福建省福州外国语学校2019-2020学年高一上学期期中考试——数学试题

合集下载

2019-2020学年福建省高一(上)期中数学试卷试题及答案(PDF版 含答案)

2019-2020学年福建省高一(上)期中数学试卷试题及答案(PDF版 含答案)

2019-2020学年福建省高一(上)期中数学试卷一、选择题:本大题共12小题,每小题5分,共60分在每小题给出的四个选项中,只有一项是符合题目要求的.1.现有四个判断:2{1⊆,2};{0}∅∈;{5}Q ⊆;{0}∅Ü,其中正确的个数是()A .2B .1C .4D .32.设全集{|4}U x Z x =∈ ,{|025}A x N x =∈<+ ,则(U A =ð)A .{|2}x Z x ∈-B .{|2}{4}x Z x ∈-C .{|0}{4}x Z x ∈<D .{|0}x Z x ∈ 3.函数()32x f x =-的零点为()A .3log 2B .123C .132D .2log 34.函数1()(2)4f x ln x x =-+-的定义域是()A .[2,4)B .(2,)+∞C .[2,4)(4⋃,)+∞D .(2,4)(4⋃,)+∞5.如图,函数()f x 的图象是两条线段AB ,BC ,其中点A ,B ,C 的坐标分别为(0,1),(2,2),(3,0),则((f f f (3)))的值为()A .0B .1C .2D .326.下列函数在[1-,)+∞上单调递减的是()A .2()3f x x x=--B .()14xf x =+C .()(2)f x lg x =+D .()|21|f x x =-+7.已知0.950.92, 1.1,2a log b log c ===,则()A .a b c<<B .b a c<<C .a c b <<D .b c a<<8.设()f x 为定义在实数集上的偶函数,且()f x 在[0,)+∞上是增函数,(3)0f -=,则(36)0x f -<的解集为()A .(1,2)B .3(,1)[log 6-∞ ,2)C .(,2)-∞D .(-∞,1)(2⋃,)+∞9.函数3()(2)||f x x x ln x =+的部分图象大致为()A .B .C.D.10.已知函数()25x f x e x -=--的零点位于区间(,1)m m +上,则整数m 的值为()A .2-B .1-C .0D .111.为了给地球减负,提高资源利用率,2019年全国掀起了垃圾分类的热潮,垃圾分类已经成为新时尚.假设某市2019年全年用于垃圾分类的资金为5000万元,在此基础上,每年投入的资金比上一年增长20%,则该市全年用于垃圾分类的资金开始超过12800万元的年份是()(参考数据: 1.20.079lg ≈,20.301)lg ≈A .2023年B .2024年C .2025年D .2026年12.已知函数222,0()||,0x x x f x log x x ⎧--⎪=⎨>⎪⎩ ,若1234x x x x <<<且1234()()()()f x f x f x f x ===.现有结论:①121x x +=-;②341x x =;③412x <<;④123401x x x x <<.这四个结论中正确的个数是()A .2B .1C .4D .3二、填空题:本大题共4小题,每小题5分,共20分答案填在答题卡中的横线上.13.已知幂函数()a f x x =的图象经过点(64,2),则a =;14.满足{0M⋃,2}{0=,2}的集合M 共有个;1523x +<的解集为.16.知函数123,1()log (1),1x x f x x x -⎧⎪=⎨+>⎪⎩ ,若关于x 的方程()20f x m +=有两个不同的实根,则m的取值范围是.三、解答题:本大题共6小题,共70分解答应写出文字说明、证明过程或演算步骤17.已知集合{|04}A x x =<<,{|1}B x m x m =-<<+(1)当2m =时,求()R A B ð;(2)若A B A = ,求m 的取值范围.18.(1(2)求值221log 31388log 42()1)27lg +-+-.19.已知函数31()log 1xf x x+=-.(1)判断()f x 在(1,1)-上的奇偶性并加以证明;(2)判断()f x 在14[,]25-上的单调性不需要证明,并求()f x 在14[,25-上的值域.20.2019年,随着中国第一款5G 手机投入市场,5G 技术已经进入高速发展阶段.已知某5G 手机生产厂家通过数据分析,得到如下规律:每生产手机(010)x x 万台,其成本为()G x ,其中固定成本为800万元,并且每生产1万台的生产成本为1000万元(总成本=固定成本+生产成本),销售收入()R x 万元满足24004200,05()20003800,510x x x R x x x ⎧-+=⎨-<⎩,(1)将利润()f x 表示为产量x 万台的函数;(2)当产量x 为何值时,公司所获利润最大?最大利润为多少万元?21.已知函数()()()()()22,2(01),04x x x a f x k g x log f x a a f -=+⋅=->≠=且且.(1)求k 的值;(2)求关于x 的不等式()0g x >的解集;(3)若()42xtf x +对x R ∈恒成立,求t 的取值范围.22.已知函数2()2(0)f x ax ax b a =-+>在[2,3]上的值域为[1,4].(1)求a ,b 的值;(2)设函数()()f x g x x=,若存在[2x ∈,4],使得不等式22(log )2log 0g x k x - 成立,求k 的取值范围.2019-2020学年福建省高一(上)期中数学试卷参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分在每小题给出的四个选项中,只有一项是符合题目要求的.1.现有四个判断:2{1⊆,2};{0}∅∈;Q ⊆;{0}∅Ü,其中正确的个数是()A .2B .1C .4D .3【解答】解:元素与集合之间不能用包含关系,故2{1⊆,2}错误;∅与{0}是集合之间的关系,不能用“∈“,故{0}∅∈错误;Q ,∴Q ⊆错误;空集是任何非空集合的真子集,故{0}∅Ü正确.故选:B .2.设全集{|4}U x Z x =∈ ,{|025}A x N x =∈<+ ,则(U A =ð)A .{|2}x Z x ∈-B .{|2}{4}x Z x ∈-C .{|0}{4}x Z x ∈< D .{|0}x Z x ∈ 【解答】解:{|4}U x Z x =∈ ,{|23}{0A x N x =∈-<= ,1,2,3},{|0}{4}U A x Z x ∴=∈< ð.故选:C .3.函数()32x f x =-的零点为()A .3log 2B .123C .132D .2log 3【解答】解:根据题意,函数()32x f x =-,若()320x f x =-=,解可得3log 2x =,即函数()f x 的零点为3log 2x =,故选:A .4.函数1()(2)4f x ln x x =-+-的定义域是()A .[2,4)B .(2,)+∞C .[2,4)(4⋃,)+∞D .(2,4)(4⋃,)+∞【解答】解:函数1()(2)4f x ln x x =-+-中,令2040x x ->⎧⎨-≠⎩,解得2x >且4x ≠;所以函数()f x 的定义域是(2,4)(4⋃,)+∞.故选:D .5.如图,函数()f x 的图象是两条线段AB ,BC ,其中点A ,B ,C 的坐标分别为(0,1),(2,2),(3,0),则((f f f (3)))的值为()A .0B .1C .2D .32【解答】解:根据题意,点A ,B ,C 的坐标分别为(0,1),(2,2),(3,0),则f (3)0=,(f f (3))(0)1f ==,同时有11,02()226,23x x f x x x ⎧+⎪=⎨⎪-+<⎩ ,则((f f f (3)))f =(1)32=;故选:D .6.下列函数在[1-,)+∞上单调递减的是()A .2()3f x x x=--B .()14xf x =+C .()(2)f x lg x =+D .()|21|f x x =-+【解答】解:根据题意,依次分析选项:对于A ,2()3f x x x =--,为二次函数,其开口向下且对称轴为32x =-,在[1-,)+∞上单调递减,符合题意;对于B ,()14x f x =+,在R 上为增函数,不符合题意;对于C ,()(2)f x lg x =+,在R 上为增函数,不符合题意;对于D ,121,2()|21|121,2x x f x x x x ⎧---⎪⎪=-+=⎨⎪+<-⎪⎩ ,在1(1,2--上为增函数,不符合题意;故选:A .7.已知0.950.92, 1.1,2a log b log c ===,则()A .a b c<<B .b a c<<C .a c b <<D .b c a<<【解答】解:5log 2(0,1)a =∈,0.9log 1.10b =<,0.921c =>.b a c ∴<<.故选:B .8.设()f x 为定义在实数集上的偶函数,且()f x 在[0,)+∞上是增函数,(3)0f -=,则(36)0x f -<的解集为()A .(1,2)B .3(,1)[log 6-∞ ,2)C .(,2)-∞D .(-∞,1)(2⋃,)+∞【解答】解:()f x 为定义在实数集上的偶函数,f ∴(3)(3)0f =-=,又()f x 在[0,)+∞上是增函数,则由(36)0x f -<可得,3363x -<-<,解可得,12x <<,故选:A .9.函数3()(2)||f x x x ln x =+的部分图象大致为()A .B .C .D .【解答】解:函数的定义域为{|0}x x ≠,33()[()2()]||(2)||()f x x x ln x x x ln x f x -=-+--=-+=-,则函数()f x 是奇函数,图象关于原点对称,排除A ,B ,当x →+∞,()f x →+∞,排除D ,故选:C .10.已知函数()25x f x e x -=--的零点位于区间(,1)m m +上,则整数m 的值为()A .2-B .1-C .0D .1【解答】解:函数()25x f x e x -=--是连续减函数,2(2)10f e -=->,(1)30f e -=-<,(2)(1)0f f ∴--< ,函数()25x f x e x -=--的零点位于区间(2,1)--即(,1)m m +上,所以2m =-.故选:A .11.为了给地球减负,提高资源利用率,2019年全国掀起了垃圾分类的热潮,垃圾分类已经成为新时尚.假设某市2019年全年用于垃圾分类的资金为5000万元,在此基础上,每年投入的资金比上一年增长20%,则该市全年用于垃圾分类的资金开始超过12800万元的年份是()(参考数据: 1.20.079lg ≈,20.301)lg ≈A .2023年B .2024年C .2025年D .2026年【解答】解:设经过n 年后的投入资金为y 万元,则5000(120%)5000 1.2n n y =+=⨯,令5000 1.212800n ⨯>,即1.2 2.56n >,两边取对数可得81.2 2.56228220.408nlg lg lg lg >=-=-=,0.4085.160.079n ∴>≈,故第6年即2025年的投资开始超过12800万元.故选:C .12.已知函数222,0()||,0x x x f x log x x ⎧--⎪=⎨>⎪⎩ ,若1234x x x x <<<且1234()()()()f x f x f x f x ===.现有结论:①121x x +=-;②341x x =;③412x <<;④123401x x x x <<.这四个结论中正确的个数是()A .2B .1C .4D .3【解答】解:函数222,0()||,0x x x f x log x x ⎧--⎪=⎨>⎪⎩ 的图象如图:若1234x x x x <<<且1234()()()()f x f x f x f x ===.由图象可知:122x x +=-;所以①不正确;341x x =所以②正确;由图象412x <<所以③正确;121x -<<-,221211111(2)2(1)1(0,1)x x x x x x x =--=--=-++∈,所以123401x x x x <<④正确.故选:D .二、填空题:本大题共4小题,每小题5分,共20分答案填在答题卡中的横线上.13.已知幂函数()a f x x =的图象经过点(64,2),则a =16;【解答】解:由幂函数()a f x x =的图象过点(64,2),则642a =,解得16a =.故答案为:16.14.满足{0M⋃,2}{0=,2}的集合M 共有4个;【解答】解:{0M ⋃ ,2}{0=,2},{0M ∴⊆,2},又集合{0,2}的子集共有224=个,∴满足{0M⋃,2}{0=,2}的集合M 共有4个.故答案为:4.1523x +<的解集为[0,1).【解答】解:由于函数2x y =+的定义域为[0,)+∞,且是增函数,当0x =23x +<成立,当1x =时,23x y =+=,23x >的的解集为[0,1),故答案为:[0,1).16.知函数123,1()log (1),1x x f x x x -⎧⎪=⎨+>⎪⎩ ,若关于x 的方程()20f x m +=有两个不同的实根,则m的取值范围是1(,)2-∞-.【解答】解:由题意作出函数123,1()log (1),1x x f x x x -⎧⎪=⎨+>⎪⎩ 的图象,关于x 的方程()20f x m +=有两个不同的实根等价于函数()y f x =与2y m =-有两个不同的公共点,f (1)1=,由图象可知当21m ->,解得1(,2m ∈-∞-时,满足题意,故答案为:1(,2-∞-.三、解答题:本大题共6小题,共70分解答应写出文字说明、证明过程或演算步骤17.已知集合{|04}A x x =<<,{|1}B x m x m =-<<+(1)当2m =时,求()R A B ð;(2)若A B A = ,求m 的取值范围.【解答】解:(1)当2m =时,{|23}B x x =-<<.∴{|2U C B x x =- 或3}x ,{|04}A x x =<< ,(){|34}U A C B x x ∴=< .(2)由A B A = ,得B A ⊆,①当B =∅时,1m m -+ ,解得12m - .②当B ≠∅时,由B A ⊆,得:0141m m m m -⎧⎪+⎨⎪-<+⎩,解得102m -< ,综上,m 的取值范围是(-∞,0].18.(1(2)求值221log 31388log 42()1)27lg +-+-.【解答】解:(1)原式3(0.25)40.25x x x ---===.(2)原式22362324224532()16183399log log log ⨯=-+-=-+-=-.19.已知函数31()log 1x f x x+=-.(1)判断()f x 在(1,1)-上的奇偶性并加以证明;(2)判断()f x 在14[,]25-上的单调性不需要证明,并求()f x 在14[,25-上的值域.【解答】解:(1) 31()log 1x f x x +=-,3311()log ()11x x f x log f x x x-+∴-==-=-+-,()f x ∴在(1,1)-上为奇函数;(2)()f x 在14[,25-上的单调递增,1()(12min f x f ∴=-=-,4()()25max f x f ==,()f x ∴在14[,25-上的值域[1-,2].20.2019年,随着中国第一款5G 手机投入市场,5G 技术已经进入高速发展阶段.已知某5G 手机生产厂家通过数据分析,得到如下规律:每生产手机(010)x x 万台,其成本为()G x ,其中固定成本为800万元,并且每生产1万台的生产成本为1000万元(总成本=固定成本+生产成本),销售收入()R x 万元满足24004200,05()20003800,510x x x R x x x ⎧-+=⎨-<⎩ ,(1)将利润()f x 表示为产量x 万台的函数;(2)当产量x 为何值时,公司所获利润最大?最大利润为多少万元?【解答】解:(1)()1000800G x x =+,24003200800,05()()()10004600,510x x x f x R x G x x x ⎧-+-∴=-=⎨-<⎩.(2)当05x 时,2()400(4)5600f x x =--+,故当4x =时,()f x 取得最大值5600;当510x < 时,()10004600f x x =-为增函数,故当10x =时,()f x 取得最大值10001046005400⨯-=.综上,当产量为4万台时,公司利润最大,最大利润为5600万元.21.已知函数()()()()()22,2(01),04x x x a f x k g x log f x a a f -=+⋅=->≠=且且.(1)求k 的值;(2)求关于x 的不等式()0g x >的解集;(3)若()42x t f x + 对x R ∈恒成立,求t 的取值范围.【解答】解:(1)由00(0)2214f k k =+=+= ,得3k =;(2)由(1)得()232x x f x -=+ ,3()log 2ax g x ∴=,∴不等式()0g x >即3()log 02a x g x =>当1a >时,由3log 0log 12a a x >=,∴31232x x >∴<,2log 3x ∴<;当01a <<时,由3log 0log 12aa x >=,∴31232x x <∴>,2log 3x ∴>;故当1a >时,不等式()0g x >的解集2(,log 3)-∞;当01a <<时,不等式()0g x >的解集2(log 3,)+∞;(3)由(1)及()42x t f x + 得23242x x x t -++ ,2(2)423x x t ∴-⨯+ ,而22(2)423(22)1x x x -⨯+=--,∴当1x =时,2(2)423x x -⨯+取得最小值1-,1t ∴- ,∴()42x t f x + 对x R ∈恒成立时,t 的取值范围是(-∞,1]-.22.已知函数2()2(0)f x ax ax b a =-+>在[2,3]上的值域为[1,4].(1)求a ,b 的值;(2)设函数()()f x g x x=,若存在[2x ∈,4],使得不等式22(log )2log 0g x k x - 成立,求k 的取值范围.【解答】解:(1)函数2()2(0)f x ax ax b a =-+>开口向上,对称轴方程为1x =;()f x ∴在[2,3]上单调递增;则f (2)441a a b =-+=,f (3)964a a b =-+=;所以3a =,1b =;(2)()1()36f x g x x x x==--;存在[2x ∈,4],使得不等式22(log )2log 0g x k x - 成立;设2log t x =,[2x ∈,4],则[1t ∈,2];即1362t kt t-- 在[1t ∈,2]上有解;21123k t t∴-- ;设211()3h t t t =--,当[1t ∈,2]时,()h t 的最大值为14-;所以18k - ;故k 的取值范围:18k - ;。

2019-2020学年福建省福州市格致中学高一(上)期中数学试卷 (含答案解析)

2019-2020学年福建省福州市格致中学高一(上)期中数学试卷 (含答案解析)

2019-2020学年福建省福州市格致中学高一(上)期中数学试卷一、选择题(本大题共12小题,共60.0分)1. 已知集合A ={(x,y)|y 2<x},B ={(x,y)|xy =−2,x ∈Z ,y ∈Z},则A ∩B =( )A. ⌀B. {(2,−1)}C. {(−1,2),(−2,1)}D. {(1,−2),(−1,2),(−2,1)}2. 已知函数f(x)={x +1x−2,x >2x 2+2,x ≤2则f(f(1))=( ) A. −12 B. 2C. 4D. 113. 若幂函数y =(m 2+3m +3)x m2+2m−3的图象不过原点,且关于原点对称,则m 的取值是( )A. m =−2B. m =−1C. m =−2或m =−1D. −3≤m ≤−1 4. 设a =2−1,b =2t2−1(t ∈R),则a,b 的大小关系是( )A. a ≥bB. a ≤bC. a <bD. a >b 5. 用二分法求函数f(x)=2x −3的零点时,初始区间可选为( )A. (−1,0)B. (0,1)C. (2,3)D. (1,2) 6. 函数f(x)=√x +2+log 2(1−x)的定义域是( )A. [−1,2]B. [−2,1)C. [1,+∞)D. (−2,1)7. 已知a >0且a ≠1,若对任意的x ∈R ,y =√1−a |x|均有意义,则函数y =log a |1x |的大致图象是( )A.B.C.D.8. 已知函数f(x)=|x +3|−1,g(x)=kx −2,若函数y =f(x)−g(x)有两个零点,则实数a 的取值范围是( )A. (−13,+∞)B. (13,1)C. (−∞.−13)D. (−1,−13)9. 函数f(x)=3x −1的单调递减区间是( )A. (−∞,0)B. (0,+∞)C. (−∞,0)和(0,+∞)D. (−∞,1)和(1,+∞)10. 已知函数f(x)={(1−2a)x ,x ≤1log a x +13,x >1,当x 1≠x 2时,f(x 1)−f(x 2)x 1−x2<0,则a 的取值范围是( ) A. (0,13]B. [13,12]C. (0,12]D. [14,13]11. 若函数f(x)=ax+1x+2(a 为常数),在(−2,2)内为增函数,则实数a 的取值范围( )A. (−∞,12) B. [12,+∞) C. (12,+∞) D. (−∞,12] 12. 函数f(x)=(1−x)|x −3|在(−∞,a]上取得最小值−1,则实数a 的取值范围是( )A. (−∞,2]B. [2−√2, 2]C. [2, 2+√2]D. [2,+∞)二、填空题(本大题共4小题,共20.0分) 13. 不等式2<|2x +3|≤4的解集为________.14. 函数f(x)=−x 2+3x +4的定义域为[m,3],值域为[4,254],则实数m 的取值范围是____________. 15. 已知函数f(x)是定义在(−3,3)上的偶函数,且在[0,3)上单调递增,则满足f(2m)>f(1)的m 的取值范围是 .16. 函数f(x)={(x −1)2,x ≥0,|e x −2|,x <0,若方程f(x)=m 有两个不同的实数根,则m 的取值范围为________.三、解答题(本大题共6小题,共70.0分) 17. 已知,求a 2m+n 的值.18. 已知集合A ={x|x ≥5或x ≤−1},集合B ={x |2a ≤x ≤a +2}.(I)若a =−1,求A⋂B 和(C R A )⋃B ; (II)若A⋂B =B ,求实数a 的取值范围.19.如图,ΔOAB是边长为2的正三角形,记ΔOAB位于直线x=t(t>0)左侧的图形的面积为f(t),(1)求出函数f(t)的解析式;(2)画出函数y=f(t)的图像。

2019学年福建省高一上学期期中考试数学试卷【含答案及解析】(3)

2019学年福建省高一上学期期中考试数学试卷【含答案及解析】(3)

2019学年福建省高一上学期期中考试数学试卷【含答案及解析】姓名___________ 班级________________ 分数____________、选择题1. 已知集合,乂二畀,,兰,则匕「占丨玄等于()A - --------------B - ' I -------------------- C•;------------- D2. 下列函数中,与函数| 「相等的是()A -B | )C - ■ ' D」- 一3. 已知幂函数y = /(x)的图象过点I ■ I ,则此函数的解析式是()A • :i 一「BC •:一D - ' ■,? T-4. 若汕且,则「■是(___________ )A •第一象限角B •第二象限角C •第三象限角_____________D •第四象限角5. 函数-:的零点所在区间为| ■■ ■ ■: | (_■ . . !,则,为()A • 1 _______________________B • 2 ______________________________C • 3 ____________D • 442a —b扇形圆心角的弧度数是 4,则扇形的周长为.4 _____________________________D . 89. 三个数 :, :,i | 的大小关系是 ()A . 「^' ' i ------------------------- B .J J ”C .-「1: - J 「厂: ----------------D . | .-10. 下列函数既是奇函数又是增函数的是()A •丁 一 ; 一B i ..C . ID .1';:11. 函数;..'■:在区间[1, 2]上单调,贝y ()A . 一:〔一B . 一: I'C . ..I . .|D . 一: |:. ■ I _ - 112. 已知.'I I 是偶函数,八「匚,|在,上是增函数,贝V炸)<0的解集为 ()6.且■为第二象限角则T1-,-的值为 ()7.9若 I ■, I -■,则一—的值是 ()2a8. A . C .已知扇形的面积为2, 2 __________ B4 A .[」〕_______________ B . 丁川__________________ C . ' | ______________ D . ' -■'二、填空题13. 将_弓°09化为弧度为_________________14. 已知/(1)=^ 1' ,则八f(d=sin V-2.X > 1I I nm ' i ii n ■■ i15. 函数、.=』1口£、(3工_2}的定义域为_______________ .16. 设函数的定义域为厂,若存在非零实数使得对于亏述塑匚去::辛m且,:.:,则称. 为"上的高调函数.如果定义域为■ I的函数.i 为| 」上的,高调函数,那么实数用的取值范是_________________________________ .三、解答题17. 已知集合・|厂、「〔;'■ ;「「〕〔:; : 5…记(1 )求「;( ,:•)Q B;(2 )若i.,丨上■■,求.的取值范围.18. 计算下列各式的值:(1)『•)一」丨;(2);]厂 1 T I ■ ■■ 1 I' _-19. (1)已知角 '的终边经过一点’• | ,求「;「);••"•:•-的值;(2)已知角,•的终边在一条直线I -上,求•:“,T■的值.20. 已知函数-「----- 1 ' 7且•’ 为奇函数.八1(1)求.的值;(2)若函数」在区间(-1 , 1)上为增函数,且满足「| ,求•的取值集合.21. 某公司生产一种电子仪器的固定成本为20000元,每生产一台仪器需增加投入100■I00 V 丄2 Q < Y< 400 元,已知总收益满足函数:凤2 ,其中x (单位:台)是S0000.x>400 R…仪器的月产量.(1 )将利润,表示为月产量x的函数;2 )当月产量x为何值时,公司所获利润最大?最大利润为多少元?22. 已知函数- ,(1 )用函数单调性定义证明在「丄1上为单调增函数;(2 )若. I . _ 一,求的值.参考答案及解析第1题【答案】【解析】试题分析;由已知可得:「2二仏3},所臥(Q」)CE = {1,3},故选择A.第2题【答案】【解析】试题分析:根掃同一函数需定义域、对应法则相同可得:A.定义域为恥所以错误_;B.定义域为(r>0)」化简后为】・所以正帰G定义域为尺」所汰错误j D.定义域対*卜"}・所以错误,故选择E・第3题【答案】【解析】试题分析;设某函数解析式为;/(-T)=^・代入点00),可得『二运?解得*即跚为卩二Ji ?故选择D.第4题【答案】C【解析】试题分朴根据sinx0且斶,可得甬仅为第三象限角'故週?C-第5题【答案】【解析】试题分祈;因为/(2)=4-5<0,/(3)=8-5>0 ,所以酬5的零点所在区间为[“];所以^ = 2 ,故选择E-第6题【答案】k【解析】试题分析;根,且竊为第三象限角,可得num ,故选择乩> A第7题【答案】【解析】试题分折;根抿对数的运章性质可得fog, |-log,3—log,5 = 2^-6・故选择氏第8题【答案】【解析】板題分朴设扇册的弧长为/」半径为尺,13心角为位,根擔腐形面积公式可得,^+加二扌用口"疋壬2 , ^R=ll=aR = 4 ,所以扇形的周长是E ,故选择UM M第9题【答案】【解析】试题分析:根据指数的图象与性质可得:o一用’所以①叫计<0.9^ ,故选择「第10题【答案】【解析】试题分析;根据已知虬E为奇函数』时I增固轨C为原的数』故选择氏第11题【答案】【解析】试题汁折:二次国数f(x) = -2<ZK -3对称轴为\ = a ?要使得函数在区间口J 2]上单调¥贝需满足a<^a>2,故选择D.第12题【答案】A【解析】试题分析:因为/©)是偶函数;/(-D-0 ,所以/(1)=0 ,又因为在h+協)上是增函数,根抿偶函数團象关刊轴对称可得,/(x)<0的解集为(-LJ,故选择A-第13题【答案】5亠一理3【解析】试题分析;由已知可得:-300°=-300x-^-=^|^ ,故答案为三祗.1 bl) \ 7第14题【答案】3rrfi■I【解析】试题分析:因対小,所I2V(小沁—2“2£1」所以/(/(沙"7 = -斗、故苔案対4【解析】第15题【答案】7第18题【答案】泣匪井析:画数有意义需满足,故国数定义域为Uh®) ■[3x-2 > 0第16题【答案】 附2 2 【解析】试题分折;根据函数了d 图象的对称性以及定义域为口•収),再结合高调国数的定义可得 w>2 ,故答累为^>2 ■第17题【答案】<1) A\JB ={x|3<x<10} . (C^-4)r>£ = {xj7S Y <1Q} ; (2> a>7 * 【解析】试题分析;O 根据集合的运算性质可次得到j 〔2》因^A\根据(/t| B)QC、可得沦7 -才註强折;Cl) JU^={x|3<y<10), (^-4)0 5 = p <x <10} } (2) JJ 5= {L |4 <y<7} ? Q(JI 丘)匚C (1)-;⑵-]2【解析】_2试题分析:⑴将根式化为指数形式可得:©5)冷/「丄/^7 = 2原可得釦⑵根拥对数的运算性质得Ig25 = 21g5 ,换底公式cT»:lo B:&xi ogj2 = 2x1^3x108^2 = 2 ,即可得到■(ivr 3试题S?析?〔11 原式=2- 一1+?=厂+1 = _;7\ / '(2)原武二1呂5 ・1^2・2Hlogr 3x]og s2 =1-2 - -1第19题【答案】⑴-牛⑵ S*,当"0时,叭 3-扌【解析】试题分析:C1)点P^d-^Xa > 0)到原点的5巨离尸三幻,根抿三角函数定义站圧兰二2仏兰王 rr可求得!⑵ 设角金旌冬边上一点屈厂 则心沖|,井聲M 戒段“两种情况,由三角圈 数走义求得.试题解析;(1〉由已紬二他$+(®二加 sin/z = —— , cos/7 = — , Ul2 sincr +cos*r ———: 5 5 5<2)设点P{a 仮?)是角a 的终边上一点、则茂=* j当心。

【解析】福建省福州市福建师大附中2019-2020学年高一上学期期中考试数学试题

【解析】福建省福州市福建师大附中2019-2020学年高一上学期期中考试数学试题

福建师大附中2019-2020学年上学期期中考试卷高一数学·必修1一、选择题(每小题5分,共60分;在给出的A,B,C,D 四个选项中,只有一项符合题目要求) 1.能正确表示集合{}02M x x =∈≤≤R 和集合{}20N x x x =∈-=R 的关系的韦恩图的是( )A. B.C. D.【答案】B 【分析】根据题意,{0N =,1},而{|02}M x R x =∈剟,易得N 是M 的子集,分析选项可得答案.【详解】{}{}{}200,102N x x x M x x =∈-==⊆=∈≤≤R R ,故选B.【点睛】本题考查集合间关系的判断以及用venn 图表示集合的关系,判断出M 、N 的关系,是解题的关键.2.设偶函数定义域为R ,当()0,x ∈+∞时,()f x 为增函数,则()()()1,,3f f f π--的大小关系为() A. ()()()31f f f π-<-< B. ()()()13f f f π->-> C. ()()()31f f f π->->D. ()()()13f f fπ-<-<【答案】D 【分析】由于()f x 为偶函数且当()0,x ∈+∞时,()f x 为增函数,故将()()()1,,3f ff π--全部利用偶函数性质转换到()0,x ∈+∞上再用单调性进行求解。

【详解】因为()f x 为偶函数,故()()()()1=1,3=3f f f f --,又因为当()0,x ∈+∞时,()f x 为增函数,故()()()13f f fπ<<,故()()()13f f f π-<-<,故选D 。

【点睛】根据奇偶性与单调性求解函数大小关系时,可以将自变量的值转换到同一单调区间上进行分析。

3.设全集为R ,集合{}2log 1A x x =<,{B x y ==,则()R A B =I ð( )A. {}02x x <<B. {}01x x <<C. {}11x x -<<D.{}12x x -<<【答案】B 【分析】解出集合A 、B ,再利用补集和交集的定义可得出集合()R A B I ð. 【详解】由2log 1x <,02x <<,{}02A x x ∴=<<.由210x -≥,得1x ≤-或1x ≥,则{}11B x x x =≤-≥或,{}11R B x x ∴=-<<ð, 因此,(){}01A B x x ⋂=<<R ð,故选:B.【点睛】本题考查交集和补集的混合运算,同时也考查了对数不等式以及函数定义域的求解,考查计算能力,属于中等题.4.下列四组中,()f x 与()g x 表示同一函数的是( )A. ()f x x =,()g x =B. ()f x x =,()2g x =C. ()2f x x =,()3xg x x=D. ()f x x =,()()(),0,0x x g x x x ⎧≥⎪=⎨-<⎪⎩【答案】D 【分析】A 项对应关系不同;B 项定义域不同;C 项定义域不同,初步判定选D【详解】对A ,()2=g x x x =,与()f x x =对应关系不同,故A 错对B ,()()2g x x =中,定义域[)0,x ∈+∞,与()f x x =定义域不同,故B 错对C ,()3x g x x=中,定义域0x ≠,与()f x x =定义域不同,故C 错对D ,()f x x =,当0x ≥时,()f x x =,当0x <时,()f x x =-,故()()(),0,0x x f x x x ⎧≥⎪=⎨-<⎪⎩,D 正确故选:D【点睛】本题考查同一函数的判断,应把握两个基本原则:定义域相同;对应关系相同(化简后的函数表达式一样) 5.函数()211xf x x e ⎛⎫=-⎪+⎝⎭图象的大致形状是( ) A. B.C D.【答案】C 【分析】先由函数奇偶性,排除BD ;再由函数值的大致范围,即可确定结果.【详解】因为()211xf x x e ⎛⎫=- ⎪+⎝⎭,x ∈R 所以()222111111-⎛⎫--⎛⎫-=--=--=-⋅ ⎪ ⎪+++⎝⎭⎝⎭x x x x x xe e ef x x x x e e e 1122211()1111-+-⎛⎫⎛⎫=-⋅=-⋅=--=-= ⎪ ⎪++++⎝⎭⎝⎭x x x x xx e e x x x x f x e e ee ,所以()211xf x x e ⎛⎫=-⎪+⎝⎭是偶函数,排除BD ; 又当0x >时,22110111-<-=++xe ,所以2()101⎛⎫=-< ⎪+⎝⎭x f x x e , 当0x <时,22110111->-=++xe ,所以2()101⎛⎫=-< ⎪+⎝⎭x f x x e , 故排除D ,选C. 故答案为C【点睛】本题主要考查函数图像的识别,熟记函数的奇偶性即可,属于常考题型. 6.函数()521y x x x =+≥+取得最小值时的x 值为()1 B. 21【答案】B 【分析】将函数边形为()51121y x x x =++-≥+利用双勾函数得到答案. 【详解】()5511211y x x x x x =+=++-≥++ 设1(3)x t t +=≥5()1f t t t =+- 根据双勾函数性质在)+∞上单调递增.min ()(3)f t f =当3t =即2x =时取最小值. 故答案选B【点睛】本题考查了双勾函数性质,属于常考题型.7.已知幂函数()y f x =的图象过点⎛ ⎝⎭,则21log 2f f ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭( )A.2C.D.12【答案】B【分析】设()af x x =,将点3,3⎛ ⎝⎭的坐标代入函数()y f x =的解+析式,求出a 的值,然后再计算出21log 2f f ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭的值. 【详解】设()af x x =,由题意可的()333a f ==,即1233a -=,12a ∴=-,则()12f x x -=,所以,112211222f -⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭,因此,11122222111log log 22222f f f f -⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫===== ⎪ ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,故选:B.【点睛】本题考查指数幂的计算,同时也考查了对数运算,解题的关键就是求出幂函数的解+析式,同时利用指数幂的运算性质进行计算,考查计算能力,属于中等题.8.对于一个声强为I 为(单位:2/W m )的声波,其声强级L (单位:dB )可由如下公式计算:010lgIL I =(其中0I 是能引起听觉的最弱声强),设声强为1I 时的声强级为70dB ,声强为2I 时的声强级为60dB ,则1I 是2I 的( )倍 A. 10 B. 100C. 1010D. 10000【答案】A 【分析】根据声强级与声强之间的关系式,将两个声强级作差,结合对数的运算律可得出12I I 的值,可得出答案。

福建省师范大学附属中学2019-2020学年高一数学上学期期中试题[含答案]

福建省师范大学附属中学2019-2020学年高一数学上学期期中试题[含答案]

a 1„ 0, 2a 1…1, 20. 解:(1)若 B A ,则 a 1 2a 1, 解得 0 a 1.
故实数
a
的取值范围是
0,1 .
(2)①当 A 时,有 a 1 2a 1,解得 a 2 ,满足 A B .
②当 A 时,有 a 1 2a 1,解得 a 2.

A
B
,则有
,若当
时,
f
x
m
恒成立,求
m n 的最小值;
(2)若
f
x 的图像关于
x
3 对称,且
x (3, 0)
时,
f
x
3x
x
1
,求当
x (9, 6) 时,
f
x 的解析式;
(3)当
x
0
时,
f
x
x2
.若对任意的
x t,t
2 ,不等式
f
x
t
2
f
x 恒成
立,求实数 t 的取值范围.
福建师大附中 2019-2020 学年上学期期中考试卷
C.
D.
y x 5 x 2
6.函数
x 1
取得最小值时的 x 值为(
)
A. 5 1
B. 2
C. 5
D. 5 1
7.已知幂函数 y
f x的图象过点 3,
3 3
,则
f
log2
f
1 2


2 A. 2
B. 2
1
C. 2
D. 2
8.对于一个声强为 I 为(单位:W / m2 )的声波,其声强级 L (单位: dB )可由如下公
高一数学·必修 1 参考答案

【优质文档】2019-2020学年福建省福州市鼓楼区高一(上)期中数学试卷试题及答案(解析版)

【优质文档】2019-2020学年福建省福州市鼓楼区高一(上)期中数学试卷试题及答案(解析版)

x0 ; ( 3)f ( x)
|x | 和 g( x)
x
1,x 0 1,x 0
A .( 1)、( 3)
B .(3)
C.( 1)、( 2)
x 2 3x 4
4.函数 f ( x)
的定义域为 (
)
|x|
A . ( 1 , 0) (0 , 1]
B. ( 1 , 1]
D . [ 4 , 0)
5.函数 f ( x)
(2)写出函数 f (x) 的解析式和值域.
19.已知全集 U R ,集合 A { x |1, x 5} , B { x | 2 x 8} , C { x | a x, a 3} .
(1)求 A B , (eU A) B ;
(2)若“ x C ”为“ x A ”的充分不必要条件,求 a 的取值范围. 20.已知函数 f ( x) 2x 1 , x [3 , 5] .
( 3)若 a 3 ,是否存在正整数 ,使得 2 f (2 x), ( 1) f ( x) 对 x [ 2 , 1] 恒成立?若存 在,请求出所有的正整数 ;若不存在,请说明理由.
2019-2020 学年福建省福州市鼓楼区高一(上)期中数学试卷
参考答案与试题解析
一、选择题:本大题共 12 小题,每小题 5 分,共 60 分,在每小题给出的四个选项中,只 有一项符合题目要求
x1 (Ⅰ)判断函数在区间 [3 , 5] 上的单调性,并给出证明;
(Ⅱ)求该函数的最大值和最小值.
21.设函数 f (x) x2 3x .
(Ⅰ)若不等式 f ( x)…m 对任意 x [0 , 1]恒成立,求实数 m 的取值范围;
(Ⅱ)在 (I ) 的条件下,当 m 取最大值时,设 x 0 , y

福建省福州市2019-2020年度高一上学期期中数学试卷(II)卷

福建省福州市2019-2020年度高一上学期期中数学试卷(II)卷

福建省福州市 2019-2020 年度高一上学期期中数学试卷(II)卷姓名:________班级:________成绩:________一、 选择题 (共 12 题;共 24 分)1. (2 分) (2019 高一上·上海月考) 若集合 P 是集合 Q 的子集,则下列结论中正确的是( )A.B.C.D.2. (2 分) 设集合,则()A.B.C.D.3. (2 分) 对于任意,,A.B.C.D.,函数满足则 a,b,c 大小关系是,且当时,函数4. (2 分) 若,则( ),若第 1 页 共 10 页A. B. C. D. 5. (2 分) (2018 高一上·黑龙江期末) 已知 A. B. C. D. 6. (2 分) (2019 高二下·宜春期中) 已知函数 A. B.,且,则 等于( )有两个零点,则 的取值范围是( )C.D.7. (2 分) 已知 是函数A.B.C.D.的符号不确定的零点,若,则的值满足( )第 2 页 共 10 页8. (2 分) (2016 高一下·临川期中) 函数 f(x)=ax2+ax﹣1 在 R 上满足 f(x)<0,则 a 的取值范围是( ) A . (﹣4,0] B . (﹣∞,﹣4) C . (﹣4,0) D . (﹣∞,0] 9. (2 分) 下列函数中,在(0,+∞)上是增函数的是( )A . f(x)= B . f(x)=lg(x-1) C . f(x)=2x2-1D . f(x)=x+ 10. (2 分) (2016 高三上·朝阳期中) 若 a=log2.10.6,b=2.10.6 , c=log0.50.6,则 a,b,c 的大小关系 是( ) A . a>b>c B . b>c>a C . c>b>a D . b>a>c11. (2 分) (2016 高一上·包头期中) 定义在实数集 R 上的函数 y=f(x)满足 若 f(5)=﹣1,f(7)=0,那么 f(﹣3)的值可以为( )A.5B . ﹣5C.0D . ﹣1第 3 页 共 10 页>0(x1≠x2),12. (2 分) 已知 f(x)是定义在 R 上的偶函数,且在(0,+∞)上是增函数,设 a=f(﹣ ),b=f(log3 ), c=f( ) ,则 a、b、c 的大小关系是( )A . a<c<b B . b<a<c C . b<c<a D . c<b<a二、 填空题 (共 4 题;共 4 分)13. (1 分) (2019 高一上·吴起期中) 函数的定义域________14. (1 分) (2016 高一上·徐州期中) 计算:=________.15. (1 分) (2016 高一上·武侯期中) 设 M={2,4},N={a,b},若 M=N,则 logab=________16.(1 分)(2019 高一上·盘山期中) 已知函数三、 解答题 (共 6 题;共 70 分)(且)恒过定点________.17. (5 分) (2019 高一下·深圳期中) 已知,.,求及18. (15 分) 已知函数 f(x)=logax+b,f(x)恒过点(1,1),且 f(e)=2.(1) 求 f(x)的解析式;(2) 若 f(x)≤kx 对∀ x>0 都成立,求实数 k 的取值范围;(3) 当 x2>x1>1 时,证明:x2(x1﹣1)lnx2>x1(x2﹣1)lnx1 .19. ( 15 分 ) (2019 高 一 上 · 菏 泽 月 考 ) 已 知 定 义 在 区 间上的函数满足,且当时,(1) 求的值;第 4 页 共 10 页(2) 证明: (3) 若为 ,求上的单调减函数;在上的最小值;20. (15 分) (2019 高一上·辽源期中) 已知函数 .(1) 求 的值;(2) 判断函数的奇偶性;,其中 为常数,且函数的图象过点(3) 证明:函数在上是单调递减函数.21. (10 分) (2017 高一上·大庆月考) 某服装厂生产一种服装,每件服装成本为 40 元,出厂单价定为 60 元,该厂为鼓励销售商订购,规定当一次订购量超过 100 件时,每多订购一件,订购的全部服装的出厂单价就降低元,根据市场调查,销售商一次订购不会超过 600 件.(1) 设一次订购 件,服装的实际出厂单价为 元,写出函数的表达式;(2) 当销售商一次订购多少件服装时,该厂获得的利润最大?其最大利润是多少? 22. (10 分) 函数 f(x)是定义在(0,+∞)上的减函数,对任意的 x,y∈(0,+∞),都有 f(x+y)=f(x) +f(y)﹣1,且 f(4)=5. (1) 求 f(1)的值; (2) 解不等式 f(m﹣2)≥2.第 5 页 共 10 页一、 选择题 (共 12 题;共 24 分)1-1、 2-1、 3-1、 4-1、 5-1、 6-1、 7-1、 8-1、 9-1、 10-1、 11-1、 12-1、二、 填空题 (共 4 题;共 4 分)13-1、 14-1、 15-1、参考答案第 6 页 共 10 页16-1、三、 解答题 (共 6 题;共 70 分)17-1、 18-1、18-2、18-3、 19-1、第 7 页 共 10 页19-2、 19-3、 20-1、 20-2、第 8 页 共 10 页20-3、 21-1、 21-2、 22-1、 22-2、第 9 页 共 10 页第 10 页 共 10 页。

福建省福州市2020学年高一数学上学期期中联考试题(含解析)

福建省福州市2020学年高一数学上学期期中联考试题(含解析)

福建省福州市2020学年高一上学期期中联考数学试题第Ⅰ卷(共60分)一、选择题:本大题共12个小题;每小题5分,共60分.在每小题给出的4个选项中,只有一项符合题目要求。

1.集合A={1,3},B={x|2≤x≤5,x∈Z},则A∩B=()A. {1}B. {3}C. {1,3}D. {2,3,4,5}【答案】B【解析】【分析】化简集合B,根据交集的定义写出A∩B.【详解】集合A={1,3},B={x|2≤x≤5,x∈Z}={2,3,4,5},则A∩B={3}.故选:B.【点睛】本题考查了集合的化简与运算问题,是基础题.2.下列函数中哪个与函数y=x相等()A. y =()2 B. y C. y D. y【答案】C【解析】【分析】可看出y=x的定义域为R,通过求定义域可得出选项A,B的两函数的定义域和y=x的定义域都不相同,从而判断A,B都错误.而通过化简选项D的函数解析式,可得出D的解析式和y=x不同,从而判断D也错误,只能选C.【详解】y=x的定义域为R;A .的定义域为{x|x≥0},定义域不同,与y=x不相等;B.的定义域为{x|x≠0},定义域不同,不相等;C.的定义域为R,且解析式相同,与y=x相等;D.,解析式不同,不相等.故选:C.【点睛】本题考查函数的定义,判断两函数是否相等的方法:定义域和解析式是否都相同.3.若偶函数f(x)在(﹣∞,﹣1]上是减函数,则()A. B.C. D.【答案】B【解析】【分析】根据题意,由函数的奇偶性可得f(2)=f(﹣2),结合函数的单调性分析可得答案.【详解】根据题意,f(x)为偶函数,则f(2)=f(﹣2),又由函数f(x)在(﹣∞,﹣1]上是减函数,则f(﹣1)<f()<f(﹣2),即f(﹣1)<f()<f(2),故选:B.【点睛】本题考查函数的奇偶性与单调性的综合应用,注意利用奇偶性分析函数值的关系,属于基础题.4.三个数a=0.312,b=log20.31,c=20.31之间大小关系为()A. a<c<bB. a<b<cC. b<a<cD. b<c<a 【答案】C【解析】【分析】利用指数函数和对数函数的单调性即可得出.【详解】∵0<0.312<0.310=1,log20.31<log21=0,20.31>20=1,∴b<a<c.【点睛】熟练掌握指数函数和对数函数的单调性是解题的关键.5.若2x=3,则x等于()A. log32B. lg2﹣lg3C.D.【答案】D【解析】【分析】化指数式为对数式,再由换底公式得答案.【详解】由2x=3,得x.故选:D.【点睛】本题考查指数式与对数式的互化,考查换底公式的应用,是基础题.6.函数f(x)的零点所在的大致区间()A. (0,1)B. (1,2)C. (2,3)D. (3,4)【答案】B【解析】【分析】根据零点存在性定理,验证所给的区间的两个端点处的函数值是同号还是异号即可.【详解】∵函数f(x),在x>0时,是连续函数且为增函数,f(1)=1﹣2=﹣1<0,f(2)=e﹣1>0,∴函数的零点在(1,2)上,故选:B.【点睛】本题考查函数零点存在性定理的应用,考查了函数单调性的应用,属于基础题.7.设集合A={1,2,4},B={x|x2﹣4x+m=0}.若A∩B={1},则集合B的子集个数为()A. 1B. 2C. 3D. 4【解析】【分析】由题意知1是方程x2﹣4x+m=0的实数根,求出m的值和集合B,即知集合B的子集个数.【详解】集合A={1,2,4},B={x|x2﹣4x+m=0},若A∩B={1},则1是方程x2﹣4x+m=0的实数根,∴m=4﹣1=3,∴集合B={x|x2﹣4x+3=0}={x|x=1或x=3}={1,3},∴集合B的子集有22=4(个).故选:D.【点睛】本题考查了集合的定义与运算问题,是基础题.8.若f(x),则f(x)的定义域为()A. ()B. ()C. ()D. ()∪(1,+∞)【答案】D【解析】【分析】由对数式的真数大于0,分式的分母不为0联立不等式组求解.【详解】由,得x且x≠1.∴f(x)的定义域为()∪(1,+∞).故选:D.【点睛】本题考查函数的定义域及其求法,是基础题.9.函数y的图象是()A. B. C. D.【答案】A【解析】【分析】根据奇偶性,单调性再带入特殊点即可选出答案.【详解】函数y是奇函数,排除B,C;当x时,x2﹣1<0,∴y0,图象在x轴的下方.排除D;故选:A.【点睛】本题考查了函数图象的识别,利用函数的性质及特殊函数值进行排除是解决此类问题的常见方法,是基础题.10.某学校开展研究性学习活动,一组同学获得了下面的一组试验数据:x 1.99 2.8 4 5.1 8y 0.99 1.58 2.01 2.35 3.00现有如下4个模拟函数:①y=0.6x﹣0.2;②y=x2﹣55x+8;③y=log2x;④y=2x﹣3.02.请从中选择一个模拟函数,使它比较近似地反应这些数据的规律,应选()A. ①B. ②C. ③D. ④【答案】C【解析】【分析】根据表中提供的数据,可通过描点,连线,画出图象,看哪个函数的图象能接近所画图象,这个函数便可反应这些数据的规律.【详解】根据表中数据,画出图象如下:通过图象可看出,y=log2x能比较近似的反应这些数据的规律.故选:C.【点睛】本题考查画函数图象的方法:列表,描点,连线,熟悉对数函数、指数函数、一次函数和二次函数的图象是关键.11.已知函数f(x)=x2﹣kx﹣6在[2,8]上是单调函数,则k的取值范围是()A. (4,16)B. [4,16]C. [16,+∞)D. (﹣∞,4]∪[16,+∞)【答案】D【解析】【分析】根据题意,求出二次函数f(x)的对称轴,结合二次函数的性质可得2或8,解可得k 的取值范围,即可得答案.【详解】根据题意,函数f(x)=x2﹣kx﹣6的对称轴为x,若f(x)在[2,8]上是单调函数,必有2或8,解可得:k≤4或k≥16,即k的取值范围是(﹣∞,4]∪[16,+∞);故选:D.【点睛】本题考查二次函数单调性的性质,注意二次函数的性质,属于基础题.12.已知函数f(x)对任意实数x,y恒有f(x+y)=f(x)+f(y)且当x>0,f(x)<0.给出下列四个结论:①f(0)=0;②f(x)为偶函数;③f(x)为R上减函数;④f(x)为R上增函数.其中正确的结论是()A. ①③B. ①④C. ②③D. ②④【答案】A【解析】【分析】根据题意,令y=x=0计算f(0)的值,判断①正确;令y=﹣x,得出f(﹣x)=﹣f(x),f(x)是奇函数,判断②错误;根据x>0,f(x)<0,x=0时f(x)=0,x<0时,f(x)>0,判断f(x)为R上的减函数,③正确,④错误.【详解】对于①,令x=y=0,则f(0)=f(0)+f(0)=2f(0),∴f(0)=0,①正确;对于②,令y=﹣x,则f(x﹣x)=f(x)+f(﹣x)=0,∴f(﹣x)=﹣f(x),f(x)是奇函数,②错误;对于③,当x>0,f(x)<0,令<,f()﹣f()=f(﹣)<0,∴f()<f(),∴f(x)为R上的减函数,③正确;对于④,f(x)为R上增函数,④错误.综上,其中正确的结论是①③.故选:A.【点睛】本题考查了抽象函数的性质与应用问题,要注意抽象函数的性质证明要紧扣定义,是基础题.第Ⅱ卷(共90分)二、填空题:本大题共4小题,每小题5分,共20分.13.已知幂函数y=f(x)的图象经过点(2,)则f(3)=__________【答案】【解析】 【分析】求出幂函数的解析式,然后求解f (3)的值. 【详解】因为幂函数y =f (x )的图象经过点(2,),所以幂函数的解析式为:f (x ),则f (3). 故答案为:.【点睛】本题考查幂函数的解析式的求法,函数值的求法,考查计算能力.14.已知集合A ={x |2x +1<0},B ={x |2x ≤1},则A ∪B =__________ 【答案】【解析】 【分析】可求出A ,B ,然后进行并集的运算即可. 【详解】,B ={x |x ≤0}; ∴A ∪B ={x |x ≤0}. 故答案为:(【点睛】本题考查描述法的定义,考查了指数函数的单调性的应用及并集的运算,属于基础题.15.已知函数f (x ),则______________.【答案】 【解析】 【分析】先利用分段函数及对数运算求出f (),再由指数的运算求出.【详解】∵函数f (x ),∴f()2,∴f(﹣2)=2﹣2.故答案为:.【点睛】本题考查函数值的求法,是基础题,解题时要认真审题,注意分段函数性质的合理运用.16.若函数f(x)同时满足:①对于定义域上的任意x恒有f(x)+f(﹣x)=0,②对于定义域上的任意x1,x2,当x1≠x2时,恒有0,则称函数f(x)为“理想函数”.给出下列四个函数中①f(x);②f(x);③f(x);④f(x),能被称为“理想函数”的有_______________(填相应的序号).【答案】③④【解析】【分析】由题意可得f(x)为定义域上的奇函数和减函数,可得f(x)为“理想函数”,对四个函数,分别考虑其奇偶性和单调性,即可得到正确结论.【详解】由题意可得f(x)为定义域上的奇函数和减函数,可得f(x)为“理想函数”,由①f(x)为{x|x≠0}的奇函数,在x>0,x<0函数递减,不为“理想函数”;由②f(x),可得f(﹣x)=f(x),即f(x)为偶函数,不为“理想函数”;由③f(x)(﹣1<x<1),f(﹣x)+f(x)=log2log2log21=0,可得f(x)为﹣1<x<1的奇函数,且0<x<1时,f(x)=log2(1)递减,即有f(x)在(﹣1,1)递减,为“理想函数”;对于④f(x),即f(x)=﹣x|x|,可得f(x)为R上的奇函数,且为减函数,故④为“理想函数”.故答案为:③④.【点睛】本题考查函数的奇偶性和单调性的判断,注意运用定义法,考查运算能力和推理能力,属于中档题.三、解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤.17.化简求值(1);(2)lg lg25+ln.【答案】(1)3;(2).【解析】【分析】(1)利用指数运算性质即可得出.(2)利用对数运算性质即可得出.【详解】(1)原式3=2+3﹣2=3.(2)原式2.【点睛】本题考查了指数与对数运算性质,考查了推理能力与计算能力,属于基础题.18.已知集合A={x|1<x<6},B={x|2<x<10},C={x|5﹣a<x<a}.(1)求A∪B,(∁R A)∩B;(2)若C⊆B,求实数a的取值范围.【答案】(1)A∪B={x|1<x<10},(∁R A)∩B={x|6≤x<10} ;(2).【解析】【分析】(1)进行并集、交集和补集的运算即可;(2)根据C⊆B,可讨论C是否为空集:C=∅时,5﹣a≥a;C≠∅时,,这样即可得出实数a的取值范围.【详解】(1)∵A={x|1<x<6},B={x|2<x<10},A∪B={x|1<x<10},∁R A={x|x≤1,或x≥6};∴(∁R A)∩B={x|6≤x<10};(2)∵C⊆B;①C=∅时,5﹣a≥a;∴;②C≠∅时,则;解得;综上得,a≤3;∴a的取值范围是(﹣∞,3].【点睛】本题考查描述法的定义,交集、并集和补集的运算,以及子集的定义,考查了分类讨论思想,属于基础题.19.已知函数f(x)是定义在R上的奇函数,且当x<0时,f(x)=x2+2x.现已画出函数f (x)在y轴左侧的图象如图所示,(1)画出函数f(x),x∈R剩余部分的图象,并根据图象写出函数f(x),x∈R的单调区间;(只写答案)(2)求函数f(x),x∈R的解析式.【答案】(1)图象见解析;递减区间为(﹣∞,﹣1],[1,+∞);增区间为(﹣1,1);(2)f(x).【分析】(1)根据题意,由奇函数的性质结合函数f(x)在y轴左侧的图象,即可补充函数图象,据此写出函数的单调区间即可得答案;(2)根据题意,由奇函数的性质可得f(0)=0,设x>0时,则﹣x<0,由函数的解析式可得f(﹣x),结合奇函数的性质可得f(x)的解析式,综合即可得答案.【详解】(1)根据题意,函数f(x)是定义在R上的奇函数,则其图象如图:其递减区间为(﹣∞,﹣1],[1,+∞);增区间为(﹣1,1);(2)根据题意,函数f(x)是定义在R上的奇函数,则f(0)=0,满足f(x)=x2+2x;当x>0时,则﹣x<0,则f(﹣x)=(﹣x)2+2(﹣x)=x2﹣2x,又由函数f(x)是定义在R上的奇函数,则f(x)=﹣f(﹣x)=﹣x2+2x,综上:f(x).【点睛】本题考查函数奇偶性的性质以及应用,涉及函数解析式的计算,关键是补充函数的图象,属于基础题.20.某公司制定了一个激励销售人员的奖励方案:当销售利润不超过10万元时,按销售利润的16%进行奖励;当销售利润超过10万元时,若超出A万元,则超出部分按2log5(A+1)进行奖励.记奖金y(单位:万元),销售利润x(单位:万元)(1)写出该公司激励销售人员的奖励方案的函数模型;(2)如果业务员老张获得5.6万元的奖金,那么他的销售利润是多少万元.【答案】(1)见解析;(2)老张的销售利润是34万元.【解析】(1)直接由题意列出分段函数解析式;(2)由y=5.6,可知x>10,代入第二段函数解析式求解.【详解】(1)由题意得;(2)由x∈(0,10],0.16x≤1.6,而y=5.6,∴x>10.因此1.6+2log5(x﹣9)=5.6,解得x=34(万元).∴老张的销售利润是34万元.【点睛】本题考查简单的数学建模思想方法,考查了分段函数的求值问题,是基础的计算题.21.已知二次函数f(x)=x2+bx+c有两个零点1和﹣1.(1)求f(x)的解析式;(2)设g(x),试判断函数g(x)在区间(﹣1,1)上的单调性并用定义证明;(3)由(2)函数g(x)在区间(﹣1,1)上,若实数t满足g(t﹣1)﹣g(﹣t)>0,求t的取值范围.【答案】(1)f(x)=x2﹣1;(2)见解析;(3)(0,).【解析】【分析】(1)由题意可得﹣1和1是方程x2+bx+c=0的两根,运用韦达定理可得b,c,进而得到函数f(x)的解析式;(2)函数g(x)在区间(﹣1,1)上是减函数.运用单调性的定义,注意取值、作差和变形、定符号以及下结论等;(3)由题意结合(2)的单调性可得﹣1<t﹣1<﹣t<1,解不等式即可得到所求范围.【详解】(1)由题意得﹣1和1是方程x2+bx+c=0的两根,所以﹣1+1=﹣b,﹣1×1=c,解得b=0,c=﹣1,所以f(x)=x2﹣1;(2)函数g(x)在区间(﹣1,1)上是减函数.证明如下:设﹣1<x1<x2<1,则g(x1)﹣g(x2),∵﹣1<x1<x2<1,∴x2﹣x1>0,x1+1>0,x2+1>0,可得g(x1)﹣g(x2)>0,即g(x1)>g(x2),则函数g(x)在区间(﹣1,1)上是减函数;(3)函数g(x)在区间(﹣1,1)上,若实数t满足g(t﹣1)﹣g(﹣t)>0,即有g(t﹣1)>g(﹣t),又由(2)函数g(x)在区间(﹣1,1)上是递减函数,可得﹣1<t﹣1<﹣t<1,解得0<t.则实数t的取值范围为(0,).【点睛】本题考查函数的零点的定义和单调性的判断和证明,考查了单调性的应用,考查运算能力和推理能力,属于中档题.22.已知奇函数f(x)=a(a为常数).(1)求a的值;(2)若函数g(x)=|(2x+1)f(x)|﹣k有2个零点,求实数k的取值范围;(3)若x∈[﹣2,﹣1]时,不等式f(x)恒成立,求实数m的取值范围.【答案】(1);(2)k∈(0,1);(3)[4,+∞).【解析】【分析】(1)由f(x)为R上的奇函数可得f(0)=0,解方程可得a;(2)由题意可得方程|2x﹣1|﹣k=0有2个解,即k=|2x﹣1|有2个解,即函数y=k和y=|2x﹣1|的图象有2个交点,画出图象即可得到所求范围;(3)由题意可得m≥2﹣x x∈[﹣2,﹣1]时恒成立,由g(x)=2﹣x在R上单调递减,即可得到所求范围.【详解】(1)f(x)是定义在R上的奇函数,可得f(0)=a﹣1=0,即a=1,可得f(x)=1,由f(﹣x)+f(x)0,即f(x)为R上的奇函数,故a=1;(2)函数g(x)=|(2x+1)f(x)|﹣k有2个零点⇔方程|2x﹣1|﹣k=0有2个解,即k=|2x﹣1|有2个解,即函数y=k和y=|2x﹣1|的图象有2个交点,由图象得k∈(0,1);(3)x∈[﹣2,﹣1]时,f(x),即1,即m≥2﹣x在x∈[﹣2,﹣1]时恒成立,由g(x)=2﹣x在R上单调递减,x∈[﹣2,﹣1]时,g(x)的最大值为g(﹣2)=4,则m≥4,即m的取值范围是[4,+∞).【点睛】本题考查函数的奇偶性和单调性、以及函数零点个数、函数恒成立问题解法,考查数形结合思想和运算能力,属于中档题.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A.(-2,4)B.(-1,4) C.(-2,3)D.(-1,3)
6.下列函数中,是奇函数且在(0,+∞)上单调递增的是
A. B. C. D.
7.函数 的零点所在的区间为
A.(-1,0)B. C. D.
8.如果函数 在区间 上是增函数,那么实数a的取值范围是
A. B.a≤-3 C.a≥5 D.a≤-7
17.(本小题满分10分)
........5分
.........10分
18.(本小题满分12分)
(Ⅰ)当 时,
∴ ..........2分
.............4分
∴ .................6分
(Ⅱ)∵ ................ 7分
当B=∅时, .....................8分
第II卷(非选择共90分)
2、填空题:本大题共4小题,每小题5分,共20分。
13.已知幂函数 的图像经过点 ,则 .
14.已知函数 ,若 ,则该函数的值域为.
15.已知 是R上的增函数,则 的取值范围是__________.
16.给出下列说法
①函数 与函数 互为反函数;
②若集合 中只有一个元素,则 ;
∴ ...... 4分
不等式的解集为 ...........5分
(Ⅲ)解法一∵
(1)当 时,则 在 上没有零点......6分
(2)当 时
①方程 在 上若 ,解得:
又 ∈ ,∴ . ……7分
②方程 在 上只有一个零点,且 ,则有
解得: 又经检验: 时, 在 上都有零点;
∴ …………………9分
③方程 在 上有两个相异实根,则有:
1.已知全集 ,集合 ,集合 ,则集合 =
A. B. C. D.∅
2.函数 的定义域是
A.(0,2) B.[0,2] C.(2,+∞)D.(0,+∞)
3.下列两个函数是相等函数的是
A. B. C. D.
4.已知 ,则 等于
A. B. C. D.
5.当a>0,且a≠1时, 的图像恒过定点P,则点P坐标为
即 ,
解得: ............6分
(Ⅱ)设经过 年森林面积为 ,则 …………8分
…………………10分
故到今年为止,已砍伐了5年...................12分
22.(本小题满分12分)
解:(Ⅰ)∵方程 的一个实数根为2,
∴ ,∴ ............. 2分
(Ⅱ)∵ 时,
又∵
19.(本小题满分12分)
已知函数 是定义在 上的偶函数,当 时, ,
(Ⅰ)求函数 的解析式;
(Ⅱ)在给定的坐标系中画出函数 在 上的图像(不用列表);
(Ⅲ)讨论直线 与 的图象的交点个数.
20.(本小题满分12分)
函数 是定义在 上的奇函数,且
(Ⅰ)求函数的解析式;
(Ⅱ)证明函数 在 上是增函数.
当B=∅时
解得 ∴ ....................11分
综上所述:实数m的取值范围为 ...............12分
19.(本小题满分12分)
解(Ⅰ)令
................2分
是偶函数
..................4分
. ............................5分
(Ⅲ)若函数 在区间 上有零点,求 的取值范围.
2019—2020学年第一学期期中检测
高一数,共60分
题号
1
2
3
4
5
6
7
8
9
10
11
12
答案
A
C
D
B
D
C
B
A
D
A
C
A
二、填空题:本大题共4小题,共20分
13. 14. 15. 16.①④
三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤
2019—2020学年第一学期期中检测
高一数学试卷
(满分:150分;时间:120分钟)
注意事项:1.答卷前,考生务必将班级、姓名、座号填写清楚。
2.每小题选出答案后,填入答案卷中。
3.考试结束,考生只将答案卷交回,试卷自己保留。
第I卷(选择题共60分)
1、选择题:本大题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
(Ⅱ)
.................................... 8分
(Ⅲ)设交点个数为
当 时, ;
当 时, ;
当 时, ;
当 时, ;
当 时, ......................12分
20.(本小题满分12分)
解:(Ⅰ)∵ 为定义在 上奇函数,
∴ .............2分
21.(本小题满分12分)
一片森林原来面积为 ,计划每年砍伐一些树,使森林面积每年比上一年减少 ,10年后森林面积变为 ,已知到今年为止,森林面积为 .
(Ⅰ)求 的值;
(Ⅱ)到今年为止,该森林已砍伐了多少年?
22.(本小题满分12分)
已知函数
(Ⅰ)若方程 的一个实数根为2,求 的值;
(Ⅱ)当 且 时,求不等式 的解集;
又∵ ∴ ...............4分
∴ ................. 6分
(Ⅱ)任设 ,
则 ………………7分
= ………………9分
∵ ∴ ………11分
∴ ,即
∴ 在 上是增函数......................12分
21.(本小题满分12分)
解:(Ⅰ)由题意得: ,………………4分
解得: ………………11分
综合①②③可知:t的取值范围为 . …………………12分
(Ⅲ)解法二∵
由 得,
设 则
令 当 时 是减函数,
当 时, 是增函数,且
的取值范围为:
③若 ,则 ;
④函数 的单调减区间是 ;
其中所有正确的序号是___________ .
3、解答题(17题10分,18~22题每题12分,总分70分)
17.(本小题满分10分)
求下列各式的值:
(Ⅰ)
(Ⅱ)
18.(本小题满分12分)
已知集合 ,集合 .
(Ⅰ)当 时,求 , ;
(Ⅱ)若 ,求实数m的取值范围.
9.函数 的图象大致是
A. B. C. D.
10.已知 , , ,那么a,b,c的大小关系是
A.a>b>cB.b>a>cC.c>a>bD.a>c>b
11.已知 是定义域为 的奇函数,且在 上是减函数,那么不等式 的解集是
A. B. C. D.
12.已知 是函数 的一个零点,若 , 则
A. .B
C. D.
相关文档
最新文档