新北师大版九年级数学上册导学案 第二章第6节应用一元二次方程.doc

合集下载

北师大版-数学-九年级上册-2.6 应用一元二次方程(第二课时)导学案

北师大版-数学-九年级上册-2.6 应用一元二次方程(第二课时)导学案

2.6 应用一元二次方程【学习目标】课标要求:①通过分析问题中的数量关系,建立方程解决问题,认识方程模型的重要性,并总结运用方程解决实际问题的一般过程。

②经历分析具体问题中的数量关系、建立方程模型并解决问题的过程,进一步体会方程是刻画现实世界中数量关系的一个有效的数学模型,从中感受到数学学习的意义;目标达成:1、能够利用一元二次方程解决有关实际问题,能根据具体问题的实际意义检验结果的合理性,进一步培养学生分析问题、解决问题的意识和能力;2、在问题解决中,经历一定的合作交流活动,进一步发展学生合作交流的意识和能力。

学习流程:【课前展示】请同学们回忆并回答与利润相关的知识?9折要乘以90%或0.9或109,那么x 折呢? 【创境激趣】一次会议上,每两个参加会议的人都互相握了一次手,有人统计一共握了66次手。

这次会议到会的人数是多少?【自学导航】1、教材54—55页。

2、审清题意,注重解题思路。

【合作探究】P56习题2.9第1-4题选作题(供学有余力的学生选作):P59复习题23【展示提升】典例分析 知识迁移新华商场销售某种冰箱,每台进货价为2500元。

市场调研表明:当销售价为2900元时,平均每天能售出8台;而当销售价每降低50元时,平均每天就能多售出4台。

商场要想使这种冰箱的销售利润平均每天达到5000元,每台冰箱的降价应为多少元?(做了改动,降低难度)【强化训练】某商场将进货价为30元的台灯以40元售出,平均每月能售出600个。

调查表明:这种台灯的售价每上涨1元,其销售量就将减少10个。

为了实现平均每月10000元的销售利润,这种台灯的售价应定为多少?这时应进台灯多少个?【归纳总结】学生能说出利用方程解决实际问题的关键和步骤:关键:寻找等量关系步骤:其一是整体地、系统地审清问题;其二是把握问题中的“相等关系”;其三是正确求解方程并检验解的合理性。

学生通过回顾本节课的学习过程,体会利用列一元二次方程解决实际问题的方法和技巧,进一步提高自己解决问题的能力。

九年级数学上册第二章一元二次方程6应用一元二次方程第2课时列一元二次方程解决利润问题教案新版北师大版

九年级数学上册第二章一元二次方程6应用一元二次方程第2课时列一元二次方程解决利润问题教案新版北师大版

1.通过分析实际问题中的数量关系,建立方程解决利润问题,认识方程模型的重要性,并总结运用方程解决实际问题的一般过程.2.经历分析和建模的过程,进一步体会方程是刻画现实世界中数量关系的一个有效的数学模型.3.能够利用一元二次方程解决有关实际问题,能根据具体问题的实际意义检验结果的合理性,进一步培养学生分析问题、解决问题的意识和能力.重点列一元二次方程解决利润问题.难点寻找实际问题中的等量关系.一、复习导入1.列方程解决实际问题的一般步骤是什么?审:审清题意,已知什么,求什么,已知与未知之间有什么关系;设:设未知数,语句要完整,有单位(统一)的要注明单位;列:找出等量关系,列方程;解:解所列的方程;验:是否是所列方程的根;是否符合题意;答:答案也必需是完整的语句,注明单位且要贴近生活.2.列方程解决实际问题的关键是什么?3.请同学们回忆并回答与利润相关的知识?进价:有时也称成本价,是商家进货时的价格;标价:商家在出售时,标注的价格;售价:消费者购买时真正花的钱数;利润:商品出售后,商家所赚的部分;打折:商家为了促销所采用的一种销售手段,打折就是以标价为基础,按一定比例降价出售.二、探究新知课件出示:(1)新华商场销售某种冰箱,每台进价为2 500 元,销售价为2 900 元,那么卖一台冰箱商场能赚多少钱?(2)新华商场销售某种冰箱,每台进价为2 500 元.调查发现:当销售价为2 900 元时,平均每天能售出8 台;那么商场平均每天能赚多少钱?(3)新华商场销售某种冰箱,每台进价为2 500 元.调查发现:当销售价为2 900 元时,平均每天能售出8 台;而当销售价每降低50 元时,平均每天就能多售出4 台.商场要想使这种冰箱的销售利润平均每天达到5 000 元,每台冰箱的定价应为多少元?(本题在教材的基础上做了改动,降低难度)分析:本例中涉及的数量关系较多,学生在思考时可能会有一定的难度.所以,教学时采用列表的形式分析其中的数量关系.本题的主要等量关系:每台冰箱的销售利润×平均每天销售冰箱的数量=5 000 元.每天的销售量/台每台的销售利润/元总销售利润/元降价前降价后填完上表后,就可以列出一个方程,进而解决问题了.当然,解题思路不应拘泥于这一种,在利用上述方法解完此题后,可以鼓励学生自主探索,找寻其他解题的思路和方法.如求定价为多少,直接设每台冰箱的定价应为x 元,应如何解决?三、举例分析例某商场将进货价为30 元的台灯以40 元售出,平均每月能售出600 个.调查发现,售价在40 元至60 元范围内,这种台灯的售价每上涨1 元,其销售量就将减少10 个.为了实现平均每月10 000 元的销售利润,这种台灯的售价应定为多少?这时应购进台灯多少个?请你利用方程解决这一问题.解:设这种台灯的售价应定为x 元.根据题意得[600-10(x-40)](x-30)=10 000.解这个方程得x =50,x =80(舍去).1 2600-10(x-40)=600-10×(50-40)=500(个).答:台灯的售价应定为50 元,这时应购进台灯500 个.四、练习巩固1.教材第55 页“随堂练习”.2.某商场销售一批名牌衬衫,平均每天可售出20 件,每件盈利40 元,为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当的降价措施,经试销发现,如果每件衬衫每降价1 元,商场平均每天可多售出2 件,若商场平均每天要盈利1 200 元,每件衬衫应降价多少元?五、小结通过这两节课的学习,你能简要说明利用方程解决实际问题的关键和步骤吗?有哪些收获?解决实际问题的关键:寻找等量关系.步骤:①整体地、系统地审清问题;②寻找问题中的“等量关系”;③正确求解方程并检验根的合理性.六、课外作业教材第55 页习题2.10 第1~4 题.设未知数(未知量成了已知量),带着未知量去“翻译”题目中的有关信息,然后将这些含有的量表示成等量关系,就是实际问题的解题策略.无论是例题的分析还是练习的分析,尽可能地鼓励学生动脑、动手、动口,为学生提供展示自己聪明才智的机会,并且在此过程中更利于教师发现学生分析问题、解决问题的独到见解以及思维的误区,以便指导今后的教学.课堂上要把激发学生学习热情和获得学习能力放在首位,通过运用各种启发、激励的语言,以及组织小组合作学习,帮助学生形成积极主动的求知态度.1.通过分析实际问题中的数量关系,建立方程解决利润问题,认识方程模型的重要性,并总结运用方程解决实际问题的一般过程.2.经历分析和建模的过程,进一步体会方程是刻画现实世界中数量关系的一个有效的数学模型.3.能够利用一元二次方程解决有关实际问题,能根据具体问题的实际意义检验结果的合理性,进一步培养学生分析问题、解决问题的意识和能力.重点列一元二次方程解决利润问题.难点寻找实际问题中的等量关系.一、复习导入1.列方程解决实际问题的一般步骤是什么?审:审清题意,已知什么,求什么,已知与未知之间有什么关系;设:设未知数,语句要完整,有单位(统一)的要注明单位;列:找出等量关系,列方程;解:解所列的方程;验:是否是所列方程的根;是否符合题意;答:答案也必需是完整的语句,注明单位且要贴近生活.2.列方程解决实际问题的关键是什么?3.请同学们回忆并回答与利润相关的知识?进价:有时也称成本价,是商家进货时的价格;标价:商家在出售时,标注的价格;售价:消费者购买时真正花的钱数;利润:商品出售后,商家所赚的部分;打折:商家为了促销所采用的一种销售手段,打折就是以标价为基础,按一定比例降价出售.二、探究新知课件出示:(1)新华商场销售某种冰箱,每台进价为2 500 元,销售价为2 900 元,那么卖一台冰箱商场能赚多少钱?(2)新华商场销售某种冰箱,每台进价为2 500 元.调查发现:当销售价为2 900 元时,平均每天能售出8 台;那么商场平均每天能赚多少钱?(3)新华商场销售某种冰箱,每台进价为2 500 元.调查发现:当销售价为2 900 元时,平均每天能售出8 台;而当销售价每降低50 元时,平均每天就能多售出4 台.商场要想使这种冰箱的销售利润平均每天达到5 000 元,每台冰箱的定价应为多少元?(本题在教材的基础上做了改动,降低难度)分析:本例中涉及的数量关系较多,学生在思考时可能会有一定的难度.所以,教学时采用列表的形式分析其中的数量关系.本题的主要等量关系:每台冰箱的销售利润×平均每天销售冰箱的数量=5 000 元.每天的销售量/台每台的销售利润/元总销售利润/元降价前降价后填完上表后,就可以列出一个方程,进而解决问题了.当然,解题思路不应拘泥于这一种,在利用上述方法解完此题后,可以鼓励学生自主探索,找寻其他解题的思路和方法.如求定价为多少,直接设每台冰箱的定价应为x 元,应如何解决?三、举例分析例某商场将进货价为30 元的台灯以40 元售出,平均每月能售出600 个.调查发现,售价在40 元至60 元范围内,这种台灯的售价每上涨1 元,其销售量就将减少10 个.为了实现平均每月10 000 元的销售利润,这种台灯的售价应定为多少?这时应购进台灯多少个?请你利用方程解决这一问题.解:设这种台灯的售价应定为x 元.根据题意得[600-10(x-40)](x-30)=10 000.解这个方程得x =50,x =80(舍去).1 2600-10(x-40)=600-10×(50-40)=500(个).答:台灯的售价应定为50 元,这时应购进台灯500 个.四、练习巩固1.教材第55 页“随堂练习”.2.某商场销售一批名牌衬衫,平均每天可售出20 件,每件盈利40 元,为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当的降价措施,经试销发现,如果每件衬衫每降价1 元,商场平均每天可多售出2 件,若商场平均每天要盈利1 200 元,每件衬衫应降价多少元?五、小结通过这两节课的学习,你能简要说明利用方程解决实际问题的关键和步骤吗?有哪些收获?解决实际问题的关键:寻找等量关系.步骤:①整体地、系统地审清问题;②寻找问题中的“等量关系”;③正确求解方程并检验根的合理性.六、课外作业教材第55 页习题2.10 第1~4 题.设未知数(未知量成了已知量),带着未知量去“翻译”题目中的有关信息,然后将这些含有的量表示成等量关系,就是实际问题的解题策略.无论是例题的分析还是练习的分析,尽可能地鼓励学生动脑、动手、动口,为学生提供展示自己聪明才智的机会,并且在此过程中更利于教师发现学生分析问题、解决问题的独到见解以及思维的误区,以便指导今后的教学.课堂上要把激发学生学习热情和获得学习能力放在首位,通过运用各种启发、激励的语言,以及组织小组合作学习,帮助学生形成积极主动的求知态度.1.通过分析实际问题中的数量关系,建立方程解决利润问题,认识方程模型的重要性,并总结运用方程解决实际问题的一般过程.2.经历分析和建模的过程,进一步体会方程是刻画现实世界中数量关系的一个有效的数学模型.3.能够利用一元二次方程解决有关实际问题,能根据具体问题的实际意义检验结果的合理性,进一步培养学生分析问题、解决问题的意识和能力.重点列一元二次方程解决利润问题.难点寻找实际问题中的等量关系.一、复习导入1.列方程解决实际问题的一般步骤是什么?审:审清题意,已知什么,求什么,已知与未知之间有什么关系;设:设未知数,语句要完整,有单位(统一)的要注明单位;列:找出等量关系,列方程;解:解所列的方程;验:是否是所列方程的根;是否符合题意;答:答案也必需是完整的语句,注明单位且要贴近生活.2.列方程解决实际问题的关键是什么?3.请同学们回忆并回答与利润相关的知识?进价:有时也称成本价,是商家进货时的价格;标价:商家在出售时,标注的价格;售价:消费者购买时真正花的钱数;利润:商品出售后,商家所赚的部分;打折:商家为了促销所采用的一种销售手段,打折就是以标价为基础,按一定比例降价出售.二、探究新知课件出示:(1)新华商场销售某种冰箱,每台进价为2 500 元,销售价为2 900 元,那么卖一台冰箱商场能赚多少钱?(2)新华商场销售某种冰箱,每台进价为2 500 元.调查发现:当销售价为2 900 元时,平均每天能售出8 台;那么商场平均每天能赚多少钱?(3)新华商场销售某种冰箱,每台进价为2 500 元.调查发现:当销售价为2 900 元时,平均每天能售出8 台;而当销售价每降低50 元时,平均每天就能多售出4 台.商场要想使这种冰箱的销售利润平均每天达到5 000 元,每台冰箱的定价应为多少元?(本题在教材的基础上做了改动,降低难度)分析:本例中涉及的数量关系较多,学生在思考时可能会有一定的难度.所以,教学时采用列表的形式分析其中的数量关系.本题的主要等量关系:每台冰箱的销售利润×平均每天销售冰箱的数量=5 000 元.每天的销售量/台每台的销售利润/元总销售利润/元降价前降价后填完上表后,就可以列出一个方程,进而解决问题了.当然,解题思路不应拘泥于这一种,在利用上述方法解完此题后,可以鼓励学生自主探索,找寻其他解题的思路和方法.如求定价为多少,直接设每台冰箱的定价应为x 元,应如何解决?三、举例分析例某商场将进货价为30 元的台灯以40 元售出,平均每月能售出600 个.调查发现,售价在40 元至60 元范围内,这种台灯的售价每上涨1 元,其销售量就将减少10 个.为了实现平均每月10 000 元的销售利润,这种台灯的售价应定为多少?这时应购进台灯多少个?请你利用方程解决这一问题.解:设这种台灯的售价应定为x 元.根据题意得[600-10(x-40)](x-30)=10 000.解这个方程得x =50,x =80(舍去).1 2600-10(x-40)=600-10×(50-40)=500(个).答:台灯的售价应定为50 元,这时应购进台灯500 个.四、练习巩固1.教材第55 页“随堂练习”.2.某商场销售一批名牌衬衫,平均每天可售出20 件,每件盈利40 元,为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当的降价措施,经试销发现,如果每件衬衫每降价1 元,商场平均每天可多售出2 件,若商场平均每天要盈利1 200 元,每件衬衫应降价多少元?五、小结通过这两节课的学习,你能简要说明利用方程解决实际问题的关键和步骤吗?有哪些收获?解决实际问题的关键:寻找等量关系.步骤:①整体地、系统地审清问题;②寻找问题中的“等量关系”;③正确求解方程并检验根的合理性.六、课外作业教材第55 页习题2.10 第1~4 题.设未知数(未知量成了已知量),带着未知量去“翻译”题目中的有关信息,然后将这些含有的量表示成等量关系,就是实际问题的解题策略.无论是例题的分析还是练习的分析,尽可能地鼓励学生动脑、动手、动口,为学生提供展示自己聪明才智的机会,并且在此过程中更利于教师发现学生分析问题、解决问题的独到见解以及思维的误区,以便指导今后的教学.课堂上要把激发学生学习热情和获得学习能力放在首位,通过运用各种启发、激励的语言,以及组织小组合作学习,帮助学生形成积极主动的求知态度.。

北师大版九年级数学上册课件 2-6-2 应用一元二次方程求解增长率与市场营销问题

北师大版九年级数学上册课件 2-6-2 应用一元二次方程求解增长率与市场营销问题

想平均每天赢利 180 元,每张贺年卡应降价多少元?
方法指导:找出等量关系式,每张贺年卡赢利的钱×张数=赢
利总钱数.
解:设每张贺年卡应降价x元,则现在的利润是(0.3-x)元,多
售出200x÷0.05=4 000x(张).
根据题意,得(0.3-x)(500+4 000x)=180,
整理,得400x2-70x+3=0.
进价
单个利润
(3)总利润=____________×销量.
典例讲解
例1 某批发市场礼品柜台春节期间购进大量贺年卡,一种贺
年卡平均每天可售出 500 张,每张赢利 0.3 元. 为了尽快减少库
存,摊主决定采取适当的降价措施.调查发现,如果这种贺年卡
的售价每降价 0.05 元,那么平均每天可多售出 200 张. 摊主要
赚8000元利润,售价应定为多少,这时应进货为多少个?
方法指导:设商品单价为(50+x)元,则每个商品的利润为
[(50+x)-40]元,因为每涨价1元,其销售会减少10,则每个
涨价x元,其销售量会减少10x,故销售量为(500-10x)个,
根据每件商品的利润×件数=8000,则(500-10x)·[(50+x)-
出等量关系列出方程,求出x的值,即可得出答案.
解:设这个增长率是x.根据题意,得
2 000×(1+x)2=2 880.
解得x1=0.2=20%,x2=-2.2(不合题意,舍去).
答:这个增长率是20%.
例3 百佳超市将进货单价为40元的商品按50元出售时,能卖
500个,已知该商品每涨价1元,其销售量就要减少10个,为了
20%
率相同,那么这个增长率是______.

新版北师大数学九年级上第二章6.应用一元二次方程(一)导学案

新版北师大数学九年级上第二章6.应用一元二次方程(一)导学案




探索合作:
1、①在这个问题中,梯子顶端下滑1米时,梯子底端滑动的距离大于1米,那么梯子顶端下滑几米时,梯子底端滑动的距离和它相等呢?
②如果梯子长度是13米,梯子顶端下滑的距离与梯子底端滑动的距离可能相等吗?如果相等,那么这个距离是多少?
分组讨论:
①怎么设未知数?在这个问题中存在怎样的等量关系?如何利用勾股定理来列方程?

议ቤተ መጻሕፍቲ ባይዱ
学科数学课题6.应用一元二次方程(一)主备者
参备者执教者班级九、二学生姓名
学习目标:1.分析和建模的过程,体会方程是刻画现实世界中数量关系的一个有效的数学模型;
2.能够利用一元二次方程解决有关实际问题.
重、难点:通过分析问题中的数量关系,建立方程解决问题。




列方程解应用题的一般步骤:
(1)“审”,即审题,分清题意,明确题目要求,弄清已知数、未知数以及它们之间的关系;
②涉及到解的取舍问题,应引导学生根据实际问题进行检验,决定解到底是多少。
例1,分析:(1)图形中线段长表示的量:已知AB==海里,
DE表示的路程,表示军舰的路程.
(2)找出题目中的等量关系即:
速度等量:V军舰=时间等量:t军舰=t补给船
根据分析正确设出未知数,写出解题过程.




1、(2014年山东泰安)某种花卉每盆的盈利与每盆的株数有一定的关系,每盆植3株时,平均每株盈利4元;若每盆增加1株,平均每株盈利减少0.5元,要使每盆的盈利达到15元,每盆应多植多少株?设每盆多植x株,则可以列出的方程是()
(2)“设”,即设,设未知数的方法有直接设未知数和间接设未知数两种;

【北师大版】九年级数学上册导学案:2.6应用一元二次方程

【北师大版】九年级数学上册导学案:2.6应用一元二次方程

2.6 应用一元二次方程第1课时利用一元二次方程解决几何问题1. 经历分析具体问题中数量关系.建立方程模型并解决问题过程.2. 在列方程解决实际问题过程中,认识方程模型重要性,并总结运用方程解决实际问题一般步骤.(重点)3. 能根据具体问题实际意义检验结果合理性.(重点)阅读教材P52〜53,完成下列问题:(一) 知识探究1. 列方程解应用题一般步骤:(1) “审”:读懂题目,审清题意,明确哪些是已知量,哪些是未知量以及它们之间相等关系;(2) “设”:设元,也就是设_______ ;(3) “______ ”列方程,找出题中等量关系,再根据这个关系列出含有未知数等式,即方程;(4) “解”:求出所列方程_______ ;(5) “验”检验方程解能否保证实际问题 _______ ;(6) “答”:就是写出答案.2. 解决与几何图形有关一元二次方程应用题时,关键是把实际问题数学化,把实际问题中已知条件与未知条件归结到某一个几何图形中,然后用几何原理来寻找它们之间关系,从而列出有关一元二次方程,使问题得以解决.(二) 自学反馈要为一幅长29 cm,宽22 cm照片配一个镜框,要求镜框四条边宽度相等,且镜框所占面积为照片面积四分之一,镜框边宽度应是多少厘米?◎攻利用一元二次方程解决实际问题关键是寻找等量关系,此题是利用矩形面积公式作为相等关系列方程.活动1小组讨论例如图,某海军基地位于A处,在其正南方向200海里处有一重要目标B,在B正东方向200海里处有一重要目标C.小岛D位于AC中点,岛上有一补给码头;小岛F位于BC中点.一艘军舰从A出发,经B到C匀速巡航,一艘补给船同时从D出发,沿南偏西方向匀速直线航行,欲将一批物品送达军舰.已知军舰速度是补给船2倍,军舰在由B到C途中与补给船相遇于E处,那么相遇时补给船航行了多少海里?(结果精确到0.1海里)解:连接DF.v AD= CD BF= CF,•••。

北师大版九年级上册数学第二章一元二次方程第六节 用一元二次方程解几何应用问题

北师大版九年级上册数学第二章一元二次方程第六节 用一元二次方程解几何应用问题
北师版 九年级上
第二章
一元二次方程
2.2. 应用一元二次方程 用 6一 元 二 次 方 程 解 几 何 应 用 问 题
习题链接
温馨提示:点击 进入讲评
11
5
2
32

答案呈现
1 【教材P38习题T2变式】【2020·济南】如图,在一块 长15 m,宽10 m的矩形空地上,修建两条同样宽的相 互垂直的道路,剩余部分栽种花草,要使绿化面积为 126 m2,则修建的路宽应为_____1___m.
根据题意,得2a( +x2+ x=b) 10= ,12, ab=24,
∴a=10-2x,b=6-x.
代入 ab=24,得(10-2x)(6-x)=24,
解得 x=2 或 x=9(舍去).故剪去的正方形的边长为 2 cm. 【答案】 2
4 【教材P45习题T2变式】【2020·西藏】列方程(组)解 应用题. 某驻村工作队,为带动群众增收致富,巩固脱贫攻坚 成效,决定在该村山脚下,围一个面积为600 m2的矩 形试验茶园,便于成功后大面积推广.如图,茶园一 面靠墙,墙长35 m,另外三面用69 m长的篱笆围成, 其中一边开有一扇1 m宽的门(不包括篱笆). 求这个茶园的长和宽.
3 【2020·山西】如图是一张长12 cm,宽10 cm的矩形 铁皮,将其剪去两个全等的正方形和两个全等的矩形, 剩余部分(阴影部分)可制成底面积是24 cm2的有盖的 长方体铁盒.则剪去的正方形的边长为________ cm.
【点拨】 设底面长为 a cm,宽为 b cm,正方形的边长为 x cm.
由 题 意 得 S△DPQ = S 矩 形 ABCD - S△ADP - S△CDQ - S△BPQ = AB·BC-12AD·AP-12CD·CQ-12BP·BQ=6×12-12×12x-12 ×6(12-2x)-12(6-x)·2x=x2-6x+36=31, 解得 x1=1,x2=5. ∴当△ DPQ 的面积为 31 cm2 时,x=1 或 5.

北师大版九年级数学上册教案:2.6应用一元二次方程

北师大版九年级数学上册教案:2.6应用一元二次方程
4.能够运用上述方法解决实际问题,并检验结果是否符合实际意义;
5.通过实际问题的解决,培养学生的逻辑思维能力和解决实际问题的能力。
本节课将围绕以上内容进行讲解和练习,使学生更好地理解和掌握一元二次方程的应用。
二、核心素养目标
1.理解与运用:通过实际问题情境,使学生能够理解一元二次方程的实际意义,掌握建立方程的方法,培养解决实际问题的能力。
在教学过程中,教师应针对上述重点和难点内容,设计具有针对性的教学活动,通过实例讲解、互动讨论、个别辅导等方式,帮助学生理解和掌握一元二次方程的应用。同时,教师应关注学生的个别差异,提供不同层次的练习题,以便于学生逐步克服难点,提高解决问题的能力。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《应用一元二次方程》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要解决面积、速度或加速度等问题的情况?”这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索一元二次方程在现实生活中的应用。
5.数学情感与态度:通过解决实际问题,激发学生学习数学的兴趣,增强克服困难的信心,培养学生积极向上的数学情感和态度。
三、教学难点与重点
1.教学重点
-重点一:掌握根据实际问题抽象出一元二次方程的能力。例如,从实际情境中提炼出关键信息,正确设定未知数,建立一元二次方程。
-重点二:熟练运用一元二次方程的常用解法(直接开平方法、因式分解法、配方法、求根公式)解决问题。
五、教学反思
在上完这节课后,我进行了深入的思考。首先,我发现学生在建立一元二次方程解决实际问题时存在一定难度。他们往往难以从实际问题中抽象出数学模型,这让我意识到需要在这方面加强引导和练习。在接下来的教学中,我会多设计一些与生活密切相关的实际问题,帮助学生逐步培养这种能力。

数学北师大版九年级上册导学案.6应用一元二次方程导学案

数学北师大版九年级上册导学案.6应用一元二次方程导学案

应用一元二次方程第1课时利用一元二次方程解决几何问题【课标要求】1、能根据具体问题中的数量关系列出方程,体会方程是刻画现实世界数量关系的有效模型。

2、能根据具体问题的实际意义,检验方程的解是否合理。

【学习目标】1.经历分析具体问题中的数量关系,建立方程模型并解决问题的过程,认识方程模型的重要性,并总结运用方程解决实际问题的一般步骤。

.通过列方程解应用题,进一步提高逻辑思维能力和分析问题、解决问题的能力。

【重点】掌握运用方程解决实际问题的方法。

【难点】构建数学模型解决实际问题。

复习稳固根底一.几种解方程的方法:〔一〕配方法:我们通过配成完全平方式的方法,得到了一元二次方程的根,这种解一元二次方程的方法称为配方用配方法解一元二次方程的方法的助手:(1)平方根的意义:〔2〕完全平方公式:〔3〕用配方法解一元二次方程的步骤:〔二〕公式法:求根公式;〔三〕因式分解法:适用哪类方程?要把方程化成那种形式?二.练一练你有几种解法来解以下方程?〔1〕3x 26x 4 0〔2〕x22x 3 0课堂学习探究纲要一、明确学习目标〔略30秒〕二、创设情境导入新课还记得本章开始时梯子下滑的问题吗?【自主学习】:1.在这个问题中,梯子顶端下滑1米时,梯子底端滑动的距离大于1米,那么梯子顶端下滑几米时,梯子底端滑动的距离和它相等呢?思考:1、你用哪种方法解方程?为什么?2、与同学简单交流列方程解应用问题的步骤。

2.如果梯子长度是13米,梯子顶端距离地面12米,顶端下滑的距离与梯子底端滑动的距离可能相等吗?如果相等,那么这个距离是多少?〔1〕梯子底端与墙的水平距离是多少?你是怎么求的?此问题的量、未知量是什么?相等关系是什么?如何建立方程?(3〕方程的解是否都符合题意?三、探索新知例1:如图,某海军基地位于A处,在其正南方向200海里处有一个重要目标B,在B的正东方向200海里处有重要目标C,小岛D位于AC的中点,岛上有一补给码头,小岛F位于BC上且恰好处于小岛D的正南方向,一艘军舰从A出发,经B到C匀速巡航,一艘补给船同时从D出发,沿南偏西方向匀速航行,欲将一批物品送达军舰。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

新北师大版九年级数学上册2.6应用一元二次方程导学案
【教学目标】
知识与技能
应用一元二次方程解决实际问题的方法.
掌握建立数学模型以解决如何全面地比较几个对象的变化状况的问题.
过程与方法
经历分析具体问题中的数量关系,建立方程模型并解决问题的过程,认识方程模型的重要性。

情感、态度与价值观
培养学生分析问题,解决问题的能力
【教学重难点】
教学重点:1.一元二次方程的三种解法:配方法、公式法、影因式分解法.
2.列一元二次方程解决实际生活中的问题.
教学难点:列一元二次方程解决实际问题.
【导学过程】
【创设情景,引入新课】
【复习回顾】
1.一元二次方程在生活中有哪些应用?请举例说明.
2.在解决实际问题的过程中,怎样判断所求得的结果是否合理?举例说明.
3.举例说明解一元二次方程有哪些方法?
4.配方法的一般过程是怎样的?
5.利用方程解决实际问题的关键是什么?
.解下列方程:
(1)(x+1)2-3(x+1)+2=0 (2)-3x2+22x-24=0
【自主探究】
1. 两个数的差等于4,积等于45,求这两个数.
2.将一块正方形的铁皮四角剪去一个边长为4cm的小正方形,做成一个无盖的盒子.已知盒子的容积是400cm3,求原铁皮的边长.
3.某果园有100棵桃树,一棵桃树平均结1000个桃子,现准备多种一些桃树以提高产量.试验发现,每多种一棵桃树,每棵棵桃树的产量就会减少2个.如果要使产量增加15.2%,那么应种多少棵桃树?
【课堂探究】
数形结合问题
P64 如图:某海军基地位于A 处,在其正南方向200海里处有一重要目标B ,在B 的正东方向200海里处有一重要目标C ,小岛D 位于AC 的中点,岛上有一补给码头。

一艘军舰从A 出发,经B 到C 匀速巡航,一艘补给船同时从D 出发,沿南偏西方向匀速直线航行,欲将一批物品送达军舰。

(1)小岛D 和小岛F 相距多少海里?
(价格问题)新华商场销售某种冰箱,每台进货价为2500元。

市场调研表明:当销售价为2900元时,平均每天能售出8台;而当销售价每降低50元时,平均每天就能多售出4台。

商场要想使这种冰箱的销售利润平均每天达到5000元,每台冰箱的降价应为多少元?
【当堂训练】
1.某军舰以20节的速度由西向东航行,一艘电子侦察船以30节的速度由南向北航行,它能侦察出周围50海里(包括50海里)范围内的目标。

如图,当该军舰行至A 处时,电子侦察船正位于A 处正南方向的B 处,且AB=90海里。

如果军舰和侦察船仍按原速度沿原方向继续航行,那么航行途中侦察船能否侦察到这艘军舰?如果能,最早何时能侦察到?如果不能,请说明理由。

2.某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元,为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当的降价措施,经试销发现,如果每件衬衫每降价1元,商场平均每天可多售出2件,若商场平均每天要盈利1200元,每件衬衫应降价多少元?
A B 北 东
3、某礼品店购进一批足球明星卡,平均每天可售出600张,每张盈利0.5元。

为了尽快减少库存,老板决定采取适当的降价措施。

调查发现,如果每张明星卡降价0.2元,那么平均每天可多售出300张。

老板想平均每天盈利300元,每张明星卡应降价多少元?。

相关文档
最新文档