城市轨道交通牵引供电系统分析

合集下载

城市轨道交通牵引供电系统电能损耗分析

城市轨道交通牵引供电系统电能损耗分析

城市轨道交通牵引供电系统电能损耗分析城市轨道交通牵引供电系统是确保城市轨道交通车辆正常运行的关键部分,其电能损耗分析对于提高能源利用效率、降低运营成本具有重要意义。

本文将从城市轨道交通牵引供电系统的组成、电能损耗的主要因素、电能损耗的计算方法以及降低电能损耗的策略等方面进行探讨。

一、城市轨道交通牵引供电系统的组成城市轨道交通牵引供电系统主要由变电所、接触网(或第三轨)、牵引变流器、牵引电动机等组成。

变电所负责将高压交流电转换为适合轨道交通车辆使用的低压直流电或交流电。

接触网或第三轨则是将电能传输到车辆的媒介。

牵引变流器将变电所提供的电能转换为适合牵引电动机使用的电能形式,而牵引电动机则是将电能转换为机械能,驱动车辆运行。

二、电能损耗的主要因素在城市轨道交通牵引供电系统中,电能损耗主要发生在以下几个方面:1. 变电所的转换损耗:在高压交流电转换为低压直流电或交流电的过程中,由于变压器、整流器等设备的损耗,会产生一定的电能损失。

2. 接触网或第三轨的传输损耗:电能在通过接触网或第三轨传输到车辆的过程中,由于电阻、电感等因素的影响,也会产生电能损失。

3. 牵引变流器的转换损耗:牵引变流器在将电能转换为适合牵引电动机使用的电能形式时,由于器件的损耗,同样会产生电能损失。

4. 牵引电动机的损耗:牵引电动机在将电能转换为机械能的过程中,由于铜损、铁损等因素的影响,也会产生电能损失。

5. 车辆运行中的损耗:车辆在运行过程中,由于空气阻力、摩擦力等因素的影响,也会消耗一部分电能。

三、电能损耗的计算方法电能损耗的计算方法通常包括理论计算和实测两种方式。

理论计算主要是根据牵引供电系统的组成和各部分的损耗特性,通过数学模型进行计算。

实测则是通过在实际运行中测量各部分的电能损耗,然后进行分析。

具体计算方法如下:1. 变电所损耗计算:可以通过测量变压器的输入功率和输出功率,计算出变压器的损耗功率。

2. 接触网或第三轨损耗计算:可以通过测量接触网或第三轨的电流和电压,计算出线路的损耗功率。

城市轨道交通牵引供电系统谐波分析

城市轨道交通牵引供电系统谐波分析

城市轨道交通牵引供电系统谐波分析随着城市轨道交通的发展,牵引供电系统在保障列车运行安全和稳定性方面起着至关重要的作用。

随之而来的问题也日益显现,其中之一便是谐波问题。

谐波是指在交流电网中产生的频率是基波频率的整数倍的电压和电流成分,由于牵引供电系统中存在大量的电机、变频器等非线性负载,谐波在其工作中难免会产生,并且会对系统的稳定性和设备的寿命造成影响,因此对于牵引供电系统中的谐波进行分析和控制显得尤为重要。

对于牵引供电系统中谐波的来源需要进行详细的了解。

在城市轨道交通中,列车牵引系统是整个系统中耗电最大的部分,其主要由牵引变流器、牵引电机等组成,其中变频器是主要的谐波源。

当列车从静止状态加速至工作速度时,会导致变频器系统的工作频率从极低的频率变化至很高的频率,这种频率的变化带来的是非常复杂的谐波波形。

除变频器外,城市轨道交通的供电系统中还包括变电站、接触网、牵引线路等多个环节,这些环节中的负载也会产生谐波。

城市轨道交通牵引供电系统中谐波的产生是多方面的,需要全面的分析。

对于牵引供电系统中谐波的影响进行详细的研究。

谐波会对系统中的设备和设施产生一系列的负面影响,包括设备的损坏、系统的稳定性下降、电磁干扰等。

谐波会对变频器等非线性负载本身产生影响,导致设备的性能下降,甚至烧坏。

谐波会加大供电系统的损耗,进一步减短设备的使用寿命,增加了维护和更换的成本。

谐波还会在系统中引起电压、电流等参数的波动,对系统的稳定性和功率因数造成影响,甚至对其他设备产生电磁干扰,影响系统的正常运行。

针对城市轨道交通牵引供电系统中谐波的分析,需要采取一系列有效的控制措施。

首先是从源头上控制谐波的产生。

通过选择合适的牵引电机和变频器,减小非线性负载对系统中谐波的产生,从而减小对供电系统的影响。

其次是在系统中加入谐波滤波器,对系统中的谐波进行衰减。

谐波滤波器可以将谐波电压和电流滤除,减小对其他设备的影响,提高系统的稳定性和安全性。

城市轨道交通供电系统新技术探讨

城市轨道交通供电系统新技术探讨

城市轨道交通供电系统新技术探讨城市轨道交通作为城市重要的公共交通工具,其供电系统的稳定性和效率对于整个交通系统的运行至关重要。

随着科技的不断发展,城市轨道交通供电系统的技术也在不断创新和探索,以适应城市交通的不断发展和变化,提高供电系统的效率和可靠性,同时降低能源消耗和环境影响。

本文将从新技术的角度探讨城市轨道交通供电系统的发展趋势和挑战,分析新技术对城市轨道交通供电系统的影响,并展望未来的发展方向。

一、城市轨道交通供电系统现状分析城市轨道交通供电系统是指通过电力来给地铁、轻轨等城市交通工具供给动力的系统,其主要包括接触网、供电装置、牵引变流器和牵引电机等部分。

目前,我国城市轨道交通供电系统基本上采用交流供电方式,接触网通常采用25kV交流电供电,牵引变流器将接触网的交流电转化为直流电,供给牵引电机。

这种供电系统具有功率大、传输能力强、效率高等优点,但也存在着能源消耗高、电气设备寿命较短、维护成本高等问题。

在城市轨道交通运营中,供电系统的稳定性和可靠性对于列车的正常运行具有重要影响。

传统的供电系统在面对城市交通线路复杂、运营密集的情况下,往往难以满足对供电质量和效率的高要求。

而随着城市轨道交通的快速发展,传统供电系统的局限性已经凸显出来,亟待新技术的引入和创新,以应对城市轨道交通供电系统的挑战。

1. 供电系统智能化技术随着信息技术的飞速发展,智能化技术已经成为城市轨道交通供电系统改造的重要方向。

智能化技术通过对供电系统的监测、控制和管理,实现对供电系统运行状态的实时监测和分析,并能够智能化地对故障进行诊断和处理。

比如利用传感器、物联网技术等实现对接触网、供电装置等设备的在线监测,及时发现故障隐患,避免故障对列车运行的影响。

智能化技术还可以实现对供电设备的远程控制和优化调节,改善供电系统的运行效率和稳定性。

为了降低城市轨道交通供电系统的能源消耗和环境影响,高效节能供电技术已成为供电系统改造的重要方向之一。

城市轨道交通供电系统及电力技术分析

城市轨道交通供电系统及电力技术分析

城市轨道交通供电系统及电力技术分析【摘要】本文通过对城市轨道交通供电系统及电力技术的分析,探讨了其在城市轨道交通发展中的重要性和作用。

首先介绍了城市轨道交通的现状和研究背景,然后详细描述了城市轨道交通供电系统的组成与作用,以及现有的电力技术应用情况。

接着分析了供电系统存在的问题与挑战,并探讨了电力技术在城市轨道交通中的应用前景。

最后对城市轨道交通供电系统及电力技术的未来发展趋势和对城市轨道交通可持续发展的影响进行了总结和展望。

通过本文的研究,可以为城市轨道交通领域的发展提供技术支持和决策参考,推动城市轨道交通的可持续发展。

【关键词】城市轨道交通、供电系统、电力技术、发展现状、问题、挑战、应用、发展趋势、未来方向、可持续发展1. 引言1.1 城市轨道交通供电系统及电力技术分析的重要性城市轨道交通供电系统及电力技术分析的重要性在城市轨道交通系统中,供电系统是不可或缺的重要组成部分。

供电系统的稳定性和效率直接影响到城市轨道交通的正常运行和安全性。

通过对城市轨道交通供电系统及电力技术的分析,可以更好地了解这些系统的结构和运行机理,帮助运营管理者更好地指导和监控城市轨道交通系统的运行。

通过对电力技术的分析和研究,可以不断提高城市轨道交通系统的能效和可靠性,降低能源消耗和运营成本,促进城市轨道交通系统的可持续发展。

深入研究城市轨道交通供电系统及电力技术,对于提升城市轨道交通系统的运行效率、改善城市交通运输环境,具有非常重要的意义。

1.2 城市轨道交通发展现状随着城市化进程的加快和交通需求的增长,城市轨道交通系统在各大城市中扮演着越来越重要的角色。

目前,世界各地的城市都在积极建设和完善城市轨道交通网络,以提高城市交通效率,缓解交通拥堵,改善环境质量。

在中国,城市轨道交通的发展也取得了明显的成就。

据统计,截至2020年底,全国共有40个城市拥有城市轨道交通系统,运营里程超过8000公里,成为世界上轨道交通发展最快的国家之一。

城市轨道交通牵引供电系统谐波分析

城市轨道交通牵引供电系统谐波分析

城市轨道交通牵引供电系统谐波分析随着城市轨道交通的不断发展,城市轨道交通牵引供电系统也逐步得到完善。

牵引供电系统是城市轨道交通的重要组成部分,其主要作用是为列车提供电力,使其运行平稳快捷,并保证乘客的安全。

然而,在实际运行过程中,牵引供电系统中存在着谐波问题,会对系统造成一定的影响,本文主要对城市轨道交通牵引供电系统的谐波进行分析。

首先,介绍一下谐波的概念。

谐波是指在周期性电路中,频率是原有基波频率整数倍的周期性电信号,其波形呈正弦曲线。

在城市轨道交通系统中,由于列车电机的采样控制、无感自持续电机等因素的影响,会在系统中引入谐波电流和电压。

这些谐波电流和电压会造成牵引变流器、牵引逆变器、隔离变压器等设备的磁、电、温等方面的问题,对设备的寿命产生影响。

其次,谐波的来源很多,主要包括列车电机、牵引变流器、牵引逆变器、隔离变压器、线路等。

其中列车电机是主要的谐波源,由于各个相之间的差异性,会产生不对称的电流波形,引入谐波电流。

当谐波电流通过交流电源、线路和变压器时,会产生谐波电压。

此外,牵引变流器和牵引逆变器中的开关器件会产生大量高频电压、电流,进一步导致各种电磁干扰。

同时,隔离变压器中的漏电感值也会受到谐波电流的影响而发生变化。

最后,对城市轨道交通牵引供电系统谐波的分析结果进行总结。

谐波问题会影响到城市轨道交通供电系统和列车的可靠性和安全性,需要进行有效的控制。

一方面,可以通过在设计阶段加入滤波器、降低变压比等方式来减少谐波电流和谐波电压。

另一方面,可以通过进行谐波电流监测、降低变流器和逆变器的开关频率等措施来减少谐波的影响。

因此,城市轨道交通牵引供电系统的谐波分析具有重要的理论和实际意义,对保证城市轨道交通的运行安全和提高设备的寿命具有积极的作用。

城市轨道交通牵引供电系统谐波分析

城市轨道交通牵引供电系统谐波分析

城市轨道交通牵引供电系统谐波分析轨道交通系统已经成为现代城市交通运输的重要组成部分,其牵引供电系统作为轨道交通载体的重要组成部分,也成为了城市轨道交通运输的核心技术之一。

谐波分析是牵引供电系统设计和运行中的重要技术之一,对于提高牵引供电系统的稳定性和可靠性具有重要意义。

城市轨道交通的牵引供电系统是通过供电轨来为列车提供电力,供电轨通常由钢轨和额外的导线组成。

当列车运行时,供电轨上会出现交流电压,由于列车的牵引电机和其他设备的特性,会导致谐波电流和谐波电压的产生。

比如列车电机的非线性特性、整流装置的谐波过滤等都会导致牵引供电系统中的谐波。

1. 对设备的影响供电系统中的谐波会对设备产生一定的影响,如电机、变压器、电容器等设备都会受到谐波的影响,可能导致电磁噪音、热损耗增加、设备寿命缩短等问题。

谐波会导致系统中电能的损耗增加,进而导致能耗增加,从而提高了牵引供电系统的运行成本。

由于谐波的存在,可能会对其他系统产生影响,如控制系统、通信系统等,可能会导致设备的故障或不稳定。

谐波分析是针对牵引供电系统中的谐波进行的一种技术手段,通过对牵引供电系统中的谐波进行分析,可以得到系统中谐波的分布情况、谐波谐振点等重要信息。

具体的谐波分析方法主要包括以下几种:1. 理论分析通过对牵引供电系统的结构和工作原理进行分析,从而得到系统中谐波产生的机理和规律。

2. 实验测试通过在实际的牵引供电系统中进行测试,获取牵引供电系统中的谐波特性数据,如谐波电流、谐波电压等。

3. 数值模拟通过建立牵引供电系统的数学模型,利用计算机软件进行仿真,得到系统中谐波的分布情况和谐波谐振点等重要信息。

谐波分析仪可以用于测量牵引供电系统中的谐波电流和谐波电压,从而了解系统中谐波的分布情况和特性。

2. 谐波滤波器谐波滤波器可以用于对牵引供电系统中的谐波进行滤波,从而减小系统中谐波的影响,提高系统的稳定性和可靠性。

3. 谐波仿真软件通过对城市轨道交通牵引供电系统进行谐波分析,可以了解系统中谐波的分布情况和特性,从而采取相应的技术手段对谐波进行控制和消除,提高供电系统的稳定性和可靠性,减少系统中谐波对设备和其他系统的影响,降低系统的运行成本,提高能源利用率和运行效率,保障城市轨道交通的安全运行。

城市轨道交通牵引供电系统谐波分析

城市轨道交通牵引供电系统谐波分析

城市轨道交通牵引供电系统谐波分析随着城市轨道交通的发展,牵引供电系统作为轨道交通的重要组成部分,其质量和稳定性对于整个轨道交通系统的运行至关重要。

牵引供电系统中随之产生的谐波问题,却给轨道交通系统的稳定性和运行效率带来了一定的影响。

对城市轨道交通牵引供电系统的谐波进行分析和研究,对于提高轨道交通系统的稳定性和电能质量具有重要意义。

1. 谐波的来源城市轨道交通系统的牵引供电系统通常采用交流电供电,而牵引系统中的电机和逆变器等装置工作时会产生大量的谐波。

牵引供电系统采用的整流装置、滤波器等设备也会引入谐波。

城市轨道交通系统中的非线性负载如空调、照明等设备也会对牵引供电系统产生谐波扰动。

这些谐波扰动将对轨道交通系统的电能质量和稳定性产生影响。

2. 谐波对牵引供电系统的影响谐波对牵引供电系统的影响主要表现在以下几个方面:(1)电能质量受到影响。

谐波会导致电压波形失真、电压不平衡、频率偏差等问题,影响到电能质量的稳定性。

(2)设备损耗增加。

谐波会导致设备内部电流增大、温升升高,加速了设备的老化和损坏。

(3)系统容量减少。

由于谐波的存在,轨道交通系统的供电系统容量会减少,影响到系统的运行效率和稳定性。

(4)电磁干扰加剧。

谐波会导致设备之间的电磁干扰加剧,影响到系统的正常运行。

3. 谐波分析方法对城市轨道交通牵引供电系统的谐波进行分析,可以采用以下几种方法:(1)测量分析法。

通过在系统关键点进行电压、电流等参数的实时测量,对系统中的谐波进行分析和评估。

(2)仿真计算法。

利用电磁暂态仿真软件对牵引供电系统进行建模,并进行谐波扰动的仿真计算和分析。

(3)实验验证法。

通过在实际轨道交通系统中设置实验台,对牵引供电系统中的谐波进行实际验证和观测。

4. 谐波治理方法针对城市轨道交通牵引供电系统中的谐波问题,可以采用以下几种方法进行治理:(1)利用滤波器进行谐波消除。

在牵引供电系统中设置合适的谐波滤波器,对系统中的谐波进行消除和抑制。

城市轨道交通牵引供电及电力技术分析

城市轨道交通牵引供电及电力技术分析

城市轨道交通牵引供电及电力技术分析摘要:城市轨道交通是一种新型的交通方式,得到了更多的应用。

在城市轨道交通牵引供电系统中,包含着直流供电以及交流供电两种。

通过使用基于接触网的供电网络技术、基于第三轨的供电技术等电力技术,使城市交通牵引供电系统的运行更加安全,耗能更低,电能传输的效率更高。

关键词:城市轨道交通;牵引供电;电力技术1城市轨道交通牵引供电系统分析1.1城市轨道交通牵引交流供电系统与城市轨道交通牵引直流供电系统不同,城市轨道交通牵引交流供电系统在搭建中使用的是单向连接的方式。

将两台变压器同时安装在变电站内,并使用双绕组的单项变压。

这样的搭建方式能够使得整个结构呈现出开口的三角形。

低压端口位于接地一侧,高压端口在电网接入端,其他的端口则要与牵引母线进行连接。

在进行城市轨道交通牵引交流供电系统的建设中,降压系统要设置在供电系统的终端以及线路的区间,这样的设置能够为城市轨道交通牵引交流供电系统的正常运行提供保障,尤其是对于线路中的照明系统的工作进行了更好的保护。

城市轨道交通牵引交流供电系统系统上的设备都要具有较强的耐磨性,使得供电系统能够更好的抵御运行中较大的瞬间接触压力。

1.2直流制牵引供电就我国目前阶段的供电方式来说,大部分的城市为了保障为人们的日常工作和生活提供稳定的电流和电压,都会在城市的变电站、牵引网、接触网的安置和运行过程中,采取1500V 直流电的供电方式。

而双轨道交通牵引作为一种对用电需求更高的城市轨道交通方式,需要在实际的运行过程中采取两边都供电的模式,这一模式的采用是为了防止当一边的供电系统出现故障时,另一边的供电系统能够接替进行工作,从而保障城市轨道交通的正常运行,不会造成城市交通故障,对使用者也是一种保障。

此外,还会辅助以直流牵引供电网的保护,借助杂散电流的保护方法,将使用的电能、电压、电能等均匀地分配到每一个运输网络,从而保证每一个用电器都能够保持正常的工作,而且对于长距离的运输线路来说,也具有一定的保障作用,不会由于线路过长而出现故障。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

城市轨道交通牵引供电系统分析
摘要:近年来,轨道交通的运输规模不断增加,给人们的出行带来更加便捷
体验的同时,也引起了很多人的担忧。

因为交通运输规模的增加必然会导致车辆
流动量的增加,这也给城市轨道交通牵引供电系统带来了全新的挑战。

这需要不
断引进新的技术,不断消化吸收,努力进行创新和再创新,同时对轨道交通建设
的标准与质量的认识也不断提高,所以对于其关键技术进行研究是有必要的。

关键词:城市;轨道交通;牵引供电系统
1地铁车辆供电系统构成
为了保证地铁的顺利运营,我们必须做好地铁供电系统的运行工作。

其关键
作用是为地铁及其电气设备供电。

在地铁供电系统中,关键可分为高压电源供电
和地铁内部结构供电。

高压电源可以立即应用于市政工程的用电。

在供电的情况下,一般采用混合供电方式、分散供电方式和集中供电方式。

地铁内部结构的供
电分为照明供电和牵引供电。

牵引供电的目的是将高压交流电源转换为地铁运营
所需的直流稳压电源。

然后根据同轴电缆将其发送到地铁-轨道交通接触网,地
铁在用电过程中会立即从轨道交通接触网获得必要的用电。

在地铁照明灯具供电
系统中,不仅需要给照明灯具供电,还需要给离心泵和离心风机供电。

该供电系
统主要由电源线及其降压配电设备组成。

2牵引供电系统的关键技术
2.1 双向变流装置
双向变流装置通常由交流开关柜、变压器柜、双向变流器柜、直流开关柜和
负极柜组成,整体接线方案与现有二极管整流机组的相一致。

其交流侧通过35
kV开关柜被接于牵引变电所内的35 kV母线段;直流侧正极通过1500V直流开关
柜被接于牵引变电所内的直流母线段正极,负极仍保留直流控制柜内的隔离开关,且被接于牵引变电所内的直流母线段负极。

传统二极管整流机组牵引供电方式中直流侧短路保护主要依赖直流进线柜和
直流馈线柜的保护设施。

直流进线柜保护包含大电流脱扣保护和逆流保护;直流
馈线柜保护包含大电流脱扣保护、ΔI保护、di/dt保护、过电流保护和双边联
跳保护,各种保护相互配合,从而实现牵引网近、中、远端短路的全范围保护。

采用双向变流器后,直流系统保护配置方案维持与二极管整流机组的保护配置方
案一致。

双向变流器采用PWM变流器,其中IGBT的短路电流承受能力远不及整
流机组用的平板式二极管。

为了在短路工况下保证双向变流器的安全,需要从短
路电流的旁路、分流、快速转移控制以及旁通回路与IGBT回路互不干扰等方面
进行设计。

2.2能馈式牵引供电系统功能
1)牵引回馈功能的工作原理是在直流侧和交流侧之间安装一个大功率逆变器,将制动动能回馈到交流侧。

其实质是一种具有较高安全系数、高功率和低谐
波电流的能量收集和回馈设备。

由于二极管整流模块的输出电压在正常情况下难
以控制,因此在地铁运营的情况下,电源电压将根据乘客总数和移动速度发生很
大变化。

2)在地铁牵引系统无功补偿对策软件中,无功补偿是现阶段重点科研的具
体内容。

其分析的主要目的是根据整个系统的概况和特点简化牵引系统软件,合
理完成信息采集功能模块和命令传输功能,合理有效地改善无功补偿中存在的问题。

根据高压互联网中的无功负荷可以看到相应的规律,因此接地电容器应根据
其非常大的情况进行无功补偿。

2.3电缆牵引网
一般城轨交通牵引供电系统是由DC 1500 V供电,在某些条件下换成750 V。

但是经过实践发现,如果使用交流电实施供电,轻轨和地铁的牵引网应设计上下
行两条线路,采取并行模式,配置一条备用线路,在设计时备用线路也同样工作。

这样两条线路互相作为对方的备用线路,可以大大提高系统运行的可靠性。

2.4牵引网分段供电与保护
城轨交通中的电缆牵引网较多,其特点有可支持长距离传输、可输送电能大等,应用十分广泛。

但是如果选择上下行并行线路的设计方式,会增加系统的架
设成本,而且系统结构比较复杂,一旦其中一环出现故障,很容易引起其他环节
也出现故障。

基于此,选择分段供电模式,划分区段进行供电。

设计时,也可以
根据要求一起或分段设计。

因此,一般情况下,为方便进行施工,是在变压器处
进行统一分段,然后在其他区间线路中进行分开分段。

通过这种方式和设计,可
以避免某段出现问题后影响到其他段,分段实施保护,从而提升系统运行的可靠性,减少出现故障的风险。

2.5牵引供电智能运维系统
根据对牵引供电智能运维若干子功能系统的架构情况分析可见,牵引供电智
能运维系统功能分布在检修中心、控制中心、工区、车控室、变电所等处,由此
其总体架构可以分为四级,分别是线网检修中心(根据地区管理模式决定设置与否)、线路检修中心(包括控制中心)、工区、车站(车控室和变电所)。

同时,通过对数据资源分布情况的分析,可以考虑将牵引供电智能运维系统的中央级系
统布设在线网检修中心内,在线路检修中心(控制中心)、工区、车站(车控室
和变电所)内根据实际需要设置监视终端或直接利用子系统终端。

结论
随着中国经济的发展,城市轨道交通基础设施的运营规模不断扩大,给每个
人的交通带来了更加便捷的体验。

然而,随着城市轨道交通的发展趋势,业务规
模的不断扩大也给供电系统带来了巨大的考验。

针对这种情况,我们应积极、科
学地研究城市轨道交通直流牵引供电系统的核心技术,并加以完善,及时调整和
完善供电系统运行中存在的不足,以确保供电系统的稳定性,从而确保城市轨道
交通的成功稳定运行,为我们的交通提供便利的同时,充分保证大家的出行安全。

参考文献
[1]张戬,刘炜,周瑞兵,张扬鑫,李由,谢文君.基于双向变流装置的城市轨道
牵引供电系统潮流计算[J].中国铁道科学,2020,41(01):92-98.
[2]何亮,吴浩,李思文,张扬鑫,崔洪敏,刘炜.基于EMD(经验模态分解)奇异值熵的城市轨道交通直流牵引供电系统短路故障辨识[J].城市轨道交通研
究,2021,24(09):88-93.
[3]林珊,王洪杰.突发灾害下城市轨道交通牵引供电系统的适用性分析[J].城市轨道交通研究,2021,24(07):165-168.
[4]李群湛.城市轨道交通交流牵引供电系统及其关键技术[J].西南交通大学学报,2015,50(02):199-207.。

相关文档
最新文档