高中数学 第一章 导数及其应用 1.7 定积分的简单应用 用定积分求面积素材 新人教A版2-2 精
人教a版数学【选修2-2】1.7《定积分的简单应用》ppt课件

[答案]
1 2
2 3
[解析] 曲线y=x 与y=cx 由题意知
1 1 的交点为c ,c2.
2 1 =3.∴c=2.
典例探究学案
不分割型平面图形面积的求解
如图,求曲线y=x2与直线y=2x所围图形的面 积S.
[分析] 从图形上可以看出,所求图形的面积可以转化为一 个三角形与一个曲边三角形面积的差,进而可以用定积分求 出面积.为了确定出积分的上、下限,我们需要求出直线和 抛物线的交点的横坐标.
(1)(2014· 山东理,6)直线y=4x与曲线y=x3在第一象限内 围成的封闭图形的面积为( A.2 2 C.2 ) B.4 2 D.4
(2)由y=-x2与y=x-2围成图形的面积S=________.
9 [答案] (1)D (2)2
[解析] (1)如图所示
y=4x, 由 3 y = x .
[答案] C
) B.gt2 0 1 2 D.6gt0
[解析] 如果变速直线运动的速度为 v=v(t)(v(t)≥0), 那么
b 从时刻 t=a 到 t=b 所经过的路程是 v(t)dt,
a
故应选 C.
2 4.若两曲线y=x 与y=cx (c>0)围成的图形的面积是 3 ,
2 3
则c=________.
[解析]
y=2x, 解方程组 2 y = x ,
得x1=0,x2=2.
故所求图形的面积为 S= 2xdx- x
2 0 2 0
2
2 2 dx=x 0
1 3 4 2 -3x 0 =3.
[方法规律总结] 利用定积分求平面图形的面积的步骤 (1)画出草图,在直角坐标系中画出曲线或直线的大致图象. (2)将平面图形分割成曲边梯形,并分清在x轴上方与下方的 部分. (3)借助图形确定出被积函数. (4)求出交点坐标,确定积分的上、下限. (5)求出各部分的定积分,并将面积表达为定积分的代数和( 定积分为负的部分求面积时要改变符号处理为正),求出面 积.
1.7定积分的简单应用(3课时)

W =
ò
b
a
F (x )dx
思考3:如图,在弹性限度内,将一弹簧 从平衡位置拉到离平衡位置xm处,那么 拉伸弹簧所需的力F(x)与x的函数关系是 什么? F(x)=kx,
其中k为弹力系数.
x
思考4:如果将弹簧从平衡位置拉到离平 衡位置l m处,那么克服弹力所作的功为 多少?
l
1 2 l 1 2 W = ò kxdx = kx |0 = kl (J ) 0 2 2
思考3:该图形的面积用定积分怎样表示?
y y =x 2 1 O C B D A 1 x y 2=x
S =
蝌
0
1
xdx -
1 0
x dx
2
思考4:利用微积分基本定理计算,该图 形的面积等于多少?
y y =x 2 y 2=x
1 O
3 2 1 0
C
B
D A 1
x
2 1 3 1 1 S = x | - x |0 = 3 3 3
1.7
1.7.1
定积分的简单应用
定积分在几何中的应用
问题提出
b
1 5730 p 2
t
1.定积分ò f (x )dx 的含义及其几何意 a 义分别是什么 n b b- a f ( xi ) òa f (x )dx = nlim å n i= 1
y
y=f(x)
ò
O
b
a
f (x )dx
O
10
40
C 60 t(s)
思考2:汽车在[0,10],[10,40],[40, 60](单位:s)三个时段内行驶的路程, 用定积分分别如何表示?
v(m/s) 30
A
1.7.1定积分的简单应用(一)

1
0
xdx x dx
2 0
2
1
1
3
1
例 2 计算由曲线 y 2 x ,直线 y x 4以及 x 轴所 围成的图形的面积.
y 2x
解:两曲线的交点源自 y 2x (0,0), (8, 4). y x 4
直线与x轴交点为(4,0)
S S1 S2
(x 6 x x )dx
3 2
A1
A2
y x3 6x
3
于是所求面积
0 3
A A1 A2
2 3
253 A 2 ( x 6 x x )dx 0 ( x x 6 x )dx . 12
2
说明: 注意各积分区间上被积函数的形式.
学习小结: 如何求在直角坐标系下平面图形的面积? 1.作图象; 2.求交点的横坐标,定出积分上、下限; 3.确定被积函数,用定积分表示所求的面积, 特别注意分清被积函数的上、下位置; 4.用牛顿-莱布尼茨公式求定积分. 课外练习
2 0
2
0 8
2 xdx ( 2 x x 4)dx
2
8
y2 2 x
2 2 xdx ( 2 x x 4)dx
2
4 2 3 2 2 2 3 1 2 16 64 26 8 2 2 x |0 ( x x 4 x) |2 18 3 3 2 3 3 3
作业:课本 P A 组⑵ 67
课外练习
上节课外练习
a b
我们知道定积分 f ( x )dx 的几何意义:
a
b
它是介于 x 轴、函数 f ( x ) 的图象及两条直线 x a, x b 之间的各部分面积的代数和.(在 x 轴 上方的面积取正号,在 x 轴下方的面积取负号)
高中数学选修2-2优质课件:1.7.1 定积分在几何中的应用

2.曲线 y=cos x(0≤x≤32π)与坐标轴所围图形的面积是( B )
A.2 解析
B.3
C.52
S=π2
0
cos
xdx-32πcos π
xdx=sin
π x2 0
D.4 3π 2
-sin x π 2
2
=sin π2-sin 0- sin 32π+sin π2=1-0+1+1=3.
1234
4 3.由曲线y=x2与直线y=2x所围成的平面图形的面积为__3__.
1234
S=4f(x)dx-7f(x)dx
1
4
③
S=a[g(x)-f(x)]dx+b[f(x)-g(x)]dx
0
a
④
A.①③ C.①④
B.②③ D.③④
1234
解析 ①应是 S=b[f(x)-g(x)]dx,②应是 S=82 2xdx-
a
0
8(2x-8)dx,③和④正确.故选 D.
4
答案 D
1234
跟踪演练2 求由曲线y=x2,直线y=2x和y=x围成的图形的面积.
y=x2, y=x2,
解 方法一 如图,由
和
y=x
y=2x
解出 O,A,B 三点的横坐标分别是 0,1,2.
故所求的面积 S=10(2x-x)dx+12(2x-x2)dx=x2210 + x2-x3321 =12-0+(4-83)-(1-13)=76.
y=2x, x=0, x=2,
解析 解方程组
得
或
y=x2, y=0, y=4.
∴曲线y=x2与直线y=2x交点为(2,4),(0,0).
∴S=2(2x-x2)dx= 0
x2-13x320
推荐高中数学第一章导数及其应用1.7定积分的简单应用学案含解析新人教A版选修2_2

1.7定积分的简单应用积为S 1.由直线x =a ,x =b ,曲线y =g(x )和x 轴围成的曲边梯形的面积为S 2.问题1:如何求S 1? 提示:S 1=⎠⎛a b f(x)d x.问题2:如何求S 2? 提示:S 2=⎠⎛ab g(x)d x.问题3:如何求阴影部分的面积S? 提示:S =S 1-S 2.平面图形的面积由两条曲线y =f (x ),y =g (x )和直线x =a ,x =b (b >a )所围图形的面积.(1)如图①所示,f (x )>g (x )>0,所以所求面积S =⎠⎛ab d x .(2)如图②所示,f (x )>0,g (x )<0,所以所求面积S =⎠⎛a b f (x )d x +⎪⎪⎪⎪⎠⎛a b=⎠⎛ab d x .相交曲线所围图形的面积求法如下图,在区间上,若曲线y =f (x ),y =g (x )相交,则所求面积S =S 1+S 2=⎠⎛ac d x +⎠⎛c b-=⎠⎛ab |f (x )-g (x )|d x .问题:在《1.5.2 汽车行驶的路程》中,我们学会了利用积分求物理中物体做变速直线运动的路程问题,利用积分还可以解决物理中的哪些问题?提示:变力做功.1.变速直线运动的路程做变速直线运动的物体所经过的路程s ,等于其速度函数v =v (t )(v (t )≥0)在时间区间上的定积分,即s =⎠⎛ab2.变力做功如果物体在变力F(x)的作用下做直线运动,并且物体沿着与F (x )相同的方向从x =a 移动到x =b(a<b),那么变力F(x)所做的功为W =⎠⎛ab F(x )d x.求变速直线运动的路程的注意点对于给出速度-时间曲线的问题,关键是由图象得到速度的解析式及积分的上、下限,需要注意的是分段解析式要分段求路程,然后求和.计算曲线由⎩⎪⎨⎪⎧y =x +3,y =x2-2x +3,解得x =0或x =3.如图.因此所求图形的面积为S =⎠⎛03(x +3)d x -⎠⎛03(x 2-2x +3)d x=⎠⎛03d x =⎠⎛03(-x 2+3x )d x =⎝ ⎛⎭⎪⎫-13x3+32x23=92.求由两条曲线围成的平面图形的面积的解题步骤(1)画出图形;(2)确定图形范围,通过解方程组求出交点的坐标,定出积分上、下限; (3)确定被积函数,特别要注意分清被积函数图象上、下位置; (4)写出平面图形面积的定积分表达式;(5)运用微积分基本定理计算定积分,求出平面图形的面积.求曲线y =e x,y =e -x及x =1所围成的图形面积.解:作图,并由⎩⎪⎨⎪⎧y =ex ,y =e -x ,解得交点(0,1). 所求面积为⎠⎛01(e x-e -x)d x =(e x +e -x)1=e +1e-2.先求抛物线和直线的交点,解方程组⎩⎪⎨⎪⎧y2=2x ,y =-x +4,求出交点坐标为A (2,2)和B (8,-4).法一:选x 为积分变量,变化区间为,将图形分割成两部分(如图),则面积为S =S 1+S 2=2⎠⎛022xd x +⎠⎛28(2x -x +4)d x=423x322+⎝ ⎛⎭⎪⎫223x -12x2+4x 82=18.法二:选y 作积分变量,则y 的变化区间为,如图得所求的面积为 S =⎠⎛-42⎝ ⎛⎭⎪⎫4-y -y22d y =⎝ ⎛⎭⎪⎫4y -12y2-16y324-=18.需分割的图形的面积的求法由两条或两条以上的曲线围成的较为复杂的图形,在不同的区间上位于上方和下方的曲线不同.求出曲线的不同的交点横坐标,将积分区间细化,分别求出相应区间上曲边梯形的面积再求和,注意在每个区间上被积函数均是由上减下.试求由抛物线y =x 2+1与直线y =-x +7以及x 轴、y 轴所围成图形的面积.解:画出图形(如下图).解方程组⎩⎪⎨⎪⎧y =x2+1,y =-x +7,得⎩⎪⎨⎪⎧x =2,y =5或⎩⎪⎨⎪⎧x =-3,y =10(舍去),即抛物线与直线相交于点(2,5).于是所求面积为S =⎠⎛02(x 2+1)d x +⎠⎛27(7-x)d x=⎝ ⎛⎭⎪⎫13x3+x 20+⎝⎛⎭⎪⎫7x -12x272=143+252 =1036.A ,BC 点,这一段的速度为1.2t m/s ,到C 点的速度为24 m/s ,从C 点到B 点前的D 点以等速行驶,从D 点开始刹车,速度为(24-1.2t ) m/s ,经t s 后,在B 点恰好停车.试求:(1)A ,C 间的距离; (2)B ,D 间的距离. (1)设A 到C 的时间为t 1, 则1.2t 1=24,t 1=20 s ,则AC =⎠⎛0201.2t d t =0.6t220=240(m).(2)设D 到B 的时间为t 2, 则24-1.2t 2=0,t 2=20 s , 则DB =⎠⎛020 (24-1.2t )d t求变速直线运动的路程、位移应关注三点(1)分清运动过程中的变化情况;(2)如果速度方程是分段函数,那么要用分段的定积分表示;(3)明确是求位移还是求路程,求位移可以正负抵消,求路程不能正负抵消.一点在直线上从时刻t =0(单位:s )开始以速度v =t 2-4t +3(单位:m /s )运动,求: (1)在t =4 s 时的位置; (2)在t =4 s 时运动的路程. 解:(1)在t =4 s 时该点的位移为⎠⎛04(t 2-4t +3)d t =⎝ ⎛⎭⎪⎫13t3-2t2+3t 40=43(m ), 即在t =4 s 时该点距出发点43m .(2)∵v(t)=t 2-4t +3=(t -1)(t -3), ∴在区间及上v(t)≥0, 在区间上,v(t)≤0. ∴在t =4 s 时的路程为s =⎠⎛01(t 2-4t +3)d t -⎠⎛13(t 2-4t +3)d t +⎠⎛34(t 2-4t +3)d t =⎝ ⎛⎭⎪⎫13t3-2t2+3t 10-⎝ ⎛⎭⎪⎫13t3-2t2+3t 31+13t 3-2t 2+3t43=4(m ), 即在t =4 s 时运动的路程为4 m .一物体在力F (x )(单位:N)的作用下沿与力F 相同的方向运动,力位移曲线如图所示.求该物体从x =0 m 处运动到x =4 m 处力F (x )做的功.由力位移曲线可知F (x )=⎩⎪⎨⎪⎧10,0≤x≤2,3x +4,2<x≤4,因此该物体从x =0处运动到x =4处力F (x )做的功为W =⎠⎛0210d x +⎠⎛24(3x +4)d x =10x 2+⎝ ⎛⎭⎪⎫32x2+4x 42=46(J).解决变力做功应关注两点(1)首先将变力用其方向上的位移表示出来,这是关键的一步; (2)根据变力做功的公式将其转化为求定积分的问题.设有一长25 cm 的弹簧,若加以100 N 的力,则弹簧伸长到30 cm ,又已知弹簧伸长所需要的拉力与弹簧的伸长量成正比,求使弹簧由25 cm 伸长到40 cm 所做的功.解:设x 表示弹簧伸长的量(单位:m),F (x )表示加在弹簧上的力(单位:N).由题意F (x )=kx ,且当x =0.05 m 时,F (0.05)=100 N ,解得即0.05k =100,∴k =2 000, ∴F (x )=2 000x .∴将弹簧由25 cm 伸长到40 cm 时所做的功为W =⎠⎛00.152 000x d x =1 000x 2.015=22.5(J).4.利用定积分求面积的策略由抛物线y 2=8x (y >0)与直线x +y -6=0及y =0所围成图形的面积为( ) A .16-3223B .16+3223C.403D.403+3223由题意,作图形如图所示,由⎩⎪⎨⎪⎧y2=>,x +y -6=0,得⎩⎪⎨⎪⎧x =2,y =4,所以抛物线y 2=8x (y >0)与直线x +y -6=0的交点坐标为(2,4).法一:(选y 为积分变量)S =⎠⎛04⎝ ⎛⎭⎪⎫6-y -18y2d y=⎝⎛⎭⎪⎫6y -12y2-124y340=24-8-124×64=403.法二:(选x 为积分变量)S =⎠⎛02(8x)d x +⎠⎛26(6-x )d x=8×23x 322+⎝⎛⎭⎪⎫6x -12x262=163+⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫6×6-12×62-⎝ ⎛⎭⎪⎫6×2-12×22=403.C1.本题易搞错被积函数及积分上、下限,误认为S =⎠⎛04-x -8x)d x ,从而得出S =16-3223的错误答案.2.求平面图形面积时,应首先求出交点坐标,确定积分上、下限,然后确定被积函数,判定积分的正负,用公式求解面积.如本例法一中的被积函数为f(y)=6-y -18y 2,y ∈(0,4],法二中的被积函数为f(x)=⎩⎨⎧8x ,,2],6-x ,,6].3.利用定积分求面积时,应根据具体问题选择不同的方法求解,常见类型有以下几种: (1)换元积分:当两区域所围成图形纵坐标一致时,换元变成对y 积分可简化运算.如本例中的法一. (2)分割求和:当两曲线处于不同区间时,可分割成几块,分别求出面积再相加,如本节例2的求解法.事实上,本例中的法二就是分割求和.(3)上正下负:若a ≤x ≤c 时,f(x)<0,则⎠⎛a c f(x)d x <0;若c ≤x ≤b 时,f(x)≥0,则⎠⎛cb f(x)d x ≥0.此时曲线y =f(x)和直线x =a ,x =b(a <b)及y =0所围图形的面积是 S =⎪⎪⎪⎪⎠⎛ac +⎠⎛c b f(x)d x =-⎠⎛ac f(x)d x +⎠⎛c bd x.例:求正弦曲线y =sin x ,x ∈⎣⎢⎡⎦⎥⎤0,3π2和直线x =0,x =3π2及y =0所围图形的面积S .解:作出曲线y =sin x 和直线x =0,x =3π2,y =0的草图,如图所示,所求面积为图中阴影部分的面积.由图可知,当x ∈时,曲线y =sin x 位于x 轴的上方; 当x ∈⎣⎢⎡⎦⎥⎤π,3π2时,曲线位于x 轴下方. 因此,所求面积应为两部分的和,即S =π⎰32|sin x |d x =⎠⎛0πsin x d x -ππ⎰32sin x d x =-cos xπ+cos xππ32=3.(4)上下之差:若在区间上f (x )>g (x ),则曲线f (x )与g (x )所围成的图形的面积S =⎠⎛a b d x .例:求由曲线y 2=x ,y =x 3所围图形的面积S .解:作出曲线y 2=x ,y =x 3的草图,如图所示,所求面积为图中阴影部分的面积.解方程组⎩⎪⎨⎪⎧y2=x ,y =x3得交点的横坐标为x =0及x =1.因此,所求图形的面积为S =⎠⎛01xd x -⎠⎛01x 3d x =23x 321-14x 41=512.1.(山东高考)直线y =4x 与曲线y =x 3在第一象限内围成的封闭图形的面积为( ) A .22B .4 2 C .2 D .4解析:选D 由4x =x 3,解得x =0或x =2或x =-2(舍去),根据定积分的几何意义可知,直线y =4x 与曲线y =x 3在第一象限内围成的封闭图形的面积为⎠⎛02-=⎝⎛⎭⎪⎫2x2-14x42=4.2.一物体沿直线以v =3t +2(t 的单位:s ,v 的单位:m/s)的速度运动,则该物体在3 s ~6 s 间的运动路程为( )A .46 mB .46.5 mC .87 mD .47 m解析:选B s =⎠⎛36 (3t +2)d t =⎝ ⎛⎭⎪⎫32t2+2t 63=(54+12)-⎝ ⎛⎭⎪⎫272+6=46.5(m).3.(天津高考)曲线y =x 2与直线y =x 所围成的封闭图形的面积为________.解析:如图,阴影部分的面积即为所求.由⎩⎪⎨⎪⎧y =x2,y =x 得A(1,1).故所求面积为S =⎠⎛01(x -x 2)d x =⎝ ⎛⎭⎪⎫12x2-13x3⎪⎪⎪10=16. 答案:164.设a >0,若曲线y =x 与直线x =a ,y =0所围成封闭图形的面积为a 2,则a =________. 解析:由已知得S =⎠⎛0a xd x =23x 32a=23a 32=a 2,所以a 12=23,所以a =49. 答案:495.一物体在变力F (x )=36x2(x 的单位:m ,F 的单位:N)的作用下沿坐标平面内x 轴的正方向由x =8处运动到x =18处,求力F (x )在这一过程中所做的功.解:由题意得力F (x )在这一过程中所做的功为F (x )在上的定积分,从而W =⎠⎛818F (x )d x =-36x -1188=(-36×18-1)-(-36×8-1)=(-2)-⎝ ⎛⎭⎪⎫-92=52(J).从而可得力F (x )在这一过程中所做的功为52 J.一、选择题1.用S 表示下图中阴影部分的面积,则S 的值是( )A .⎠⎛a c f (x )d xB.⎪⎪⎪⎪⎠⎛acC.⎠⎛a b f(x)d x +⎠⎛bc f(x)d x D .⎠⎛b c f (x )d x -⎠⎛ab f (x )d x解析:选D 由图可知,x 轴上方阴影部分的面积为⎠⎛b c ,x 轴下方阴影部分的面积为-⎠⎛ab f (x )d x ,故D 正确. 2.曲线y =x 3与直线y =x 所围图形的面积等于( ) A.⎠⎛-11(x -x 3)d x B.⎠⎛-11(x 3-x )d x C .2⎠⎛01(x -x 3)d xD .2⎠⎛-10(x -x 3)d x解析:选C 由⎩⎪⎨⎪⎧y =x ,y =x3,求得直线y =x 与曲线y =x 3的交点分别为(-1,-1),(1,1),(0,0),由于两函数都是奇函数,根据对称性得S =2⎠⎛01(x -x 3)d x .3.由直线x =-π3,x =π3,y =0与曲线y =cos x 所围成的封闭图形的面积为( )A.12 B .1 C.32D. 3 解析:选D 结合函数图象可得所求的面积是定积分∫π3-π3cos x d x =sin x π3-π3= 3. 4.一质点运动的速度与时间的关系为v (t )=t 2-t +2,质点做直线运动,则它在时间内的位移为( )A.176B.143C.136 D.116解析:选A 质点在时间内的位移为⎠⎛12(t 2-t +2)d t =⎝ ⎛⎭⎪⎫13t3-12t2+2t 21=176. 5.由抛物线y =x 2-x ,直线x =-1及x 轴围成的图形的面积为( ) A.23 B .1 C.43 D.53解析:选B S =⎠⎛0-1(x 2-x )d x +⎠⎛01(x -x 2)d x=⎝ ⎛⎭⎪⎫13x3-12x20-1+⎝ ⎛⎭⎪⎫12x2-13x310=1.二、填空题6.曲线y =sin x (0≤x ≤π)与直线y =12围成的封闭图形的面积为________.解析:由于曲线y =sin x (0≤x ≤π)与直线y =12的交点的横坐标分别为x =π6及x =5π6,因此所求图形的面积为∫5π6π6sin x -12d x =-cos x -12x 5π6π6=3-π3.答案:3-π37.物体A 以速度v =3t 2+1(t 的单位:s ;v 的单位:m/s)在一直线上运动,在此直线上,物体A 出发的同时,物体B 在物体A 的正前方5 m 处以v =10t 的速度与A 同向运动,则两物体相遇时物体A 运动的距离为________m.解析:设t =a 时两物体相遇,依题意有⎠⎛0a (3t 2+1)d t -⎠⎛0a 10t d t =(t 3+t )a 0-5t 2a 0=5,即a 3+a -5a 2=5,(a -5)(a 2+1)=0,解得a =5,所以⎠⎛05(3t 2+1)d t =53+5=130.答案:1308.有一横截面面积为4 cm 2的水管控制往外流水,打开水管后t s 末的流速为v (t )=6t -t 2(单位:cm/s)(0≤t ≤6),则t =0到t =6这段时间内流出的水量为________.解析:由题意可得t =0到t =6这段时间内流出的水量V =⎠⎛064(6t -t 2)d t =4⎠⎛6(6t -t 2)d t =4⎝⎛⎭⎪⎫3t2-13t360=144(cm 3).故t =0到t =6这段时间内流出的水量为144 cm 3. 答案:144 cm 3三、解答题9.求由曲线y =x 2和直线y =x 及y =2x 所围图形的面积S .解:由⎩⎪⎨⎪⎧y =x2,y =x 得A (1,1),由⎩⎪⎨⎪⎧y =x2,y =2x 得B (2,4).如图所示,所求面积(即图中阴影部分的面积)为S =⎠⎛01(2x -x )d x +⎠⎛12-x 2)d x =⎠⎛01x d x +⎠⎛12-x 2)d x =12x 210+⎝⎛⎭⎪⎫x2-13x321=76.10.有一动点P 沿x 轴运动,在时间t 时的速度为v (t )=8t -2t 2(速度的正方向与x 轴正方向一致).(1)点P 从原点出发,当t =6时,求点P 离开原点的路程和位移; (2)求点P 从原点出发,经过时间t 后又返回原点时的t 值. 解:(1)由v (t )=8t -2t 2≥0,得0≤t ≤4, 即当0≤t ≤4时,P 点向x 轴正方向运动; 当t >4时,P 点向x 轴负方向运动.最新中小学教案、试题、试卷故t =6时,点P 离开原点的路程为s 1=⎠⎛04(8t -2t 2)d t -⎠⎛46(8t -2t 2)d t=⎝⎛⎭⎪⎫4t2-23t340-⎝ ⎛⎭⎪⎫4t2-23t364=1283. 当t =6时,点P 的位移为⎠⎛06(8t -2t 2)d t =⎝ ⎛⎭⎪⎫4t2-23t360=0. (2)依题意⎠⎛0t (8t -2t 2)d t =0,即4t 2-23t 3=0,解得t =0或t =6,而t =0对应于P 点刚开始从原点出发的情况, ∴t =6是所求的值.。
高中数学 第一章 导数及其应用 1.7.1 定积分在几何中的应用 1.7.2 定积分在物理中的应用

(1)当 f(x)<0 时,f(x)与 x=a,x=b(a<b)及 x 轴所围图形的面积
为bf(x)dx.(
)
a
(2) 在 求 变 速 直 线 运 动 的 路 程 时 , 物 体 运 动 的 速 度 一 定 为
正.( )
(3)在计算变力做功时,不用考虑力与位移的方向.( )
答案:(1)√ (2)× (3)×
第一章 导数及其应用
1.7 定积分的简单应用
1.7.1 定积分在几何中的应用
1.7.2 定积分在物理中的应用
第一章 导数及其应用
1. 应用定积分求平面图形的面积、变速直线运动的路程 及变力做功. 2.将实际问题抽象为定积分的数学模型,然后应用定积分的性 质来求解.
1.定积分与平面图形面积的关系
(1)已知函数 f(x)在[a,b]上是连续函数,由直线 y=0,x=a,x
=b 与曲线 y=f(x)围成的曲边梯形的面积为 S,填表:
f(x)的符号
平面图形的面积与定积分的关系
f(x)≥0
bf(x)dx S=___a_______
f(x)的符号 f(x)<0
平面图形的面积与定积分的关系 -bf(x)dx
S=_____a_______
(2)一般地,如图,如果在公共的积分区间[a,b]上有 f(x)>g(x), 那么直线 x=a,x=b 与曲线 y=f(x),y=g(x)围成的平面图形
b[f(x)-g(x)]dx
的面积为 S=_____a _______________.
2.定积分在物理中的应用 (1)做变速直线运动的物体所经过的路程 s,等于其速度函数 v
s=av(t)dt =v(t)(v(t)≥0)在时间区间[a,b]上的定积分,即_____b_______. (2)一物体在恒力 F(单位:N)的作用下做直线运动,如果物体沿 着与 F 相同的方向移动了 s(单位:m),则力 F 所做的功为 __W__=__F_s__;而若是变力所做的功,W 等于其力函数 F(x)在位
高中数学第一章导数及其应用1定积分的简单应用定积分在物理中的应用素材

定积分在物理中的应用摘要:伟大的科学家牛顿,有很多伟大的成就,建立了经典物理理论,比如:牛顿三大定律,万有引力定律等;另外,在数学上也有伟大的成就,创立了微积分.微积分(Calculus)是高等数学中研究函数的微分、积分以及有关概念和应用的数学分支。
它是数学的一个基础学科.内容主要包括极限、微分学、积分学及其应用.微分学包括求导数的运算,是一套关于变化率的理论。
它使得函数、速度、加速度和曲线的斜率等均可用一套通用的符号进行讨论。
积分学,包括求积分的运算,为定义和计算面积、体积等提供一套通用的方法。
微积分最重要的思想就是用"微元"与”无限逼近",好像一个事物始终在变化你很难研究,但通过微元分割成一小块一小块,那就可以认为是常量处理,最终加起来就行。
微积分学是微分学和积分学的总称。
它是一种数学思想,‘无限细分'就是微分,‘无限求和’就是积分。
无限就是极限,极限的思想是微积分的基础,它是用一种运动的思想看待问题。
微积分堪称是人类智慧最伟大的成就之一.在高中物理中,微积分思想多次发挥了作用.定义:设函数f(x)在[a,b]上有界,在[a,b ]中任意插入若干个分点 a=X0〈X1〈...〈Xn —1<Xn=b 把区间[a ,b ]分成n 个小区间 [X0,X1],..。
[Xn —1,Xn]。
在每个小区间[Xi —1,Xi ]上任取一点ξi(Xi -1≤ξi≤Xi ),作函数值f(ξi )与小区间长度的乘积f(ξi )△Xi ,并作出和()in i ix s ∆=∑=1ξ如果不论对[a,b]怎样分法,也不论在小区间上的点ξi 怎样取法,只要当区间的长度趋于零时,和S 总趋于确定的极限I ,这时我们称这个极限I 为函数f (x)在区间[a ,b]上的定积分, 记作: ()dx x f a b⎰即: ()()ini ia bx f I dx x f ∆==∑⎰==11lim ξλ变力沿直线所作的功设物体在连续变力F(x )作用下沿x 轴从x=a 移动到x=b ,力的方向与运动方向平行,求变力所作的功.在[a ,b]上任取子区间[x ,x+dx ],在其上所作的功元素为()dx x F dW =因此变力F (x )在区间[a,b ]上所作的功为()dx x F W b a⎰=例1.在一个带+q 电荷所产生的电场作用下,一个单位正电荷沿直线从距离点电荷a 处移动到b 处(a 〈b ),求电场力所做的功。
高中数学 第一章 导数及其应用 1.7 定积分的简单应用 1.7.1 定积分在几何中的应用讲义 新人

1.7.1 定积分在几何中的应用1.利用定积分求平面图形的面积在利用定积分求平面图形的面积时,一般要先画出它的草图,再借助图形直观确定出被积函数以及积分的上、下限.2.常见图形的面积与定积分的关系(1)如图①,当f (x )>0时,⎠⎛a bf (x )d x □01>0,所以S =□02⎠⎛ab f x d x ; (2)如图②,当f (x )<0时,⎠⎛ab f (x )d x □03<0,所以S =|⎠⎛a b f (x )d x |=□04-⎠⎛ab f (x )d x ; (3)如图③,当a ≤x ≤c 时,f (x )<0,⎠⎛a c f (x )d x □05<0;当c≤x ≤b 时,f (x )>0,⎠⎛cb f (x )d x □06>0,所以S =| ⎠⎛a c f (x )d x | +⎠⎛c b f (x )d x =□07-⎠⎛a c f (x )d x +□08⎠⎛cb f (x )d x ;(4)如图④,在公共积分区间[a ,b]上, 当f 1(x )>f 2(x )时,曲边梯形的面积为S =⎠⎛a b [f 1(x )-f 2(x )]d x =□09⎠⎛a b f 1(x )d x -⎠⎛ab f 2(x )d x .求由两条曲线围成的平面图形的面积的解题步骤第一步,画出图形.第二步,确定图形X 围,通过解方程组求出交点的横坐标,定出积分上、下限. 第三步,确定被积函数,特别要注意分清被积函数上、下位置. 第四步,写出平面图形面积的定积分表达式.第五步,运用微积分基本公式计算定积分,求出平面图形的面积.答案 (1)× (2)√ (3)√ 2.做一做(1)由曲线y =e x,x =2,x =4,y =0所围成的图形的面积等于________. (2)曲线y =x 3与直线y =x 所围成图形的面积为________. (3)抛物线y =x 2-1与x 轴围成图形的面积是________. 答案 (1)e 4-e 2(2)12 (3)43探究1 不可分割图形面积的求解例1 求由抛物线y =x 2-4与直线y =-x +2所围成图形的面积.[解] 由⎩⎪⎨⎪⎧y =x 2-4,y =-x +2得⎩⎪⎨⎪⎧x =-3,y =5或⎩⎪⎨⎪⎧x =2,y =0,所以直线y =-x +2与抛物线y =x 2-4的交点为(-3,5)和(2,0). 设所求图形的面积为S ,根据图形可得拓展提升不分割型图形面积的求解步骤: (1)准确求出曲线的交点横坐标;(2)在坐标系中画出由曲线围成的平面区域; (3)根据图形写出能表示平面区域面积的定积分; (4)计算得所求面积.【跟踪训练1】 计算由曲线y 2=x ,y =x 3所围成图形的面积S.解 作出曲线y 2=x ,y =x 3的草图,所求面积为图中阴影部分的面积.解方程组⎩⎪⎨⎪⎧y 2=x ,y =x 3,得交点横坐标为x =0及x =1.因此,所求图形的面积为探究2 可分割图形面积的求解例2 求由曲线y =x ,y =2-x ,y =-13x 所围成图形的面积.[解] 解法一:画出草图,如图所示.解方程组⎩⎨⎧y =x ,x +y =2,⎩⎪⎨⎪⎧y =x ,y =-13x拓展提升由两条或两条以上的曲线围成的较为复杂的图形,在不同的区段内位于上方和下方的函数有所变化,通过解方程组求出曲线的不同的交点坐标,可以将积分区间进行细化区段,然后根据图象对各个区段分别求面积进而求和,在每个区段上被积函数均是由上减下;若积分变量选取x运算较为复杂,可以选y为积分变量,同时更改积分的上、下限.【跟踪训练2】求由抛物线y2=8x(y>0)与直线x+y-6=0及y=0所围成图形的面积.探究3 综合问题例3 在曲线y=x2(x≥0)上某一点A处作一切线使之与曲线以及x轴所围的面积为112,试求:(1)切点A的坐标;(2)在切点A的切线方程.[解] 如右图,设切点A(x0,y0),由y′=2x,过点A的切线方程为y -y 0=2x 0(x -x 0),即y =2x 0x -x 20,令y =0,得x =x 02,即C ⎝ ⎛⎭⎪⎫x 02,0.拓展提升本题综合考查了导数的意义以及定积分等知识,运用待定系数法,先设出切点的坐标,利用导数的几何意义,建立了切线方程,然后利用定积分以及平面几何的性质求出所围成的平面图形的面积,根据条件建立方程求解,从而使问题得以解决.【跟踪训练3】 已知抛物线y =-x 2a+2x (a >0),过原点的直线l 平分由抛物线与x 轴所围成的封闭图形的面积,求l 的方程.对于简单图形的面积求解,可以直接运用定积分的几何意义,此时: (1)确定积分上、下限,一般为两交点的横坐标.(2)确定被积函数,一般是上曲线与下曲线对应函数的差.这样所求的面积问题就转化为运用微积分基本定理计算定积分了.注意区别定积分与利用定积分计算曲线所围图形的面积:定积分可正、可负、可为零;而平面图形的面积总是非负的.1.由y =1x,x =1,x =2,y =0所围成的平面图形的面积为( )A .ln 2B .ln 2-1C .1+ln 2D .2ln 2 答案 A解析 画出曲线y =1x(x >0)及直线x =1,x =2,y =0,则所求面积S 为如图所示阴影部分面积.所以S =⎠⎛121xd x =ln x|21=ln 2-ln 1=ln 2.2.由曲线y =x 2,y =x 3围成的封闭图形面积为( ) A.112 B.14 C.13 D.712答案 A解析 作出曲线y =x 2,y =x 3的草图,所求面积为图中阴影部分的面积.解方程组⎩⎪⎨⎪⎧y =x 2,y =x 3得曲线y =x 2,y =x 3交点的横坐标为x =0及x =1.因此,所求图形的面积为S =⎠⎛01(x 2-x 3)d x =⎝ ⎛⎭⎪⎫13x 3-14x 4|10=13-14=112.3.由曲线y =2x 2,及x =0,x =3,y =0所围成图形的面积为________. 答案 18解析 图形面积为S =⎠⎛032x 2d x =2⎠⎛03x 2d x =23x 3|30=18.4.如图,直线y =kx 分抛物线y =x -x 2与x 轴所围图形为面积相等的两部分,则k 的值是________.答案1-3 4 25.如图,求由曲线y=e x,y=e-x及直线x=1所围成的图形的面积S.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
用定积分求面积
求平面图形的面积是定积分在几何中的重要应用.把求平面图形的面积问题转化为求定积分问题,充分体现了数形结合的数学思想.求解此类题常常用到以下技巧.
一、巧选积分变量
求平面图形面积时,要注意选择积分变量,以使计算简便.
例1 求抛物线2
2y x =与直线4y x =-围成的平面图形的面积. 解析:如图1,解方程组224
y x y x ⎧=⎨=-⎩,
得两曲线的交点为(22)-,,(84),.
方法一:选取横坐标x 为积分变量,则图中阴影部分的面积应
该是两部分之和,即
280222(24)S xdx x x dx =+-+⎰⎰ 33282882202224212|2||4|18332
x x x x =+-+=g . 方法二:选取纵坐标y 为积分变量,则图中阴影部分的面积可据公式求得,即
24
234
221144|18226y S y y dy y y --⎛⎫⎛⎫=+-=+-= ⎪ ⎪⎝⎭⎝⎭⎰. 点评:从上述两种解法可以看出,对y 积分比对x 积分计算简捷.因此,应用定积分求平面图形面积时,积分变量的选取是至关重要的.但同时也要注意对y 积分时,积分函数应是()x y ϕ=,本题须将条件中的曲线方程、直线方程化为212
x y =、4x y =+的形式,然后求得积分.另外还要注意的是对面积而言,不管选用哪种积分变量去积分,面积是不会变的,即定积分的值不会改变.
二、巧用对称性
在求平面图形面积时,利用函数所对应曲线的对称性解题,也是简化计算过程的常用手段.
例2 求由三条曲线2
y x =,24y x =,1y =所围图形的面积. 解析:如图2,因为2
y x =,24y x =是偶函数,根据对称性,只算出y 轴右边的图形的面积再两倍即可.
解方程组21y x y ⎧=⎨=⎩和2
41y x y ⎧=⎨=⎩
, 得交点坐标(11)
(11)(21)(21)--,,,,,,,. 方法一:选择x 为积分变量,则
22122012144x x S x dx dx ⎡⎤⎛⎫⎛⎫=-+-⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎣⎦⎰⎰312320111142|||4123
x x x ⎡⎤⎛⎫⎛⎫=+-= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦。
方法二:可以选择y 为积分变量,求解过程请同学们自己完成.
点评:对称性的应用和积分变量的选取都影响着计算过程的繁简程度.
三、分割计算
例3 求由抛物线243y x x =-+-及其在点(03)M -,和点(30)N ,处两条切线所围成的图形的面积.
解析:由243y x x =-+-,得24y x '=-+,
∴0|4x y ='=,过M 点的切线方程为43y x =-;
3|2x y ='=-,过N 点的切线方程为26y x =-+.
又可求得两切线交点的横坐标为32x =
,故所求面积 3
3222
3
029(43)(43)(26)(43)4
S x x x dx x x x dx ⎡⎤⎡⎤=---+-+-+--+-=⎣⎦⎣⎦⎰⎰. 点评:本题求图形的面积,适当的分割是关键,故求出两切线交点,过交点作x 轴垂线,将图形分割成两部分,分别用定积分求解.同学们应注意掌握这种分割的处理方法.。