 核苷酸参与能量代谢。
b. 核苷酸是许多酶的辅助因子的成分:体内还有一些参与代谢的辅基和辅酶与核苷酸密切相关。
c. 核苷酸参与细胞信息传递。
2.2 DNADNA分子的大小:天然存在的DNA分子最显著的特点是很长,分子质量很大,一般在106-1010 。
DNA的碱基组成有如下特点:具有种的特异性。
没有器官和组织的特异性。
在同一种DNA 中,A=T 、G = C+m5C,即A+G = T+C+mC,即嘌呤碱基的总摩尔数与嘧啶碱基的总摩尔数相等——碱基当量定律又称Chargaff原则。
年龄、营养状况、环境的改变不影响DNA的碱基组成。
2.5 DNA的二级结构DNA分子由两条多聚脱氧核糖核苷酸链(简称DNA单链)组成。
两条链沿着同一根轴平行盘绕,形成右手双螺旋结构。
两条链的走向相反。
碱基位于螺旋的内侧,磷酸和脱氧核糖基位于螺旋外侧。
螺旋的直径约为2nm,一圈螺旋包含10对碱基,其高度为3.4nm。
碱基平面之间的垂直距离0.34nm。
在DNA分子中,根据Chargaff原则,碱基之间具有严格的互补配对规律,A和T之间形成两对氢键,G与C之间形成三对氢键。
2.6 DNA的三级结构指DNA双螺旋通过弯曲和扭转所形成的特定构象, 即超螺旋DNA。
真核生物内,DNA以致密形式存在于细胞核的染色体中。
染色体的基本单位是核小体(nucleosome)核小体:由DNA和组蛋白共同构成。
核心组蛋白:4种组蛋白(H2A , H2B , H3 ,H4)形成的8聚体DNA:以负超螺旋缠绕在核心组蛋白上H1在核小体之间起连接作用3.核酸的性质紫外吸收的特性:嘌呤和嘧啶在260 nm有特异的吸收峰,这个性质用于核酸的分析溶解性:溶于偏碱的溶剂中,可以为乙醇沉淀,容易受机械作用力而断裂。
黏性:DNA溶液有高度的黏性DNA分子的变性:DNA双螺旋的有序结构受各种理化因子,如热、酸碱、变性剂、有机溶剂以及稀释的作用,转变为无规则的线团结构。
变性的特征:增色效应, 黏度和比旋下降,沉降系数增加,生物学活性丧失。
增色效应(hyperchromic effect)核酸分子加热变性时,其在260nm处的紫外吸收急剧增加的现象。
Tm值:当紫外吸收变化达到最大变化的半数值时,此时所对应的温度称为熔解温度(Tm )、变性温度或中点解链温度。
影响Tm值的因素:1.溶液的性质2.DNA中碱基组成的影响。
当两条不同来源的DNA(或RNA)链或DNA链与RNA链之间存在互补的碱基序列时,在一定条件下可以通过互相配对形成双螺旋分子,这种分子称为杂交分子。
形成杂交分子的过程称为分子杂交(molecular hybridization)。
第五章生物膜与物质运输1.生物膜的化学组成所有生物膜几乎都是由蛋白质和脂类两大物质组成,尚含有少量糖、金属离子和水。
1.1 膜脂:磷脂(甘油磷脂、鞘磷脂),糖脂,胆固醇膜的基本结构——脂质双层(Lipid bilayer)1.2 膜蛋白膜蛋白具有重要的生物功能,是生物膜实施功能的场所。
可以分为外周蛋白和内在蛋白。
它们是受体,酶,抗原,通道和骨架蛋白等。
外周蛋白(peripheral protein):分布于双层脂膜的外表层。
与膜的结合比较疏松,容易从膜上分离出来。
外周蛋白比较亲水,能溶解于水。
内在蛋白(integral protein):蛋白的部分或全部嵌在双层脂膜的疏水层中。
难溶于水,且不容易从膜中分离出来。
主要以α-螺旋形式存在。
1.3 膜糖生物膜中的寡糖链在信息传递和细胞的相互识别方面有重要作用。
糖蛋白上的寡糖链总是指向细胞的外面。