简述原子吸收光谱仪的用途

合集下载

实验室原子吸收光谱仪的分类

实验室原子吸收光谱仪的分类

实验室原子吸收光谱仪的分类
原子吸收光谱仪是实验室中常用的一种分析仪器,可以用于定量分析各种元素的含量。

根据不同的工作原理和应用范围,原子吸收光谱仪可以分为多种类型。

1. 火焰原子吸收光谱仪
火焰原子吸收光谱仪是最常用的原子吸收光谱仪之一,它使用氢火焰或乙炔火焰作为样品吸收的光谱源。

该仪器适用于分析大部分金属元素、氢和碱类元素等,常用于环境污染、食品安全、医药卫生等领域的元素分析。

2. 石墨炉原子吸收光谱仪
石墨炉原子吸收光谱仪使用石墨炉作为样品吸收的光谱源。

该仪器相比火焰原子吸收光谱仪具有灵敏度高、检出限低、分析速度快等优点,但适用范围比较窄,默认只能分析金属元素,且有些元素需要经过预处理才能进行分析。

3. 恒温炉原子吸收光谱仪
恒温炉原子吸收光谱仪和石墨炉原子吸收光谱仪类似,也是通过加热将液态样品转化为气态进行原子吸收分析。

但是恒温炉原子吸收光谱仪的热源是电热棒,可以对样品加热恒定温度,不需要像石墨炉那样反复加热冷却,因此分析精度更高。

4. 淋滤吸附原子吸收光谱仪
淋滤吸附原子吸收光谱仪是一种专门用于分析痕量元素的仪器,常用于水质分析,在环境污染领域也有广泛应用。

该仪器的样品前处理比较复杂,需要使用淋滤吸附剂将样品中的目标元素富集到吸附剂表面,然后再进行原子吸收分析。

以上是常见的几种原子吸收光谱仪,它们各有优缺点,选择适合的仪器应根据实际的分析需求来进行。

除了以上几种,还有分子吸收光谱仪、光弹吸收光谱仪等原子吸收光谱仪的变种。

无论是哪种类型的原子吸收光谱仪,在使用前都需要对仪器进行校准和质量控制,以确保分析结果的准确性和可靠性。

原子吸收光谱仪原理、结构、作用及注意事项

原子吸收光谱仪原理、结构、作用及注意事项

原子吸收光谱仪原理、结构、作用及注意事项1。

原子吸收光谱的理论基础原子吸收光谱分析(又称原子吸收分光光度分析)是基于从光源辐射出待测元素的特征光波,通过样品的蒸汽时,被蒸汽中待测元素的基态原子所吸收,由辐射光波强度减弱的程度,可以求出样品中待测元素的含量.1 原子吸收光谱的理论基础1。

1原子吸收光谱的产生在原子中,电子按一定的轨道绕原子核旋转,各个电子的运动状态是由4个量子数来描述。

不同量子数的电子,具有不同的能量,原子的能量为其所含电子能量的总和。

原子处于完全游离状态时,具有最低的能量,称为基态(E0).在热能、电能或光能的作用下,基态原子吸收了能量,最外层的电子产生跃迁,从低能态跃迁到较高能态,它就成为激发态原子。

激发态原子(Eq)很不稳定,当它回到基态时,这些能量以热或光的形式辐射出来,成为发射光谱。

其辐射能量大小,用下列公式示示:由于不同元素原子结构不同,所以一种元素的原子只能发射由其E0与Eq决定的特定频率的光。

这样,每一种元素都有其特征的光谱线.即使同一种元素的原子,它们的Eq 也可以不同,也能产生不同的谱线.原子吸收光谱是原子发射光谱的逆过程。

基态原子只能吸收频率为ν=(Eq-E0)/h的光,跃迁到高能态Eq。

因此,原子吸收光谱的谱线也取决于元素的原子结构,每一种元素都有其特征的吸收光谱线。

原子的电子从基态激发到最接近于基态的激发态,称为共振激发。

当电子从共振激发态跃迁回基态时,称为共振跃迁。

这种跃迁所发射的谱线称为共振发射线,与此过程相反的谱线称为共振吸收线。

元素的共振吸收线一般有好多条,其测定灵敏度也不同。

在测定时,一般选用灵敏线,但当被测元素含量较高时,也可采用次灵敏线。

1.2 吸收强度与分析物质浓度的关系原子蒸气对不同频率的光具有不同的吸收率,因此,原子蒸气对光的吸收是频率的函数。

但是对固定频率的光,原子蒸气对它的吸收是与单位体积中的原子的浓度成正比并符合朗格-比尔定律。

当一条频率为ν,强度为I0的单色光透过长度为ι的原子蒸气层后,透射光的强度为Iν,令比例常数为Kν,则吸光度A与试样中基态原子的浓度N0有如下关系:在原子吸收光谱法中,原子池中激发态的原子和离子数很少,因此蒸气中的基态原子数目实际上接近于被测元素总的原子数目,与式样中被测元素的浓度c成正比.因此吸光度A与试样中被测元素浓度c的关系如下:A=Kc式中K—-—吸收系数.只有当入射光是单色光,上式才能成立。

原子吸收光谱仪原理

原子吸收光谱仪原理

原子吸收光谱仪原理原子吸收光谱仪是一种分析化学物质组成的快速便捷的仪器,主要用于测定特定化学元素的含量,它能够测量单个元素的微量含量,并准确地估算它们的含量。

它是检测各种离子浓度、原子激发能级、复杂物质组成以及离子活性等重要参数的重要手段。

原子吸收光谱分析是一种实用的分析工具,用于快速准确的测定特定元素的含量,在临床医学、环境检测、土壤分析等方面有重要的应用。

本文将简要介绍原子吸收光谱仪的原理,重点介绍原子吸收光谱仪中元素分析的原理、精密度测定原理及应用领域。

一、原子吸收光谱仪原理原子吸收光谱是从物质中吸收特定的电磁辐射的现象,原子吸收光谱仪利用原子吸收光谱的原理来测定特定元素的含量。

元素能够吸收电磁辐射,这种现象被称为原子吸收,当特定的电磁辐射被元素吸收后,被吸收的可以激发到更高的能级,产生消失谱线,消失谱线的强度可以用来测定原子浓度。

原子吸收光谱仪包括光源、吸收管、分光光度计等部件,当原子被激发后,其吸收谱带会突出,而激发线会消失,分光光度计可以用来测量由激发线突出的谱线的强度,从而估算出特定原子的含量。

二、元素分析原理原子吸收光谱仪可以用来测定不同元素的含量,原子的吸收特征和离子的激发特征在相应的可见光范围内具有明显的特征,因此可以用分光光度计测量出每个元素的谱线强度,从而测定出每个元素的含量。

三、精密度测定原理原子吸收光谱仪可以测定微量元素,通常情况下,测定的元素含量十分低,为了保证测量结果的准确性,需要增加样品测量次数,使用精密度测定原理。

精密度测定原理是指重复测定多次,通过分析多次测量结果的平均值,和任何实验误差的存在,来估算准确的含量。

四、原子吸收光谱仪的应用原子吸收光谱仪具有快速、高灵敏度、操作简便等优点,因此得到了广泛应用。

临床医学方面,原子吸收光谱仪用于分析血液或尿液中的微量元素,以诊断疾病,监测治疗过程,调节患者的营养状况等。

环境检测方面,原子吸收光谱仪可用于检测大气污染物、水体中的重金属污染物、土壤中的污染物等。

原子吸收光谱仪性能要求及技术参数

原子吸收光谱仪性能要求及技术参数

原子吸收光谱仪性能要求及技术参数一、设备名称:原子吸收光谱仪二、用途:用于样品中重金属元素的定量测定三、配置1、火焰石墨炉一体化原子吸收光谱仪主机一套2、石墨炉自动进样器一套*3、石墨炉高清摄像可视系统一套4、配套氢化物发生器一套5、冷却水循环装置一台6、进口静音空压机一台7、长寿命石墨管40支8、样品杯:1.5ml聚酯样品杯10000个9、原装元素空心阴极灯12只(其中双元素复合灯6支)10、电脑,打印机一套11、乙炔,氩气、钢瓶及气阀等各一套四、技术参数要求*1、仪器系统配置:对称式一体化原子吸收光谱分析系统,包括火焰分析系统和石墨炉分析系统、石墨炉自动进样器,火焰与石墨炉测定可连续进行,软件切换,确保数据的稳定性、重复性;配备石墨炉高清摄像头可视系统。

2、操作环境2.1电源:交流电220V±10%,50/60Hz2.2环境温度:10-35℃2.3环境湿度:20%-80%3、光谱仪主机系统3.1光学系统3.1.1高性能全反射光学系统,严格密封*3.1.2火焰与石墨炉原子化系统完全对称,两系统切换无须重新校准光路,操作方便*3.1.3单色器:采用Echelle中阶梯光栅,与石英棱镜组成二维色散系统;*3.1.4色散率0.5nm/mm3.1.5吸光度范围-0.150-3.000A*3.1.6波长范围:180-900nm,自动寻峰和扫描3.1.7光栅刻线密度:≥1800条/mm3.1.8狭缝:0.1,0.2,0.5,1.0nm可调,自动调节,自动设定波长狭缝宽度和能量3.1.9波长设定:全自动检索,自动波长扫描*3.1.10焦距:≤300mm,紧凑式光学单元,减小光能量损失。

3.1.11噪声:<0.003A3.1.12仪器光谱分辨能力:可分辨279.5nm和279.8nm锰双线,且光谱通带为0.2nm/mm时,两线间峰谷能量≤30%3.1.13光路结构:单光束/双光束自动切换,通过软件自动切换3.1.14灯座:不少于6灯位自动转换灯架,全自动切换;3.1.15可同时预热位数:不少于6位3.1.16灯电流设置:0-30mA,计算机自动设定4、背景校正技术,均可校正达3A的背景*4.1火焰部分:独特的四线氘灯光源背景校正系统,校正频率:300Hz*4.2石墨炉部分:同时具有三种扣背景方式4.2.1独特的QuadLine四线氘灯光源背景校正;4.2.2横向交流塞曼背景校正(磁场强度0.85T);*4.2.3四线氘灯与横向交流塞曼联合背景校正5原子化系统5.1火焰分析系统技术要求5.1.1燃烧头:燃烧缝宽度经过最佳化的5cm或10cm缝长全钛燃烧头,高度和角度可调,耐高盐耐腐蚀,带识别密码*5.1.2雾化器:耐腐蚀Pt/Ir合金毛细管与聚四氟乙烯喷嘴雾化器,可使用氢氟酸燃烧头位置调整:高度自动调整,可旋转5.1.3气体控制:全自动计算机控制,流量自动优化,自动调节燃气、助燃气流量,并自动最佳化5.1.4撞击球:惰性聚四氟乙烯碰撞球与扰流器,可在点火状态下进行外部调节和优化最佳位置5.1.5安全系统:具有全套的安全联锁系统,自动监控燃烧头类型,火焰状态,水封,气体压力,雾化系统压力,废液瓶液面高度等,出现异常或断电时自动联锁和关火5.1.6点火方式:自动点火,自动识别燃烧头类型5.1.7代表元素检测指标:Cu:检出限≤0.002mg/L(ppm),重复7次,RSD≤0.5%*5.1.8灵敏度:Cu5ppm,吸光度≥1.0Abs5.2石墨炉分析系统*5.2.1石墨管加热方式:要求纵向加热方式,最高加热温度可达3000℃*5.2.2石墨炉加热速度:最高≥3500℃/秒,连续可调5.2.3加热控温方式:全自动电压反馈和精密光纤控温系统;控温精度<±10℃;5.2.4程序升温:可进行20段线性升温与21段平台保持,更加精准控制原子化温度;*5.2.5外置式石墨炉加热电源,避免交流电场干扰;5.2.6有过热保护和报警功能,石墨管自动格式化功能,5.2.7代表元素检测指标:2ppbCd溶液连续测定七次的RSD≤3%5.2.8气体控制:计算机自动控制,内外气流分别单独控制*5.2.9具有高清石墨炉可视系统,准确观察石墨炉进样毛细管尖的位置,进行精确调节,确保结果的重现性。

原子吸收光谱仪的应用领域

原子吸收光谱仪的应用领域

原子吸收光谱仪的应用领域原子吸收光谱仪的应用领域原子吸收光谱仪是一种广泛应用于各个领域的分析仪器,其独特的检测方式和广泛的应用范围使其在食品和农产品检测、环境保护、医药领域、工业生产、地质和冶金等方面发挥着重要作用。

1. 食品和农产品检测原子吸收光谱仪在食品和农产品检测方面应用广泛。

它可以通过对食品中的重金属元素进行检测,控制食品的质量和安全。

例如,通过检测大米、面粉中的镉、铅等重金属元素,保障人们的饮食安全。

此外,原子吸收光谱仪还可以用于检测农产品中的农药残留和其他有害物质,保障农产品的质量和安全。

2. 环境保护原子吸收光谱仪在环境保护方面也具有重要应用。

它可以用于检测空气、水体中的重金属元素,了解环境污染状况,为环境保护提供数据支持。

例如,通过检测河流、湖泊中的汞、铅等重金属元素,评估水体的污染程度和影响。

3. 医药领域原子吸收光谱仪在医药领域也有广泛应用。

它可以用于检测药品中的重金属元素,保证药品的质量和安全。

此外,原子吸收光谱仪还可以用于医学诊断和研究,例如通过检测人体中的微量元素,了解人体的健康状况和疾病风险。

4. 工业生产原子吸收光谱仪在工业生产中发挥着重要作用。

它可以用于检测生产过程中的杂质和痕量元素,保证产品的质量和安全。

例如,在石油化工、冶金等领域,原子吸收光谱仪可以用于检测产品中的有害元素,提高产品的质量和稳定性。

5. 地质和冶金原子吸收光谱仪在地质和冶金领域的应用也十分重要。

它可以用于分析地质样品中的元素含量,了解地质构造和资源分布情况。

例如,在地质勘探中,原子吸收光谱仪可以用于分析岩石、土壤中的元素含量,寻找有价值的矿产资源。

此外,原子吸收光谱仪还可以用于冶金工艺中的杂质控制和合金成分分析等。

综上所述,原子吸收光谱仪的应用领域十分广泛,其在食品和农产品检测、环境保护、医药领域、工业生产、地质和冶金等方面的应用都发挥着重要作用。

随着科学技术的不断发展和进步,原子吸收光谱仪的应用前景也将更加广阔。

原子吸收光谱的原理及应用

原子吸收光谱的原理及应用

原子吸收光谱的原理及应用原理介绍原子吸收光谱是一种常用的分析技术,通过测量原子吸收光的强度来确定样品中特定元素的浓度。

其原理基于原子在特定波长的光照射下,原子能级发生跃迁的现象。

1.原子能级跃迁原子中的电子存在不同能级,当原子吸收外部能量时,电子从低能级跃迁到高能级。

这种跃迁过程可以通过吸收特定波长的光实现。

2.光谱特征各种元素的原子都有独特的能级结构和跃迁特性,因此它们对特定波长的光具有特定的吸收能力。

通过测量并分析吸收光的特征可以确定样品中的元素浓度。

3.原子的光学吸收特性原子的吸收光谱通常呈现为锐利而离散的吸收线,称为谱线。

每条谱线对应于原子能级间的一个跃迁过程,其位置和强度可用于确定元素浓度。

应用领域原子吸收光谱在许多领域具有广泛的应用,下面列举了几个主要领域:1.环境监测原子吸收光谱可以用于测量大气、水体和土壤中的污染物浓度。

例如,通过分析大气中的重金属含量,可以评估工业排放对环境的影响程度。

2.食品安全原子吸收光谱在食品安全监测中发挥着重要作用。

它可以检测食品中的微量元素,如铅、汞和镉等,确保食品的安全性和质量。

3.药物分析在药物开发和制造过程中,原子吸收光谱可用于确定药物中的活性成分和杂质。

这有助于确保药物的质量和纯度。

4.冶金行业原子吸收光谱在冶金行业的合金分析和金属中杂质检测方面具有重要作用。

它可以快速、准确地测定合金中各种元素的含量。

5.地质勘探在地质勘探中,原子吸收光谱可以用于分析岩石和土壤样品中的元素含量。

这对于矿产资源勘探和环境地质研究非常重要。

原子吸收光谱的优势和局限性优势:•高灵敏度:原子吸收光谱可以检测到极低的元素浓度,通常在微克/升至毫克/升的范围内。

•广泛适用性:该技术可以应用于多种样品类型,包括溶液、气体和固体。

•准确性和精确性:原子吸收光谱具有较高的准确性和精确性,可以提供可靠的结果。

局限性:•单元素分析:每次只能测量样品中的一个元素,因此需要进行多次测量,不适用于多元素同时分析。

zca1000原子吸收光谱仪说明书

zca1000原子吸收光谱仪说明书

zca1000原子吸收光谱仪说明书ZCA1000原子吸收光谱仪是一种高性能的实验仪器,主要用于测量物质中的金属元素含量。

它采用了原子吸收光谱分析的原理,能够快速、准确地检测样品中金属元素的浓度和种类,具有广泛的应用领域。

一、仪器构成ZCA1000原子吸收光谱仪由光源系统、光学系统、气体控制系统、样品进样系统、检测器系统等主要部分组成。

1.光源系统:包括镧灯、聚焦镜和反射镜。

镧灯是一种特殊的光源,能够发出特定波长的光线。

聚焦镜和反射镜的作用是将灯光反射和聚焦,提高光强度和光束的质量。

2.光学系统:由光栅、透镜和光电检测器组成。

光栅是一种具有规则光栅结构的光学元件,能够将入射的光束分散为不同波长的光线。

透镜的作用是将光束集中到光电检测器上。

3.气体控制系统:用于提供燃气和稀释气体。

燃气可以使样品中的金属元素被激发和电离,而稀释气体可以稀释样品中的气体浓度,提高测量的准确性。

4.样品进样系统:包括进样装置和进样器。

进样装置用于将样品送入仪器中,进样器可以自动将样品进行分析。

5.检测器系统:由光电检测器和放大器组成。

光电检测器是一种能够将光信号转化为电信号的装置,放大器用于放大电信号的强度。

二、使用方法1.准备工作:保持仪器和工作环境的干净整洁,避免灰尘和杂质对测量结果的影响。

确保光源和光学系统正常工作,标定光电检测器的灵敏度。

2.样品进样:将待测样品装入进样器中,并设置好进样量。

确保样品的浓度在仪器所能检测范围之内。

3.仪器校准:使用标准样品进行仪器校准。

根据样品的种类和浓度设置好检测器的灵敏度和增益。

4.测量操作:选择适当的检测波长和吸收线进行测量。

打开气体控制系统的燃气和稀释气体,调整进样量和灵敏度,开始测量。

5.数据处理:根据测量结果计算出样品中金属元素的浓度。

可以使用计算机软件进行数据处理和分析。

三、使用注意事项1.操作人员应熟悉仪器的使用方法和操作流程,严格按照说明书进行操作。

2.仪器的使用环境应保持干净整洁,避免灰尘和杂质的干扰。

原子吸收光谱仪在食品中的应用及日常维护

原子吸收光谱仪在食品中的应用及日常维护

T logy科技食品科技原子吸收分光光度计法是基于光源发射的待测元素的特征辐射通过样品蒸气时,被蒸气中待测元素的基态原子所吸收,根据辐射强度的减弱程度来求得样品中待测元素的含量[1]。

原子吸收光谱分析法可用于食品中金属元素的测定,又因其检出限低、灵敏度高、选择性强、简便、检测速度快、抗干扰能力强、应用范围广等特点而在食品分析检测中得到了广泛的应用。

1 食品类样品的消解方法1.1 干式消解法含水量高的食品样品需在水浴锅上蒸干,含水量低的食品样品可直接放入坩埚中,然后在可调式电炉或电热板上小火炭化,炭化至无烟,去除食品样品中的水分、蛋白质、脂肪等物质,然后移入马弗炉中进行高温灰化,灰化温度一般为500~600 ℃。

灰化完全后用硝酸或盐酸将灰分溶解,过滤到容量瓶中,并用少量水反复多次洗涤瓷坩埚及滤纸,最后定容至刻度,备用待测。

干式消解法是通过升高温度或增强氧的氧化能力来分解样品有机质。

此法操作简单,不需要消耗药品,但需要的时间较长。

1.2 湿式消解法湿式消解法一般用于生物样品处理,属于氧化分解法,是用液体或液体与固体混合物作氧化剂,在一定温度下分解样品中的有机质。

湿式消解法常用的氧化剂有HNO3、H2SO4、HClO4、H2O2和KMnO4等。

湿式消解法是依靠氧化剂的氧化能力来分解样品,温度并不是主要因素。

湿式消解法又分为稀酸消解法、浓酸消解法和混合酸消解法。

1.3 微波消解法微波消解法是一种新发展起来的样品分解技术,是将样品放置在微波消解罐中,利用微波辐射加热并分解样品,也需严格按照程序控制消解过程。

微波消解大大提高了反应速率、缩短了样品制备时间,使制样精度更高,利用密闭容器高压消解样品,使溶样更完全。

微波消解也避免了挥发元素损失、有毒危险气体对环境的污染和对操作人员的伤害。

同时,试剂用量少,密闭消解,对环境的污染减少,空白值低[2]。

微波消解适用范围很广泛,缺点是消解样量较少、微波消解装置价格昂贵。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

简述原子吸收光谱仪的用途
原子吸收光谱仪是一种用于分析和测量样品中的金属元素含量的仪器。

它利用原子对特定波长的光的吸收来确定样品中金属元素的浓度。

原子吸收光谱仪广泛应用于环境监测、食品安全、化学分析、地质矿物学等领域。

具体的用途包括:
1. 环境监测:原子吸收光谱仪可以用来监测水体、大气和土壤中的金属元素含量,如重金属污染物(如汞、铅等)和有机污染物(如苯并[α]芘)。

2. 食品安全:原子吸收光谱仪可用于分析食品中的微量元素含量,如铁、锌、硒等。

这对于确保食品的安全和质量至关重要。

3. 化学分析:原子吸收光谱仪是常用的分析金属元素浓度的工具,可以用于测量各种样品中的金属含量,例如药物、矿石、化学试剂等。

4. 地质矿物学:原子吸收光谱仪可用于矿石中金属元素的分析,提供有关矿石成分和矿石矿物学性质的重要信息。

总之,原子吸收光谱仪是一种高效且精确的测量金属元素含量的工具,广泛应用于各个领域的科学研究和实际应用中。

相关文档
最新文档