激光加工工艺介绍

合集下载

激光加工的工艺方法

激光加工的工艺方法

激光加工的工艺方法
激光加工是指使用激光束来加工材料的一种方法。

具体的工艺方法包括以下几种:
1. 激光切割:激光束在工件表面进行定位,同时通过加热和蒸发的方式将材料切割成所需的形状。

激光切割广泛应用于金属、塑料、木材等材料的加工。

2. 激光钻孔:激光束通过对工件表面进行高能量的瞬间照射,使工件表面材料产生熔化和蒸发,从而形成孔洞。

激光钻孔适用于金属、陶瓷、玻璃等材料的加工。

3. 激光焊接:激光束聚焦在工件接触面上,加热材料使其熔化,并通过表面张力形成稳定的焊缝。

激光焊接广泛应用于金属、塑料等材料的连接。

4. 激光打标:激光束通过对工件表面进行定位、照射,使工件表面材料氧化、蒸发或改变颜色,从而形成文字、图形或标记。

激光打标适用于金属、塑料、玻璃等材料的加工。

5. 光刻:利用激光通过光刻胶将图形或图案映射到工件表面,然后使用化学腐蚀或其他方法将非光刻胶保护的部分进行加工或蚀刻。

光刻常用于半导体、平板显示器等微电子领域的制造。

总的来说,激光加工的工艺方法可以根据不同的应用需求选择不同的工艺来实现对材料的精确加工和处理。

激光加工工艺介绍

激光加工工艺介绍

激光加工工艺介绍激光加工是利用激光束对材料进行切割、焊接、打孔、蚀刻等加工的一种现代化的加工方法。

激光加工具有无接触、高精度、高效率、无污染等优点,被广泛应用于各个领域。

本文将对激光加工的工艺流程、设备和应用进行介绍。

激光加工的工艺流程包括激光束的发射、对焦、照射和控制等步骤。

首先,通过激光器产生激光束。

激光器一般采用气体激光器、固体激光器或半导体激光器。

激光束发出后,通过光学系统进行对焦,使激光束的能量聚焦到一个很小的区域内。

然后,激光束照射到工件上,对工件进行加热、融化或气化。

最后,通过对激光束的控制,完成所需的加工操作。

激光加工设备主要包括激光器、光学系统、运动系统和控制系统。

激光器是激光加工的核心部件,产生高能量、高单色度的激光束。

光学系统由透镜、反射镜和焦距调节装置组成,用于对激光束进行调节、聚焦和对准。

运动系统包括平台、夹具和运动控制装置,用于控制工件的运动和位置。

控制系统负责对激光器、光学系统和运动系统进行整合和控制,使其协调工作,实现精确的加工效果。

激光加工广泛应用于各个行业。

在制造业中,激光切割被用于金属板材、塑料、木材等材料的切割,具有高速、精度高的特点。

激光焊接可在电子、汽车、航空等行业中应用于焊接电子元器件、汽车零部件、飞机结构等。

激光打孔常用于金属板材、陶瓷、玻璃等材料的孔洞加工,在电子、光电、医疗等领域有广泛应用。

激光蚀刻可用于制作微电子元件、标识、图案等,被广泛应用于印刷、电子制造和工艺加工等领域。

激光加工工艺具有许多优点。

首先,激光加工无接触,避免了对工件的物理损伤,不会产生变形和应力。

其次,激光束具有很高的能量密度,能够实现高精度的加工,切割、焊接、打孔等过程精度较高,零件形状复杂度较高的工艺更适用于激光加工。

此外,激光加工速度快,效率高,适用于批量生产。

而且,激光加工过程无需接触工件,无需使用刀具,无需冷却液,无需消耗材料,无产生机械碰撞声和振动,减少了噪音和污染。

激光材料加工的技术教程

激光材料加工的技术教程

激光材料加工的技术教程激光材料加工是一种高精度、高效率的加工方法,广泛应用于电子、光电子、医疗、航空航天等领域。

本篇文章将介绍激光材料加工的基本原理、常见的加工方法和应用案例,帮助读者全面了解激光材料加工的技术。

一、激光材料加工的基本原理激光材料加工是利用激光的高能量密度作用于材料表面,使其发生化学、物理变化的加工方法。

激光光束经过光学系统的聚焦后,能够在非常狭窄的区域产生高温或瞬间高压,从而实现对材料的切割、焊接、打孔、表面改性等精细加工。

激光材料加工的基本原理包括以下几个方面:1. 激光的选择:不同波长的激光适用于不同类型的材料加工。

常见的激光包括CO2激光、Nd:YAG激光和纤维激光,每种激光都有着自己的特点和适用范围。

2. 光学系统的设计:光学系统是激光加工的关键部分,它能够将激光光束聚焦到目标区域,并控制焦点尺寸和形状。

透镜和反射镜是常用的激光光学元件。

3. 材料与激光的相互作用:激光与材料的相互作用方式主要有吸收、穿透、反射和散射。

材料的吸收特性对激光加工的效率和质量有很大影响。

4. 辐射热传递:激光加工过程中,由于高能量密度的聚焦,会产生较高的温度,材料内部的热会通过传导和辐射的方式进行传递。

材料的热导率和热扩散系数决定了加工过程中的热影响区域和加工速度。

二、常见的激光材料加工方法1. 激光切割:激光切割是利用激光束对材料进行切割的一种方法。

它可以实现对金属、塑料、陶瓷等材料的高精度切割。

激光切割的过程是先将激光光束聚焦到材料表面形成小孔,然后通过气体喷射将熔化的材料吹散。

激光切割具有非常窄的切缝、高精度和不接触材料等优点。

2. 激光焊接:激光焊接是利用激光束对材料进行焊接的一种方法。

它可以实现对金属材料的高质量焊接,尤其适用于焊接薄板和复杂结构件。

激光焊接的过程是先将激光光束聚焦到焊缝上,使焊缝区域升温熔化,并形成焊接接头。

激光焊接具有热影响区小、变形小和焊接速度快等优点。

3. 激光打孔:激光打孔是利用激光束对材料进行打孔的一种方法。

激光加工方法及设备分类及工艺特点

激光加工方法及设备分类及工艺特点

激光加工方法及设备分类及工艺特点下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!激光加工方法及设备分类及工艺特点激光加工作为现代制造业中的一种重要加工技术,因其精度高、效率优、适用性广等特点,得到了广泛应用。

激光雕刻工艺(3篇)

激光雕刻工艺(3篇)

第1篇一、引言随着科技的不断发展,激光技术逐渐成为制造业中不可或缺的重要手段。

激光雕刻工艺作为一种新型的加工技术,凭借其独特的优势在各个领域得到了广泛应用。

本文将详细介绍激光雕刻工艺的技术特点、应用领域及发展趋势。

二、激光雕刻工艺的技术特点1. 高精度:激光雕刻工艺具有极高的加工精度,可以达到微米级别。

这使得激光雕刻在精密加工领域具有显著优势。

2. 高速度:激光雕刻工艺具有很高的加工速度,可大幅度提高生产效率。

在处理大量加工任务时,激光雕刻具有明显的优势。

3. 高柔性:激光雕刻工艺可加工各种材料,如金属、塑料、木材、皮革等,适应性强。

4. 非接触加工:激光雕刻工艺采用非接触式加工,不会对工件表面造成损伤,提高工件使用寿命。

5. 环保节能:激光雕刻工艺在加工过程中,不会产生粉尘、噪音等污染,具有环保节能的特点。

6. 个性化定制:激光雕刻工艺可以实现个性化定制,满足客户多样化需求。

三、激光雕刻工艺的应用领域1. 金属加工:激光雕刻工艺在金属加工领域具有广泛的应用,如航空航天、汽车制造、模具制造等。

2. 塑料加工:激光雕刻工艺在塑料加工领域具有很高的应用价值,如电子产品、包装材料、医疗器械等。

3. 木材加工:激光雕刻工艺在木材加工领域具有广泛的应用,如家具制造、木制品加工等。

4. 皮革加工:激光雕刻工艺在皮革加工领域具有很高的应用价值,如皮具制造、鞋类加工等。

5. 石材加工:激光雕刻工艺在石材加工领域具有广泛的应用,如建筑装饰、园林景观等。

6. 玻璃加工:激光雕刻工艺在玻璃加工领域具有很高的应用价值,如玻璃工艺品、玻璃制品等。

7. 文具加工:激光雕刻工艺在文具加工领域具有广泛的应用,如办公用品、学习用品等。

四、激光雕刻工艺的发展趋势1. 激光雕刻设备向高功率、高稳定性方向发展:随着激光技术的不断发展,激光雕刻设备将朝着高功率、高稳定性的方向发展,以满足更复杂的加工需求。

2. 激光雕刻工艺向自动化、智能化方向发展:未来,激光雕刻工艺将实现自动化、智能化,提高生产效率,降低人工成本。

简述激光加工的工艺特点

简述激光加工的工艺特点

简述激光加工的工艺特点
激光加工是利用激光束对材料进行加工的一种新兴加工技术。


工艺特点主要表现在以下几个方面:
1. 非接触式加工。

激光加工是利用激光束直接对工件进行加工,不存在机械接触或化学反应,可以避免工件表面质量受损或变化。

2. 高精度性。

激光加工具有非常高的精度和精细度,可以实现
微米级别的加工,并且可以进行实时控制,可以达到非常严格的加工
要求。

3. 加工效率高。

激光加工速度非常快,可以实现高效率的加工,并且可以对复杂形状的工件进行精细加工。

4. 可加工多种材料。

激光加工可以加工多种材料,如金属、塑料、陶瓷、玻璃等,具有很强的适应性。

5. 可实现多种加工方式。

激光加工可以通过改变激光束的能量
密度、强度、波长等参数,实现多种不同的加工方式,如切割、划线、打标、焊接等。

总之,激光加工具有高精度性、高效率、多样性等优点,并且可
以应用于多种工业领域,是一种极具发展前途的重要加工技术。

激光加工工艺原理与创新技术探索

激光加工工艺原理与创新技术探索

激光加工工艺原理与创新技术探索激光加工工艺是一种基于激光技术的加工方法,利用激光束对材料进行热熔、热蒸发或者热氧化等过程,实现对材料的切割、焊接、打孔、雕刻等加工操作。

在工业生产中,激光加工工艺已经广泛应用于各个领域,成为了一种重要的加工方法。

激光加工的原理是利用激光器将能量转换为具有很高能量密度和比较单色性的激光束。

激光束经过聚焦透镜进行聚焦,形成一个热点。

当激光束照射到材料表面时,光能被吸收并转化为热能,使材料表面温度升高。

当温度升高到一定程度时,材料就会发生熔化、蒸发或氧化等反应,从而实现对材料的加工。

激光加工的优势在于可以实现高精度、非接触、无切削力的加工操作。

与传统的机械加工方法相比,激光加工不会对材料产生应力和变形,可以实现对复杂形状和特殊材料的加工。

此外,激光加工速度快、能耗低,具有较高的自动化程度。

因此,激光加工工艺被广泛应用于微电子、光电子、汽车制造、航空航天等领域。

在激光加工工艺方面,近年来出现了一些创新技术。

首先是光纤激光器技术的发展。

传统的激光器通常比较庞大,不能灵活应用于狭小的加工空间。

而光纤激光器则具有体积小、功率稳定等优势,可以满足对高细节精度的加工要求。

其次是激光成形技术的发展。

传统的激光加工通常是通过移动工件来实现加工,而激光成形则是通过移动激光束来实现加工。

激光成形技术可以实现对工件的整体加工,可以大大提高加工效率和加工精度。

再次是激光微纳加工技术的发展。

激光微纳加工是指利用激光加工方法对微米或纳米尺度的结构进行加工。

这种技术可以实现对微机电系统、集成光学器件、微纳传感器等微米尺度器件的制备。

激光微纳加工技术具有加工精度高、加工表面质量好、加工速度快等特点,可以满足精度要求较高的微纳加工需求。

最后是激光增材制造技术的发展。

激光增材制造是一种通过逐层加工的方式,将材料层层叠加形成三维实体的加工方法。

激光增材制造技术可以实现对复杂形状、多材料的器件的制备,具有很大的潜力在航空航天、生物医学等领域得到应用。

激光加工工艺及应用

激光加工工艺及应用

激光加工工艺及应用激光加工是利用激光光束对材料进行剪切、雕刻、打孔和焊接等工艺的一种加工方式。

激光加工具有高精度、高效率、无接触、无污染等优点,广泛应用于工业制造、医疗器械、电子科技等领域。

激光加工工艺主要包括激光切割、激光雕刻、激光打孔和激光焊接等。

激光切割是将激光束聚焦到焦点上,通过高功率激光束与工件之间的相互作用,使材料表面局部迅速升温并发生熔化,同时与所用的气体吹掉熔融物质,从而实现对材料的切割。

激光切割具有高精度、高效率、高质量等特点,被广泛应用于金属加工、板材切割和零件加工等领域。

激光雕刻是通过激光束对材料表面进行蚀刻,使其在材料表面形成一定的深度,从而实现文字、图案或图像的呈现。

激光雕刻主要应用于广告、工艺品、家具等行业,用来加工各种图案和文字,具有高精度和可装饰性。

激光打孔是利用激光束对材料表面进行烧蚀或汽化,形成孔洞。

激光打孔具有孔洞尺寸小、精度高、孔壁整洁等特点,被广泛应用于电子器件、滤网、航空航天等领域。

激光焊接是利用高能量密度的激光束将材料表面瞬间熔化,并通过固态相互混合来实现材料的连接。

激光焊接可以实现高精度、高速度、无挤出物、无卡珠等优点,广泛应用于汽车制造、电子组装、船舶制造等领域。

除了以上应用,激光在医疗领域也有广泛的应用。

激光手术是一种无触及、无创伤的手术方式,可以用于眼科手术、皮肤整形和激光治疗等领域。

激光治疗可以用于去除肿瘤、修复激光切割获得的手术创口等。

激光加工的优点主要有以下几点:1. 高精度:激光束极为细小,可以实现对材料的高精度加工和控制;2. 高效率:激光加工速度快,可以大大提高生产效率;3. 无接触:激光加工过程中,激光束与工件无接触,无需使用刀具等具有磨损和寿命限制的工具;4. 无污染:激光加工不会产生粉尘、废气和废液等污染物,符合环保要求;5. 应用广泛:激光加工可用于各种材料的加工,包括金属、非金属、有机材料等。

总之,激光加工工艺及应用在工业制造、医疗器械、电子科技等领域具有重要的地位和作用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
激光加工工艺简介
激光表面改性
固相加热 相 变 硬 化
激光表面改性 熔化
重 熔
合 金 化
熔 覆
非 晶 化
汽化 冲 击 强 化
几种典型表面改性所需的激光功率密度和作用时间
工艺方法 相变硬化
重熔 合金化
熔覆 非晶化 冲击强化
功率密度(W/cm2) 103~104 104~106 104~106 104~106 106~108 108~1010
磨损损失
激光快速成形(堆积) 修复磨损损失部位
激光熔覆再制造应用举例
激光熔覆再制造应用举例
激光熔覆再制造应用举例
Laser shock peening
约束层 吸收层
激光冲击波效应 产生塑性变形
•增加位错密度 •造成残余压应力
激光表面抛光与织构化
Laser polishing
• evaporation of surface material
时效处理对铝合金激光重熔硬化层的影响
激光重熔应用举例
预覆层
激光熔覆
激光束 加工头 熔覆层
基材
激光束 加工头 送粉喷嘴 熔覆层 基材
熔覆层形貌及稀释率
稀释率
基体熔化面积 涂层面积 基体熔化面积
100 %
A2 A1 A2
100 %
激光熔覆应用举例
激光局部熔覆 激光大面积熔覆
激光熔覆再制造
作用时间(s) 0.01~1 0.01~1 0.01~1 0.01~1 10-7~10-6 10-7~10-6
Fe — Fe3C相图
奥氏体 铁素体 马氏体 贝氏体 珠光体
渗碳体 莱氏体
钢的连续冷却转变(CCT)图
0.37%C-0.39%Si-0.85%Mn-0.73%Cr-0.26%Mo
淬火
树脂
飞秒激光双光子聚合
焦点
物镜
飞秒激光束
Nature, Vol. 412, 697.2001
( H.B. Sun et al )
a. 原始状态 b. 伸展状态
82曲线
激光直接快速制造(Directed Laser Manufacturing)
激光熔融堆积(Directed Metal Deposition,DMD) 选区激光熔化(Selective Laser Melting, SLM)
激光变形制造(Laser Forming)
激光熔融堆积成形
F/A-l8E/F翼根吊环
Mechanisms • flowing or flattening of softening and melting material
under the effect of surface tension
Q-switch Nd:YAG laser: Pa=250W, tp=650ns, df=70um, v=35mm/s
退火
正火
回火
激光相变硬化关键技术
1、 激光能量的利用率 • 表面预处理 粗糙化处理、氧化、涂层… • 偏振光 • 短波长激光:YAG激光、半导体激光
2、 激光能量的均匀化及光斑变换
• 积分镜
变换前光束强度分布
变换后光束强度分布
• 波导匀光器
• 可变形镜
•透射式棱锥积分镜 透射式棱锥积分镜为等边棱锥,产生正方形光斑。光斑
激光快速成形
CAD 模型 要建零件
分层
层数据转化 为生产过程
激光快速成形原理
激光快速成形分类
激光快速原型制造(Rapid prototype)
立体光刻(Stereo Lithography,SL) 分层实体制造(Laminated Object Manufacturing, LOM) 选区激光烧结(Selective Laser Sintering, SLS)
laser fluence 2.5 Jcm−2, number of laser shots 280, (a) Vacuum (∼1mbar) (b) air (atmospheric condition) (c) 100mbar SF6 (d) 100 mbar He
Nayak1. Appl. Phys. A 90, 399–402 (2008)
德国亚琛夫琅霍费激光所(ILT, Willenborg, E. )
微流体器件微通道准分子激光抛光
100m
北京工业大学激光工程研究院
荷叶表面结构
Laser texturing
激光熔池振荡法表面织构化
Laser lithography
激光干涉法表面织构化
Particle lens
飞秒激光辐照钛表面微纳结构
A drilling in steel produced by 200-fs pulses. Pulses energy is decreased by nearly one order of
magnitude.
线性相互作用 单光子过程 I
难于作用于材料内部
高阶非线性相互作用 多光子过程 In
尺寸可由调节透镜位置而发生改变。
• 双光束处理系统
激光相变硬化应用举例




%
入射角
激光相变硬化应用举例
激光重熔、合金化、熔覆示意图
重熔层
合金化层
熔覆层 合金粉未
合金粉未
重熔
合金化
熔覆
ZL108铝合金激光重熔硬化
ZL108合金激光重熔前后的组织
合金的主要化学成份:11.0~13.0%Si, 1.0~2.0%Cu, 0.4~1.0%Mg, 0.3~0.9%Mn, 属于共晶成份合金。铸造组织为典型的金属-非金属共晶,显微组织为在Al 基体上紊乱地分布着Si的枝晶。采用激光重熔处理后组织比处理前的铸造组 织细化了几十倍,显微组织形态也变成了Al-Si共晶包围着-Al基固溶体树枝 晶的亚共晶组织,其中相所占的体积达40%左右 。
900mm长×300mm宽×150mm高
XXXX高空高速反导导弹部件
大型钛合金零件—Aeromet公司
超音速巡航导弹部件
选区激光熔化成形
飞秒激光微纳制造
飞秒强激光微制备与加工
为材料制备和研究提供了新技术和新手段 突出优点:
极短作用时间 超高光强
无热影响 破坏区域小 高阶非线性 三维微加工
A drilling in steel produced by 3.3ns pulses. A strong blur formation occurs and solidified droplets stick on the surface. Note the heataffected zone around the hole .
高光强、作用于材料内部
作用区域可 远小于波长
作用区 }
Fused silica : absorption bandgap is ~9eV,
IR fs laser beam: 800nm (~1.55eV) multiphoton process
Femtosecond Laser Micromachining workstation was used to direct-write localized index-ofrefraction changes within a glass substrate, creating a three-dimensional optical waveguide.
相关文档
最新文档