数学实验怎样计算圆周率
推导过程圆周率的计算方法

推导过程圆周率的计算方法圆周率,又称π,是数学中一个非常重要的数。
它的计算一直以来都备受关注和探索。
本文将介绍三种经典的计算圆周率的方法,分别是蒙特卡洛方法、无穷级数法和中学几何法。
一、蒙特卡洛方法蒙特卡洛方法是一种基于随机抽样的计算方法,其原理是通过随机点在一个区域内的分布状况来估计该区域的属性。
这个方法也可以被用于计算圆周率。
假设我们有一个边长为2的正方形,围绕它画一个内切圆。
通过随机投点,我们可以计算正方形内与圆相交的点和总点数的比例,从而估算圆周率。
通过重复进行投点实验,随着实验次数的增加,计算结果会逐渐逼近真实值。
这是因为随机点的分布越来越接近整个区域的均匀分布。
二、无穷级数法无穷级数法是一种通过无穷级数进行逼近计算的方法,其中一个著名的无穷级数就是莱布尼茨级数。
莱布尼茨级数的公式是:π/4 = 1 - 1/3 + 1/5 - 1/7 + 1/9 - 1/11 + ...我们可以通过将级数的前n项相加来逼近π的值。
随着级数项数的增加,逼近结果会越来越接近π。
此外,还有其他一些无穷级数,如马青公式和阿基米德公式等,它们也可以被用于计算圆周率。
三、中学几何法中学几何法是一种通过几何形状和关系计算圆周率的方法。
一个著名的中学几何法是通过正多边形的内接和外接圆来逼近圆周率。
首先,我们可以构建一个正多边形,然后通过计算多边形的周长和直径的比例来逼近圆周率。
当多边形的边数不断增加时,逼近结果会越来越接近π。
此外,还有其他形状和关系,如圆的面积和周长的关系等,也可以被用于计算圆周率。
综上所述,我们介绍了三种经典的计算圆周率的方法,包括蒙特卡洛方法、无穷级数法和中学几何法。
这些方法都是基于不同原理和数学概念的,并且在实际应用中具有一定的价值。
无论是使用蒙特卡洛方法的随机模拟,还是通过无穷级数的逼近计算,或者是通过几何形状的关系,计算圆周率的方法都追溯到了数学领域的深入探索和发展。
它们的推导过程和运用都有着独特的数学魅力,能够帮助我们更好地理解和应用圆周率的概念。
圆周率的实验报告

圆周率的实验报告圆周率的实验报告引言:圆周率(π)是数学中一个重要的常数,它表示圆的周长与直径的比值。
圆周率的数值约等于3.14159,是一个无限不循环的小数。
在本次实验中,我们将通过不同的方法来计算圆周率,并探讨其性质和应用。
实验一:测量圆的周长和直径首先,我们需要测量一个圆的周长和直径,以便计算圆周率。
选择一个圆形物体,如一个硬币或者一个圆盘,使用一个软尺或者卷尺测量其周长和直径。
将测量结果记录下来,并计算周长与直径的比值。
实验二:使用几何方法计算圆周率在几何学中,我们可以通过正多边形的外接圆和内接圆来近似计算圆周率。
选择一个正多边形,如正六边形或正十二边形,测量其边长和内切圆的半径。
然后,计算正多边形的周长与内切圆的周长的比值。
随着正多边形的边数增加,这个比值会越来越接近圆周率。
实验三:使用概率方法计算圆周率概率方法是一种基于随机事件的方法来计算圆周率。
我们可以在一个正方形内随机撒点,并计算落在正方形内的点中,落在内切圆内的点的比例。
根据概率理论,这个比例会接近于圆的面积与正方形的面积之比,即π/4。
通过将这个比例乘以4,我们可以得到一个近似的圆周率值。
实验四:使用级数方法计算圆周率在数学中,圆周率可以通过级数来计算。
其中一个著名的级数是莱布尼茨级数:π/4 = 1 - 1/3 + 1/5 - 1/7 + 1/9 - ...通过不断计算级数的和,我们可以逼近圆周率的数值。
在实验中,我们可以计算不同级数的和,并观察其逼近圆周率的速度。
实验五:使用计算机模拟计算圆周率计算机的出现为计算圆周率提供了更加精确和高效的方法。
我们可以使用计算机编写程序,通过数值方法来计算圆周率。
例如,可以使用蒙特卡洛方法,在一个正方形内随机生成大量点,并计算落在内切圆内的点的比例。
根据概率理论,这个比例会逼近圆周率的数值。
结论:通过以上实验,我们可以发现不同方法计算的圆周率值会有一定的误差,但随着方法的改进和精确度的提高,这个误差可以被不断减小。
试验π的计算

. 22||||212188 .224 4242))21(11()21(|||||| .22 . . 11121111221212221122N N ∈∙=∙=∙∙∙∙===∙=∈--=--=--+=+====++-+n a S a OE AB S S n a a a a a EF AF AE a S a n S a n n n OAE n n n n n n ,,故又注意到,相应的边数,故,注意到,边长和面积,则步单位圆内接多边形的第分别是,设值也就越接近圆周率近单位圆的面积,其数边形的面积就越来越接那么内接正多正多边形的边数开始,逐步成倍地增加从单位圆的内接正方形Δ实验2:π的计算学院:机械与动力工程学院 姓名:唐子彦 学号:515020910137一、实验目的通过求π的近似值,了解历史上计算π值的一些方法,包括刘徽割圆术、级数展开、数值积分和Monte Carlo 法等. 复习微积分中相关知识,比较它们的差异,了解计算方法对提高计算效率的意义.二、实验内容(一)利用鲁道夫割圆术计算π值【问题】德国人鲁道夫一生计算圆周率,他同样是用圆的内接多边形逼近圆周. 不过,他是从正方形开始成倍增加边数. 试推导出他计算所采用的递推公式,然后求π的近似值到10位和20位有效数字. 【解】图1.1.1 ,21 ,21 421 ,2 1112⎩⎨⎧>∈∙==⎪⎩⎪⎨⎧>∈--==---n n a n S n n a n a n n n n n 且,且,的递推公式:由此可得鲁道夫割圆术N N 为通过“鲁道夫法”计算π的近似值,现编写M 文件如下:为求出指定有效数字位数的π值,还需编写M 文件如下:运行结果如下:图1.2【答】由图1.2不难发现,“鲁道夫法”计算π值效率较高,n=16时即可得到π的10位有效数字,n=32时即可得到π的20位有效数字. 然而,由于中途过程涉及开方等运算,因此计算较为复杂繁琐.(二)利用幂级数展开式计算π值【问题】简单公式31arctan 21arctan4+=π,Machin 公式2391arctan 51arctan 44-=π,以及公式81arctan 51arctan 21arctan 4++=π. 试验证上述三个公式(分别记为公式1、2、3),并利用反正切函数的幂级数展开式求π值,比较上述三公式的计算效率. 此外,再找出一种利用幂级数展开式求π的方法并验证之. 【解】.1424404tan 1312113121tan tan 1tan tan )tan(.31tan ,21tan 31arctan ,21arctan )1(得证,公式,故且,因为,则记πβαπππβαπβαβαβαβαβα=+=+<+<==⨯-+=-+=+====.244203404tan 1239111912012391119120tan 4tan 1tan 4tan )4tan(1191204tan 125)5(1512tan 1tan 22tan .2391tan ,51tan 2391arctan ,51arctan )2(22得证,公式,故且,因为,则再记ππππ=-<-<-<==⨯+-=+-=-=⇒=-⨯=-=⇒====y x y x y x y x y x x x x x y x y x .34.431tan 1tan 1)4(tan 31815118151tan tan 1tan tan )tan(.81tan ,51tan ,21tan 81arctan )3(得证,公式即,故且,因为,则再记z x z x z x z x z x z x z ++=+=-=+-=-=⨯-+=-+=+====απαπαααπα为利用上述三个公式求出π值,现编写以下三个M文件:第一个M文件,对应于公式1:第二个M文件,对应于公式2:第三个M文件,对应于公式3:为比较它们计算指定有效数字位数的π值的效率,还需编写M文件如下(详见第五页):运行结果如下(每五个为一组):图2.1 图2.2图2.3 图2.4 从上述四幅图中可以看出,公式1、3的计算效率基本相同,而公式2的计算效率高于其他两个.然而,从有效数字位数m=15开始,所得结果中公式1、2、3所需项数不再增加,这可能是MATLAB本身的原因. 个人猜测:当MATLAB计算到一个与π极为相近的数时,可能将其自动补全为π,而没有继续计算. 为试图解决该问题,可改用C++进行编程,所需的CPP文件如下:运行结果(每五个为一组)见第9页.从运行结果来看,有效数字位数m=1~16均可得到正确的项数n1、n2、n3. 然而当m=17时,或许是由于C++语言中long double类型的计算精度有限,无法进行高精度的浮点运算,导致循环条件恒为真,即程序进入死循环,无法得出正确结果. 对于m>17的情形更是如此(参见图2.8).图2.5 图2.6左图:图2.7 下图:图2.8.4)21(!)!2)(12(!)!12(2121arcsin 621.!)!2)(12(!)!12(d !)!2(!)!12(11d arcsin :)1,1(.11!)!2(!)!12(1],[)(:)1,1(],[!)!2(!)!12()( .)1,1(!)!2(!)!12(1).1,1(11 1).1,1(11!)!2(!)!12(lim .1121lim 21lim 121!)!2(!)!12(21:.!)!2(!)!12(lim lim 2,!)!2(!)!12(!)21(12,0!)21(43!21211)](1[11.)21(!)!2)(12(!)!12(2121arcsin 6 4.)4(112011122022],[122122222210210422122112得证,公式,即得到取可求积定理”知:再由“函数项级数逐项且,则记内内闭一致收敛在第二定理,级数据无意义,故收敛域为时,又当,即收敛区间为,则收敛半径故,且注意到,则记证明如下::公式利用以下公式计算π值除此之外,我们还可以∑⎰∑∑⎰∑∑∏∏∑∞=+∞=∞=+∞=∞=∞→∞→∞→∞→∞→-=-=-∞=++-+===+-+=-+=-=-∈∀-⇒-+∈-⊂∀-=--+--±=-==-==+=+<-≤∈∀-==⎪⎪⎩⎪⎪⎨⎧=-=+-==⋯+++⋯+∙++=-+=-+-+==n n xn n n n xb a n n n n n n nkk n n n n k k n n ____n k i n n n i n n n n n x x n n n x t t n n t tx x xx n n b a C x u b a x n n x u x n n Abel xx r k k ρn n n n n nn k k a ρkn k k k i k n a x n i x x x x n n n πρπN为比较公式4与前三个公式的计算效率,现编写M 文件如下:输入图2.9所示命令行,运行结果如下:图2.10【答】对比以上四公式的计算结果不难发现,公式1、3计算效率大致相同且较低,公式2的计算效率最高,公式4的计算效率介于它们之间比公式1、3略高。
求圆周率的方法

求圆周率的方法
圆周率是一个重要的数学常数,它代表圆的周长与直径的比值,通常用希腊字母π表示。
但是,圆周率的精确值是无限小数,无法被完全表示或计算出来。
因此,人们通过不同的方法来近似计算圆周率的值。
以下是几种常见的求圆周率的方法:
1. 随机撒点法
这种方法利用大量随机的点来模拟圆的内外部分布,然后根据点的数量和位置来计算圆周率的近似值。
随着点数的增加,近似值会越来越接近真实值。
2. Machin公式
这是一种基于三角函数的公式,可以用来计算圆周率的近似值。
Machin公式的形式为:
π/4 = 4 arctan(1/5) - arctan(1/239)
通过计算这个公式,可以得到π的近似值。
3. Buffon针实验
这个实验是利用一个长针在平面上随机投掷,然后根据针的长度和投掷的次数来计算圆周率的近似值。
这种方法需要一定的实验技巧和设备,但它可以帮助人们更好地理解圆周率的概念和计算方法。
除了以上这些方法外,还有许多其他的方法可以用来求圆周率的值。
无论采用哪种方法,都需要注意精度和计算误差,以确保得到的结果是可靠和准确的。
圆周率π的近似值是3

圆周率π的近似值是3.14159……。
我国古代数学家刘徽、祖冲之等在计算圆周率这个问题上有卓越贡献。
要计算圆周率,方法很多,现在来介绍一个完全用不到计算的实验方法.预备一些粗细均匀的小针,每枚约长2厘米。
另外在一张白纸上划出许多平行线,各线间的距离是小针长度的两倍。
准备好以后,就把小针一只一只从高处投在纸上,并不断记录小针和任意一条平行线相交的次数。
如果投掷的总次数非常之多,那末用投掷总次数除以小针碰线的次数,就得到π的近似值。
这是什么道理呢?首先,我们假定小针与直线最可能相交的次数是k。
小针和直线相交时,这个交点一定是在这2厘米长中的一处,任意1毫米都不会有更优越的机会。
因此如果针上某段长1毫米,则这一段可能相交的次数是k;如果是7毫米,则这一段可能相交的次数便是k。
总而言之,最可能相交的次数是与针的长度成正比的。
即使把小针弄成弯曲的形状,这个比值也仍然是对的。
譬如说,把针弯成拆线状的两段,一段是7毫米,另一段是13毫米;那末,这两段可能相交的次数分别是k和k,加起来仍旧是k。
我们还可以把针弯曲得更厉害一些,可能相交的次数也不会因此而发生改变。
不过在投掷弯曲了的小钟时,它可能同时在几个地方和直线相交,那时,必须把每一个交点数都计算在内。
我们知道,当正多边形的边数无限增多时,它的极限是圆。
所以“圆”这种图形可以代表弯曲得最厉害的小针。
现在假定圆形小针的直径恰好与纸上两条相邻的平行线间的距离相等,那末这个圆形小针投掷下来时,不是和一条直线相交两次,就是和两条相邻的平行线相切。
不管怎样,它的相交次数是2。
因此,当投掷的次数为n 时,碰线的次数便是 2n。
现在小针的长度只有两条相邻平行线间距离的一半,所以针的长度只有上述圆形小针长度(即圆周长)的。
但是可能碰线的次数是与针的长度成正比的,因此小针的可能碰线的次数k就必须满足下面的比例式:1:=2n: k于是就得到π=,也就是π=投掷总次数碰线次数这就是上面“投针实验”的理论根据。
MATLAB数学实验

实验三 圆周率的计算学号: 姓名:XX一、 实验目的1. 本实验涉及概率论、定积分、三角函数等有关知识,要求掌握计算π的三种方法及其原理。
2. 学习和掌握数学软件MATLAB 的使用方法。
二、 实验内容圆周率是一个极其驰名的数。
从有文字记载的历史开始,这个数就引起了外行人和学者们的兴趣。
作为一个非常重要的常数,圆周率最早是出于解决有关圆的计算问题。
仅凭这一点,求出它的尽量准确的近似值,就是一个极其迫切的问题了。
事实也是如此,几千年来作为数学家们的奋斗目标,古今中外一代又一代数学家为此献出了自己的智慧和劳动。
回顾历史,人们对π的认识过程,反映了数学和计算技术发展情形的一个侧面。
π的研究,在一定程度上反映这个地区或时代的数学水平。
德国数学家康托说:“历史上一个国家所算的圆周率的准确程度,可以作为衡量这个国家当时数学发展水平的指标。
”直到19世纪初,求圆周率的值还是数学中的头号难题。
1. 圆周率的计算方法古人计算圆周率,一般是用割圆法。
即用圆的内接或外切多边形来逼近圆的周长。
Archomedes 用正96边形得到35位精度;刘徽用正3072边形得到5位精度;Ludolph V an Ceulen 用正2^62边形得到了35位精度。
这种基于几何的算法计算量大,速度慢,吃力不讨好。
随着数学的发展,数学家们在进行数学研究时有意无意得发现了许多计算圆周率的公式。
下面挑选一些经典的常用公式加以介绍。
除了这些经典公式外,还有很多其他公式和由这些经典公式衍生出来的公式,就不一一列举了。
1) Machin 公式2391a r c t a n451a r c t a n 16-=π ()121...753arctan 121753--++-+-=--n x x x x x x n n 这个公式由英国天文学教授John Machin 于1706年发现。
他利用这个公式计算到100位的圆周率。
Machin 公式每计算一项可以得到1.4位的十进制精度。
怎样计算圆周率的值

计算的方法
谢谢各位!
ቤተ መጻሕፍቲ ባይዱ
In[1] n=10000; S4= Block[{i,m=0}, For[i=n,i>0,i--, m=m+If[Random[]^2+Random[]^2<=1,1,0]]; N[4*m/n,10]] Out[2] In[1] Out[2] In[1] Out[2] 3.1352 n=50000; 3.15336 n=100000; 3.14736
Mathematica
In[1] y[x_]:=4/(1+x^2); n=100; S3=N[1/(2*n)*(Sum[2*y[k/n],{k,1,n-1}]+y[0]+y[1]),30]
3.1415759869231285559229513739
Out[2]
In[3] n=500; Out[4] 3.141591986923126571922960843596 In[5] n=1000; Out[6] 3.141592486923126571797960843597 In[7] n=5000; Out[8] 3.141592646923126571795976843597
实验任务
1. 用反正切函数的幂级数展开式结合有关公式 求,若要精确到以40位、50位数字,试比较 简单公式和Machin公式所用的项数. 2. 用数值积分计算,分别用梯形法和Simpson 法精确到10位数字,用Simpson法 精确到15位数字.
3. 用Monte Carlo 法计算,除了加大随机数, 在随机数一定时可重复算若干次后求平均值, 看能否求得5位精确数字? 4. 设计方案用计算机模拟Buffon实验
“投针实验 ”求圆周率的方法

教材提到了“投针实验”求圆周率的方法。
1777年,法国数学家蒲丰取一根针,量出它的长度,然后在纸上画上一组间距相等的平行线,这根针的长度是这些平行线的距离是的一半。
把这根针随机地往画满了平行线的纸面上投去。
小针有的与直线相交,有的落在两条平行直线之间,不与直线相交。
这次实验共投针2212次,与直线相交的有704次,2212÷704≈3.142。
得数竟然是π的近似值。
这就是著名的蒲丰投针问题。
后来他把这个试验写进了他的论文《或然性算术尝试》中。
蒲丰证明了针与任意平行线相交的概率为 p = 2l/πd 。
这个公式中l为小针的长,d为平行线的间距。
由这个公式,可以用概率方法得到圆周率的近似值。
当实验中投的次数相当多时,就可以得到π的更精确的值。
蒲丰实验的重要性并非仅仅是为了求得比其它方法更精确的π值。
而在于它是第一个用几何形式表达概率问题的例子。
计算π的这一方法,不但因其新颖,奇妙而让人叫绝,而且它开创了使用随机数处理确定性数学问题的先河,是用偶然性方法去解决确定性计算的前导。
找一根粗细均匀,长度为d 的细针,并在一张白纸上画上一组间距为l 的平行线(方便起见,常取l = d/2),然后一次又一次地将小针任意投掷在白纸上。
这样反复地投多次,数数针与任意平行线相交的次数,布丰(Comte de Buffon)设计出他的著名的投针问题(needle problem)。
依靠它,可以用概率方法得到π的近似值。
假定在水平面上画上许多距离为a的平行线,并且,假定把一根长为l<a的同质均匀的针随意地掷在此平面上。
布丰证明:该针与此平面上的平行线之一相交的概率为:p=2l/(api) 把这一试验重复进行多次,并记下成功的次数,从而得到P的一个经验值,然后用上述公式计算出π的近似值,用这种方法得到的最好结果是意大利人拉泽里尼(Lazzerini)于1901年给出的。
他只掷了3408次针,就得到了准确到6位小数的π的值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
怎样计算
姓名:
学号
班级:数学与应用数学4班
实验报告
实验目的:自己尝试利用Mathematica软件计算的近似值,并学会计算的近似值的方法。
实验环境:Mathematica软件
实验基本理论与方法:
方法一:数值积分法(单位圆的面积就是,只要计算出单位圆的面积也就计算出了的值)
其具体内容就是:以单位圆的圆心为原点建立直角坐标系,则单位圆在第一象限内的部分G就是一个扇
形,
由曲线()及坐标轴围成,它的面积就是,算出了S的近似值,它的4倍就就是的近似值。
而怎样计算扇形G的面积S的近似值呢?如图
图一
扇形G中,作平行于y轴的直线将x轴上的区间[0,1](也就就是扇形在x轴上的半径)分成n等份(n=20),相应的将扇形G分成n个同样宽度1/n的部分()。
每部分就是一个曲边梯形:它的左方、右方的边界就是相互平行的直线段,类似于梯形的两底;上方边界就是一段曲线,因此称为曲边梯形。
如果n很大,每个曲边梯形的上边界可以近似的瞧成直线段,从而将近似的瞧成一个梯形来计算它的面积;梯形的高(也就就是它的宽度)h=1/n,两条底边的长分别就
是与,于就是这个梯形面积
可以作为曲边梯形面积的近似值。
所有这些梯形面积的与T就可以作为扇形面积S的近似值:
n越大,计算出来的梯形面积之与T就越接近扇形面积S,而4T就越接近的准确值。
方法二:泰勒级数法
其具体内容就是:利用反正切函数的泰勒级数
计算。
方法三:蒙特卡罗法
其具体内容就是:单位正方形的面积=1,只要能够求出扇形G 的面积S在正方形的面积中所占的比例,就能立即得到S,从而得到的值。
而求扇形面积在正方形面积中所占的比例k的值,方法就是在正方形中随机地投入很多点,使所投的每个点落在正方形中每一个位置的机会均等,瞧其中有多少个点落在扇形内。
将落在扇形内的点的个数m与所投的点的总数n的比可以作为k 的近似值。
能够产生在区间[0,1]内均匀分布的随机数,在Mathematica 中语句就是
Random[ ]
产生两个这样的随机数x,y,则以(x,y)为坐标的点就就是单位正方形内的一点P,它落在正方形内每一个位置的机会均等。
P落在扇形内的充分必要条件就是。
这样利用随机数来解决数学问题的方法叫蒙特卡罗法。
实验内容、步骤及其结果分析:
问题1:在方法一中,取n=1000,通过计算图一中扇形面积计算的
的近似值。
分析:图一中的扇形面积S实际上就就是定积分。
与有关的定积分很多,比如的定积分
就比的定积分更容易计算,更适合用来计算。
梯形公式:设分点,…,将积分区间[a,b]分成n等分,即
,。
所有的曲边梯形的宽度都就是h=(b-a)/n。
记,则第i个曲边梯形的面积近似的等于梯形面积。
将所有这些梯形面积加起来就得到
这就就是梯形公式。
辛普森公式:仍用分点()将区间[a,b]分成n等分,直线x=()将曲边梯形分成n个小曲边梯形,再做每个小区间的中点。
将第i个小曲边梯形的上边界y=f(x)(x)近似的瞧作经过三点(x,f(x))(x=,,)的抛物线段,则可求得
,其中。
于就是得到
这就就是辛普森公式。
取n=1000,10000,用梯形公式与辛普森公式计算
=与=
的近似值(取20位有效数字)。
将所得的结果与的准确值相比较。
其步骤就是:(1)打开Mathematica软件;
(2)分别输入下列语句:
运行后结果如下图:
结果分析:从上面结果可以瞧出,所得到的结果与的准确值非常接近。
问题2:将x=1带入方法二的级数中得到。
在上面的级数中取n=20000计算的近似值,观察所得的结果与所花的时间。
其步骤就是:(1)打开Mathematica软件;
(2)分别输入下列语句:
运行后,结果如下图:
结果分析:根据实验结果,花费的时间很长,结果准确性较差。
问题3:取n=1000,10000,50000,按方法三所说的随机投点的方法来计算的近似值;对不同的n,观察所得结果的精确度,您发现什么规律?并将精确度与数值积分法作比较。
其步骤就是:(1)打开Mathematica软件;
(2)分别输入下列语句:
运行后,结果如下图:
结果分析:对不同的n,当n的值越大时,所得到的结果越精确,越接近的近似值。
而此方法显然没有数值积分法及泰勒级数法精确。
附录(源程序)
以下所示的程序在实验中就是按顺序进行的。
1.
2.
3.
4.
5.
6.
7.。