专题(四):弹簧类问题总结
弹簧类问题的几种模型及其处理办法

精心整理弹簧类问题的几种模型及其处理方法学生对弹簧类问题感到头疼的主要原因有以下几个方面:首先,由于弹簧不断发生形变,导致物体的受力随之不断变化,加速度不断变化,从而使物体的运动状态和运动过程较复杂。
其次,这些复杂的运动过程中间所包含的隐含条件很难挖掘。
还有,学生们很难找到这些复杂的物理过程所对应的物理模型以及处理方法。
根据近几年高考的命题特点和知识的考查,笔者就弹簧类问题分为以下几种类型进行分析,供读者参考。
一、弹簧类命题突破要点1.弹簧的弹力是一种由形变而决定大小和方向的力。
当题目中出现弹簧时,首先要注意弹力的大小与方向时刻要与当时的形23,高考不1例1.m2此过程中,m分析:,分别是弹簧k1、k2当用力缓慢上提m1,使k2下端刚脱离桌面时,,弹簧k2最终恢复原长,其中,为此时弹簧k1的伸长量。
答案:m2上升的高度为,增加的重力势能为,m1上升的高度为,增加的重力势能为。
点评:此题是共点力的平衡条件与胡克定律的综合题,题中空间距离的变化,要通过弹簧形变量的计算求出。
注意缓慢上提,说明整个系统处于动态平衡过程。
例2.如上图2所示,A物体重2N,B物体重4N,中间用弹簧连接,弹力大小为2N,此时吊A物体的绳的拉力为T,B对地的压力为F,则T、F的数值可能是A.7N,0??????B.4N,2N?????C.1N,6N???????D.0,6N分析:对于轻质弹簧来说,既可处于拉伸状态,也可处于压缩状态。
所以,此问题要分两种情况进行分析。
(1)若弹簧处于压缩状态,则通过对A、B受力分析可得:,(2,答案:点评:2例3.分析:(2弹力和剪断,方向水平向右。
点评:此题属于细线和弹簧弹力变化特点的静力学问题,学生不仅要对细线和弹簧弹力变化特点熟悉,还要对受力分析、力的平衡等相关知识熟练应用,此类问题才能得以解决。
突变类问题总结:不可伸长的细线的弹力变化时间可以忽略不计,因此可以称为“突变弹力”,轻质弹簧的弹力变化需要一定时间,弹力逐渐减小,称为“渐变弹力”。
弹簧问题的归纳总结

弹簧问题的归类总结1、弹簧的瞬时问题弹簧的两端都有其他物体或力的约束时,使其发生形变时,弹力不能由某一值突变为零或由零突变为某一值。
2、弹簧的平衡问题这类题常以单一的问题出现,涉及到的知识是胡克定律,一般用f=kx或△f=k•△x来求解。
3、弹簧的非平衡问题这类题主要指弹簧在相对位置发生变化时,所引起的力、加速度、速度、功能和合外力等其它物理量发生变化的情况。
4、弹力做功与动量、能量的综合问题在弹力做功的过程中弹力是个变力,并与动量、能量联系,一般以综合题出现。
它有机地将动量守恒、机械能守恒、功能关系和能量转化结合在一起,以考察学生的综合应用能力。
分析解决这类问题时,要细致分析弹簧的动态过程,利用动能定理和功能关系等知识解题。
例1在原子物理中,研究核子与核子关联的最有效途经是“双电荷交换反应”。
这类反应的前半部分过程和下面力学模型类似。
两个小球A和B用轻质弹簧相连,在光滑的水平直轨道上处于静止状态。
在它们左边有一垂直轨道的固定档板P,右边有一小球C沿轨道以速度v0射向B球,如图7所示,C与B发生碰撞并立即结成一个整体D。
在它们继续向左运动的过程中,当弹簧长度变到最短时,长度突然被锁定,不再改变。
然后,A球与档板P发生碰撞,碰后A、D静止不动,A与P接触而不粘连。
过一段时间,突然解除销定(锁定及解除锁定均无机械能损失),已知A、B、C三球的质量均为m。
(1)求弹簧长度刚被锁定后A球的速度。
(2)求在A球离开档板P之后的运动过程中,弹簧的最大弹性势能。
解:整个过程可分为四个阶段来处理.(1)设C球与B球粘结成D时,D的速度为v1,由动量守恒定律,得图—9mv0=2mv1, ①当弹簧压至最短时,D与A的速度相等,设此速度为v2,由动量守恒定律,得 2mv1=3mv2, ②联立①、②式得v1=(1/3)v0. ③此问也可直接用动量守恒一次求出(从接触到相对静止)mv0=3mv2,v2=(1/3)v0.(2)设弹簧长度被锁定后,贮存在弹簧中的势能为Ep,由能量守恒定律,得 21(2m)v12=21(3m)v22+Ep, ④ 撞击P后,A与D的动能都为零,解除锁定后,当弹簧刚恢复到自然长度时,弹性势能全部转变成D的动能,设D的速度为v3,有Ep=21(2m)v32, ⑤ 以后弹簧伸长,A球离开挡板P,并获得速度.设此时的速度为v4,由动量守恒定律,得2mv3=3mv4, ⑥当弹簧伸到最长时,其弹性势能最大,设此势能为Ep′,由能量守恒定律,得 21(2m)v32=21(3m)v42+Ep′, ⑦ 联立③~⑦式得 Ep′=361mv02. ⑧ 评析 命题人暗设机关,巧布干扰,只有当考生全面读懂、领会题意,并在头脑中建立起非常清晰的物理图景和过程,充分运用两个守恒定律,化难为易,变繁为简,才能明察秋毫,予以识破.例2 如图,质量为1m 的物体A 经一轻质弹簧与下方地面上的质量为2m 的物体B 相连,弹簧的劲度系数为k ,A 、B 都处于静止状态。
弹簧力学知识点归纳总结

弹簧力学知识点归纳总结一、弹簧的基本原理弹簧是一种以弹性变形产生弹力的机械元件,其基本原理是胡克定律。
胡克定律规定,在一定温度下,弹簧的变形量正比于外力,即F=kx,其中F表示弹簧所受外力,x表示弹簧的变形量,k表示弹簧的弹性系数。
弹簧的弹性系数取决于弹簧的几何形状和材料性质,是弹簧力学分析的基本参数。
二、弹簧的分类按照形状和用途,弹簧可以分为螺旋弹簧、压缩弹簧、拉伸弹簧、扭转弹簧等。
螺旋弹簧广泛应用在机械设备中,用于承受轴向力;压缩弹簧多用于减震、支撑等场合;拉伸弹簧则主要用于拉伸应用,如弹簧秤等;扭转弹簧则主要用于扭转应用,如扭簧。
三、弹簧的应力分析在外力作用下,弹簧会产生应力,弹簧的应力分析是弹簧力学中的重要内容。
在弹簧的应力分析中,需要考虑弹簧的几何形状、外力大小和方向、弹簧的材料性质等因素。
通过应力分析可以确定弹簧的最大应力和应力分布规律,从而指导弹簧的设计和选材。
四、弹簧的应变分析弹簧的应变分析是指在外力作用下,弹簧所发生的形变。
弹簧的应变分析是弹簧力学中的关键问题,通过应变分析可以确定弹簧的形变量和形变规律。
弹簧的应变分析需要考虑弹簧的几何形状、材料性质、外力大小和方向等因素。
五、弹簧的设计原则在实际工程中,弹簧的设计是一个复杂的过程,需要综合考虑弹簧的弹性系数、强度、耐久性、工作温度等因素。
弹簧的设计原则包括:根据工作条件确定弹簧的工作方式;选择合适的弹簧材料;确定弹簧的几何形状和尺寸;考虑弹簧的安装和使用环境等。
通过合理设计,可以确保弹簧在工作中能够稳定可靠地发挥作用。
综上所述,弹簧力学是力学的一个重要分支,研究的是弹簧在外力作用下的形变和应力分布。
弹簧力学的应用广泛,涉及机械、航空航天、建筑、汽车等领域。
弹簧力学的基本知识包括弹簧的基本原理、弹簧的分类、弹簧的应力分析、弹簧的应变分析、弹簧的设计原则等内容。
通过深入学习弹簧力学,可以更好地理解和应用弹簧这一重要的机械元件。
高中物理中的弹簧问题归类(教师版)

有关弹簧的题目在高考中几乎年年出现,由于弹簧弹力是变力,学生往往对弹力大小和方向的变化过程缺乏清晰的认识,不能建立与之相关的物理模型并进行分类,导致解题思路不清、效率低下、错误率较高.在具体实际问题中,由于弹簧特性使得与其相连物体所组成系统的运动状态具有很强的综合性和隐蔽性,加之弹簧在伸缩过程中涉及力和加速度、功和能、冲量和动量等多个物理概念和规律,所以弹簧试题也就成为高考中的重、难、热点, 一、“轻弹簧”类问题在中学阶段,凡涉及的弹簧都不考虑其质量,称之为“轻弹簧”,是一种常见的理想化物理模型.由于“轻弹簧”质量不计,选取任意小段弹簧,其两端所受张力一定平衡,否则,这小段弹簧的加速度会无限大.故轻弹簧中各部分间的张力处处相等,均等于弹簧两端的受力.弹簧一端受力为F ,另一端受力一定也为F ,若是弹簧秤,则弹簧秤示数为F .【例1】如图3-7-1所示,一个弹簧秤放在光滑的水平面上,外壳质量m 不能忽略,弹簧及挂钩质量不计,施加水平方向的力1F 、2F ,且12F F >,则弹簧秤沿水平方向的加速度为 ,弹簧秤的读数为 .【解析】 以整个弹簧秤为研究对象,利用牛顿运动定律得: 12F F ma -=,即12F F a m-= 仅以轻质弹簧为研究对象,则弹簧两端的受力都1F ,所以弹簧秤的读数为1F .说明:2F 作用在弹簧秤外壳上,并没有作用在弹簧左端,弹簧左端的受力是由外壳内侧提供的. 【答案】12F F a m-=1F 二、质量不可忽略的弹簧【例2】如图3-7-2所示,一质量为M 、长为L 的均质弹簧平放在光滑的水平面,在弹簧右端施加一水平力F 使弹簧向右做加速运动.试分析弹簧上各部分的受力情况. 【解析】 弹簧在水平力作用下向右加速运动,据牛顿第二定律得其加速度Fa M=,取弹簧左部任意长度x 为研究对象,设其质量为m 得弹簧上的弹力为:x x F xT ma M F L M L === 【答案】x x T F L= 三、弹簧的弹力不能突变(弹簧弹力瞬时)问题弹簧(尤其是软质弹簧)弹力与弹簧的形变量有关,由于弹簧两端一般与物体连接,因弹簧形变过程需要一段时间,其长度变化不能在瞬间完成,因此弹簧的弹力不能在瞬间发生突变. 即可以认为弹力大小和方向不变,与弹簧相比较,轻绳和轻杆的弹力可以突变.【例3】如图3-7-3所示,木块A 与B 用轻弹簧相连,竖直放在木块C 上,三者静置于地面,A B C 、、的质量之比是1:2:3.设所有接触面都光滑,当沿水平方向迅速抽出木块C 的瞬时,木块A 和B 的加速度分别是A a = 与B a =【解析】由题意可设A B C 、、的质量分别为23m m m 、、,以木块A 为研究对象,抽出木块C 前,木块A 受到重力和弹力一对平衡力,抽出木块C 的瞬时,木块A 受到重力和弹力的大小和方向均不变,故木块A 的瞬时加速度为0.以木块A B 、为研究对象,由平衡条件可图 3-7-2图 3-7-1图 3-7-3高中物理中的弹簧问题归类知,木块C 对木块B 的作用力3CB F mg =.以木块B 为研究对象,木块B 受到重力、弹力和CB F 三力平衡,抽出木块C 的瞬时,木块B 受到重力和弹力的大小和方向均不变,CB F 瞬时变为0,故木块C 的瞬时合外力为3mg ,竖直向下,瞬时加速度为1.5g . 【答案】0说明:区别于不可伸长的轻质绳中张力瞬间可以突变.ﻫ【例4】如图3-7-4所示,质量为m 的小球用水平弹簧连接,并用倾角为030的光滑木板AB 托住,使小球恰好处于静止状态.当AB 突然向下撤离的瞬间,小球的加速度为 ( )A.0 B.大小为23g ,方向竖直向下C.大小为23g ,方向垂直于木板向下 D. 大小为23g , 方向水平向右 【解析】 末撤离木板前,小球受重力G 、弹簧拉力F 、木板支持力N F 作用而平衡,如图3-7-5所示,有cos N mgF θ=. 撤离木板的瞬间,重力G 和弹力F 保持不变(弹簧弹力不能突变),而木板支持力N F 立即消失,小球所受G 和F 的合力大小等于撤之前的N F (三力平衡),方向与N F 相反,故加速度方向为垂直木板向下,大小为23cos N F g a g m θ=== 【答案】 C.四、弹簧长度的变化问题设劲度系数为k 的弹簧受到的压力为1F -时压缩量为1x -,弹簧受到的拉力为2F 时伸长量为2x ,此时的“-”号表示弹簧被压缩.若弹簧受力由压力1F -变为拉力2F ,弹簧长度将由压缩量1x -变为伸长量2x ,长度增加量为12x x +.由胡克定律有: 11()F k x -=-,22F kx =. 则:2121()()F F kx kx --=--,即F k x ∆=∆说明:弹簧受力的变化与弹簧长度的变化也同样遵循胡克定律,此时x ∆表示的物理意义是弹簧长度的改变量,并不是形变量.【例5】如图3-7-6所示,劲度系数为1k 的轻质弹簧两端分别与质量为1m 、2m 的物块1、2拴接,劲度系数为2k 的轻质弹簧上端与物块2拴接,下端压在桌面上(不拴接),整个系统处于平衡状态.现将物块1缓慢地竖直上提,直到下面那个弹簧的下端刚脱离桌面.在此过程中,物块2的重力势能增加了 ,物块1的重力势能增加了 .【解析】由题意可知,弹簧2k 长度的增加量就是物块2的高度增加量,弹簧2k 长度的增加量与弹簧1k 长度的增加量之和就是物块1的高度增加量.由物体的受力平衡可知,弹簧2k 的弹力将由原来的压力12()m m g +变为0,弹簧1k 的弹力将由原来的压力1m g 变为拉力2m g ,弹力的改变量也为12()m m g + .所以1k 、2k 弹簧的伸长量分别图 3-7-4图 3-7-5图 3-7-6为:1211()m m g k +和1221()m m g k + 故物块2的重力势能增加了221221()m m m g k +,物块1的重力势能增加了21121211()()m m m g k k ++ 【答案】221221()m m m g k + 21121211()()m m m g k k ++ 五、弹簧形变量可以代表物体的位移弹簧弹力满足胡克定律F kx =-,其中x 为弹簧的形变量,两端与物体相连时x 亦即物体的位移,因此弹簧可以与运动学知识结合起来编成习题.【例6】如图3-7-7所示,在倾角为θ的光滑斜面上有两个用轻质弹簧相连接的物块A B 、,其质量分别为A B m m 、,弹簧的劲度系数为k ,C 为一固定挡板,系统处于静止状态,现开始用一恒力F 沿斜面方向拉A 使之向上运动,求B 刚要离开C 时A 的加速度a 和从开始到此时A 的位移d (重力加速度为g ).【解析】 系统静止时,设弹簧压缩量为1x ,弹簧弹力为1F ,分析A 受力可知:11sin A F kx m g θ==解得:1sin A m g x kθ=在恒力F 作用下物体A 向上加速运动时,弹簧由压缩逐渐变为伸长状态.设物体B 刚要离开挡板C 时弹簧的伸长量为2x ,分析物体B 的受力有:2sin B kx m g θ=,解得2sin B m g x kθ=设此时物体A 的加速度为a ,由牛顿第二定律有:2sin A A F m g kx m a θ--=解得:()sin A B AF m m g a m θ-+=因物体A 与弹簧连在一起,弹簧长度的改变量代表物体A 的位移,故有12d x x =+,即()sin AB m m g d kθ+= 【答案】()sin A B m m g d kθ+=六、弹力变化的运动过程分析弹簧的弹力是一种由形变决定大小和方向的力,注意弹力的大小与方向时刻要与当时的形变相对应.一般应从弹簧的形变分析入手,先确定弹簧原长位置、现长位置及临界位置,找出形变量x 与物体空间位置变化的几何关系,分析形变所对应的弹力大小、方向,弹性势能也是与原长位置对应的形变量相关.以此来分析计算物体运动状态的可能变化.结合弹簧振子的简谐运动,分析涉及弹簧物体的变加速度运动,往往能达到事半功倍的效果.此时要先确定物体运动的平衡位置,区别物体的原长位置,进一步确定物体运动为简谐运动.结合与平衡位置对应的回复力、加速度、速度的变化规律,很容易分析物体的运动过程.【例7】如图3-7-8所示,质量为m 的物体A 用一轻弹簧与下方地面上质量也为m 的物体B 相连,开始时A 和B 均处于静止状态,此时弹簧压缩量为0x ,一条不可伸长的轻图 3-7-7绳绕过轻滑轮,一端连接物体A 、另一端C 握在手中,各段绳均刚好处于伸直状态,物体A 上方的一段绳子沿竖直方向且足够长.现在C 端施加水平恒力F 使物体A 从静止开始向上运动.(整个过程弹簧始终处在弹性限度以内).(1)如果在C 端所施加的恒力大小为3mg ,则在物体B 刚要离开地面时物体A 的速度为多大? (2)若将物体B 的质量增加到2m ,为了保证运动中物体B 始终不离开地面,则F 最大不超过多少?【解析】 由题意可知,弹簧开始的压缩量0mgx k =,物体B 刚要离开地面时弹簧的伸长量也是0mgx k=.(1)若3F mg =,在弹簧伸长到0x 时,物体B 离开地面,此时弹簧弹性势能与施力前相等,F 所做的功等于物体A 增加的动能及重力势能的和. 即:201222F x mg x mv ⋅=⋅+得: 022v gx =(2)所施加的力为恒力0F 时,物体B 不离开地面,类比竖直弹簧振子,物体A 在竖直方向上除了受变化的弹力外,再受到恒定的重力和拉力.故物体A 做简谐运动.在最低点有:001F mg kx ma -+=,式中k 为弹簧劲度系数,1a 为在最低点物体A 的加速度. 在最高点,物体B 恰好不离开地面,此时弹簧被拉伸,伸长量为02x ,则: 002(2)k x mg F ma +-= 而0kx mg =,简谐运动在上、下振幅处12a a =,解得: 032mgF =也可以利用简谐运动的平衡位置求恒定拉力0F .物体A 做简谐运动的最低点压缩量为0x ,最高点伸长量为02x ,则上下运动中点为平衡位置,即伸长量为所在处.由002x mg k F +=,解得: 032mg F =. 【答案】022gx32mgﻫ说明: 区别原长位置与平衡位置.和原长位置对应的形变量与弹力大小、方向、弹性势能相关,和平衡位置对应的位移量与回复大小、方向、速度、加速度相关.七.与弹簧相关的临界问题ﻫ 通过弹簧相联系的物体,在运动过程中经常涉及临界极值问题:如物体速度达到最大;弹簧形变量达到最大时两个物体速度相同;使物体恰好要离开地面;相互接触的物体恰好要脱离等.此类问题的解题关键是利用好临界条件,得到解题有用的物理量和结论. 【例8】如图3-7-9所示,A B 、两木块叠放在竖直轻弹簧上,已知木块A B 、的质量分别为0.42kg 和0.40kg ,弹簧的劲度系数100/k N m =,若在A 上作用一个竖直向上的力F ,使A 由静止开始以20.5/m s 的加速度竖直向上做匀加速运动(210/g m s =)求: ﻫ(1) 使木块A 竖直做匀加速运动的过程中,力F 的最大值;(2)若木块由静止开始做匀加速运动,直到A B 、分离的过程中,弹簧的弹性势能减少了0.248J ,求这一过程中F 对木块做的功.【解析】 此题难点在于能否确定两物体分离的临界点.当0F =(即不加竖直向上F 力)时,设木块A B 、叠放在弹簧上处于平衡时弹簧的压缩量为x ,有: ()A B kx m m g =+,即()AB m m gx k+= ① 对木块A 施加力F ,A 、B 受力如图3-7-10所示,对木块A 有: A A F N m g m a +-= ②对木块B 有: 'B B kx N m g m a --= ③ﻫ可知,当0N ≠时,木块A B 、加速度相同,由②式知欲使木块A 匀加速运动,随N 减小F 增大,当0N =时, F 取得了最大值m F ,即: () 4.41m A F m a g N =+=图 3-7-9又当0N =时,A B 、开始分离,由③式知,弹簧压缩量'()B kx m a g =+,则()'B m a g x k+=④ 木块A 、B 的共同速度:22(')v a x x =- ⑤由题知,此过程弹性势能减少了0.248P P W E J ==ﻫ设F 力所做的功为F W ,对这一过程应用功能原理,得: 21()()(')2F A B A B P W m m v m m g x x E =+++--联立①④⑤⑥式,且0.248P E J =,得:29.6410F W J -=⨯【答案】(1) 4.41m F N = 29.6410F W J -=⨯【例9】如图3-7-11所示,一质量为M 的塑料球形容器,在A 处与水平面接触.它的内部有一直立的轻弹簧,弹簧下端固定于容器内部底部,上端系一带正电、质量为m 的小球在竖直方向振动,当加一向上的匀强电场后,弹簧正好在原长时,小球恰好有最大速度.在振动过程中球形容器对桌面的最小压力为0,求小球振动的最大加速度和容器对桌面的最大压力. 【解析】 因为弹簧正好在原长时小球恰好速度最大,所以有:=qE mg ① 小球在最高点时容器对桌面的压力最小,有:=kx Mg ②此时小球受力如图3-7-12所示,所受合力为qE kx mg F -+= ③ 由以上三式得小球的加速度mMg a =.显然,在最低点容器对桌面的压力最大, 由振动的对称性可知小球在最低 点和最高点有相同的加速度, 解以上式子得:Mg kx =所以容器对桌面的压力为:Mg kx Mg F N 2=+=. 【答案】Mgm2Mg 八、弹力做功与弹性势能的变化问题弹簧伸长或压缩时会储存一定的弹性势能,因此弹簧的弹性势能可以与机械能守恒规律综合应用,我们用公式212P E kx =计算弹簧势能,弹簧在相等形变量时所具有的弹性势能相等一般是考试热点. 弹簧弹力做功等于弹性势能的减少量.弹簧的弹力做功是变力做功,一般可以用以下四种方法求解: (1)因该变力为线性变化,可以先求平均力,再用功的定义进行计算; (2)利用F x -图线所包围的面积大小求解; (3)用微元法计算每一小段位移做功,再累加求和; (4)根据动能定理、能量转化和守恒定律求解.由于弹性势能仅与弹性形变量有关,弹性势能的公式高考中不作定量要求,因此,在求弹力做功或弹性势能的改变时,一般从能量的转化与守恒的角度来求解.特别是涉及两个物理过程中的弹簧形变量相等时,往往弹性势能的改变可以抵消或替代求解.图 3-7-10图 3-7-11图 3-7-12【例10】如图3-7-13所示,挡板P 固定在足够高的水平桌面上,物块A 和B 大小可忽略,它们分别带有A Q +和B Q +的电荷量,质量分别为A m 和B m .两物块由绝缘的轻弹簧相连,一个不可伸长的轻绳跨过滑轮,一端与B 连接,另一端连接轻质小钩.整个装置处于场强为E 、方向水平向左的匀强电场中,A 、B 开始时静止,已知弹簧的劲度系数为k ,不计一切摩擦及A 、B 间的库仑力, A 、B 所带电荷量保持不变,B 不会碰到滑轮.(1)若在小钩上挂质量为M 的物块C 并由静止释放,可使物块A 对挡板P 的压力恰为零,但不会离开P ,求物块C 下降的最大距离h .(2)若C 的质量为2M ,则当A 刚离开挡板P 时, B 的速度多大?【解析】 通过物理过程的分析可知,当物块A 刚离开挡板P 时,弹力恰好与A所受电场力平衡,弹簧伸长量一定,前后两次改变物块C 质量,在第(2)问对应的物理过程中,弹簧长度的变化及弹性势能的改变相同,可以替代求解.设开始时弹簧压缩量为1x ,由平衡条件1B kx Q E =,可得1B Q Ex k= ①设当A 刚离开挡板时弹簧的伸长量为2x ,由2A kx Q E =,可得: 2A Q Ex k= ②故C 下降的最大距离为: 12h x x =+ ③ 由①②③三式可得: ()A B Eh Q Q k=+ ④ﻫ(2)由能量守恒定律可知,物块C 下落过程中,C 重力势能的减少量等于物块B 电势能的增量和弹簧弹性势能的增量以及系统动能的增量之和. 当C 的质量为M 时,有:B MgH Q Eh E =+∆弹 ⑤当C 的质量为2M 时,设A 刚离开挡板时B 的速度为v ,则有:212(2)2B B MgH Q Eh E M m v =+∆++弹 ⑥ 由④⑤⑥三式可得A 刚离开P 时B 的速度为: 2()(2)A B B MgE Q Q v k M m +=+ ⑦【答案】(1)()A B Eh Q Q k=+(2)2()(2)A B B MgE Q Q v k M m +=+ﻫ【例11】如图3-7-14所示,质量为1m 的物体A 经一轻质弹簧与下方地面上的质量为2m 的物体B 相连,弹簧的劲度系数为k ,物体A B 、都处于静止状态.一不可伸长的轻绳一端绕过轻滑轮连接物体A ,另一端连接一轻挂钩.开始时各段绳都处于伸直状态,物体A 上方的一段绳沿竖直方向.现给挂钩挂一质量为2m 的物体C 并从静止释放,已知它恰好能使物体B 离开地面但不继续上升.若将物体C 换成另一质量为12()m m +的物体D ,仍从上述初始位置由静止释放,则这次物体B 刚离地时物体D 的速度大小是多少?已知重力加速度为g【解析】 开始时物体A B 、静止,设弹簧压缩量为1x ,则有:11kx m g =悬挂物体C 并释放后,物体C 向下、物体A 向上运动,设物体B 刚要离地时弹簧伸长量为2x ,有22kx m g =B 不再上升表明此时物体A 、C 的速度均为零,物体C 己下降到其最低点,与初状态相比,由机械能守恒得弹簧弹性势能的增加量为:212112()()E m g x x m g x x ∆=+-+物体C 换成物体D 后,物体B 离地时弹簧势能的增量与前一次相同,由能量关系得:图 3-7-13 图 3-7-1422211211211211()()()()22m m v m v m m g x x m g x x E ++=++-+-∆联立上式解得题中所 求速度为: 2112122()(2)m m m g v m m k+=+ 【答案】2112122()(2)m m m g v m m k+=+ﻫ说明: 研究对象的选择、物理过程的分析、临界条件的应用、能量转化守恒的结合往往在一些题目中需要综合使用. 九、弹簧弹力的双向性弹簧可以伸长也可以被压缩,因此弹簧的弹力具有双向性,亦即弹力既可能是推力又可能是拉力,这类问题往往是一题多解.【例12】如图3-7-15所示,质量为m 的质点与三根相同的轻弹簧相连,静止时相邻两弹簧间的夹角均为0120,已知弹簧a b 、对质点的作用力均为F ,则弹簧c 对质点作用力的大小可能为 ( )A、0 B 、F mg + C、F mg - D 、mg F -【解析】 由于两弹簧间的夹角均为0120,弹簧a b 、对质点作用力的合力仍为F ,弹簧a b 、对质点有可能是拉力,也有可能是推力,因F 与mg 的大小关系不确定,故上述四个选项均有可能.正确答案:A BCD 【答案】 ABCD十、弹簧振子弹簧振子的位移、速度、加速度、动能和弹性势能之间存在着特殊关系,弹簧振子类问题通常就是考查这些关系,各物理量的周期性变化也是考查的重点.【例13】如图3-7-16所示,一轻弹簧与一物体组成弹簧振子,物体在同一竖直线上的A B 、间做简谐运动, O 点为平衡位置;C 为AO 的中点,已知OC h =,弹簧振子周期为T ,某时刻弹簧振子恰好经过C 点并向上运动,则从此时刻开始计时,下列说法中正确的是 ( )A 、4T t =时刻,振子回到C 点 B 、2Tt ∆=时间内,振子运动的路程为4h C 、38T t =时刻,振子的振动位移为0 D、38Tt =时刻,振子的振动速度方向向下【解析】 振子在点A C 、间的平均速度小于在点C O 、间的平均速度,时间大于8T,选项A C 、错误;经2T振子运动O 点以下与点C 对称的位置,总路程为4h ,选项B 正确;经38Tt =振子在点O B 、间向下运动,选项D 正确.【答案】 B D十一、弹簧串、并联组合弹簧串联或并联后劲度系数会发生变化,弹簧组合的劲度系数可以用公式计算,高中物理不要求用公式定量分析,但弹簧串并联的特点要掌握:弹簧串联时,每根弹簧的弹力相等;原长相同的弹簧并联时,每根弹簧的形变量相等.【例14】 如图3-7-17所示,两个劲度系数分别为12k k 、的轻弹簧竖直悬挂,下端用图 3-7-16 图 3-7-15光滑细绳连接,并有一光滑的轻滑轮放在细线上;滑轮下端挂一重为G 的物体后滑轮下降,求滑轮静止后重物下降的距离.【解析】 两弹簧从形式上看似乎是并联,但因每根弹簧的弹力相等,故两弹簧实为串联;两弹簧的弹力均2G,可得两弹簧的伸长量分别为112G x k =,222G x k =,两弹簧伸长量之和12x x x =+,故重物下降的高度为:1212()24G k k x h k k +== 【答案】1212()4G k k k k +十二、通电的弹簧【例15】如图3-7-18所示装置中,将金属弹簧的上端固定,下端恰好浸入水银,水银与电源负极相连,弹簧上端通过开关S 与电源正极相连.当接通开关S 后,弹簧的运动情况如何?【解析】 通电弹簧相邻两匝线圈相互平行且电流同向,两匝线圈相互吸引,从而使弹簧收缩;弹簧收缩后下端离开水银,切断了电流吸引力消失,弹簧又向下恢复原长,与水银面接触而接通电路,然后又在吸引力作用下收缩.如此反复,弹簧就不断地上下振动. 十三、物体沿弹簧螺旋运动【例16】如图3-7-19所示,长度为L 的光滑钢丝绕成高度为H 的弹簧,将弹簧竖直放置.一中间有孔的小球穿过钢丝并从弹簧的最高点A 由静止释放,求经多长时间小球沿弹簧滑到最低点B .【解析】 小球沿光滑弹簧下滑时机械能守恒,可以假想在不改变弹簧上各处倾角的条件下将弹簧拉成一条倾斜直线,如图3-7-20所示,小球沿此直线下滑的时间与题中要求的时间相等.小球沿直线下滑的加速度为sin a g θ= 由几何知识可得:sin HL θ=;由位移公式可知:212L at =,联立上式解得:2t L gH= 【答案】2LgH十四、生产和生活中的弹簧弹簧在生产和生活中有着广泛的应用,近几年高考中也出现了不少有关弹簧应用方面的试题.【例17】如图3-7-21所示表示某同学在科技活动中自制的电子秤原理,利用电压表示数来指示物体质量,托盘与电阻可忽略的弹簧相连,托盘与弹簧的质量均不计,滑动变阻器的滑动头与弹簧上端连接;当托盘中没放物体且S 闭合时,电压表示数为零.设变阻器的总电阻为R 、总长度为L ,电源电动势为E 、内阻为r ,限流电阻阻值为0R ,弹簧劲度系数为k ,不计一切摩擦和其他阻力.(1)推导出电压表示数x U 与所称物体质量m 的关系式. (2)由(1)结果可知,电压表示数与待测物体质量不成正比、不便于进行刻度.为使电压表示数与待测物体质量成正比,请利用原有器材进行改进并完成电路原理图,推导出电压表示数x U 与待测物体质量m 的关系式.【解析】(1)设变阻器上端至滑动头的长度为x ,据题意得:mg kx =,x xR R L =,0x x x R U E R R r=++图 3-7-18图 3-7-20图 3-7-21 图 3-7-19解得:0()x mgREU mgR kL R r =++(2)改进后的电路如图3-7-22所示,则有:mg kx =,x xR R L=,解得: 0()x mgREU kL R R r =++ 【答案】(1)0()x mgREU mgR kL R r =++(2)0()x mgREU kL R R r =++图 3-7-22。
4力学中弹簧类问题

4、力学中弹簧类问题高一物理精英一、基本概念:力、重力、弹力、摩擦力二、类型:静力学中的弹簧问题。
2 、动力学中的弹簧问题在含有弹簧的静力学问题中,当弹簧所处的状态没有明确给出时,必须考虑到弹簧既可以处于拉伸状态,也可以处于压缩状态,必须全面分析各种可能性,以防以偏概全.有关弹簧问题的动力学问题中,同学们应注意以下几个问题:一是因弹簧的弹力是变力,物体在弹簧弹力(通常还要考虑物体的重力)作用下做变加速运动,这类问题的动态情景分析是解答这类问题的关键.二是要注意弹簧是弹性体,形变的发生和恢复都需要一定的时间,即弹簧的弹力不能突变.三是要注意弹簧问题的多解性.在某一作用瞬间弹力会保持不变。
在较长过程中弹力是变力,弹簧的弹力与形变量成正比例变化,故它引起的物体的加速度、速度发生变化。
三、典型例析1、如图所示,一个弹簧秤放在光滑的水平面上,外壳质量m不能忽略,弹簧及挂钩质量不计,施加水平方向的力F1、F2,且F1>F2,则弹簧秤沿水平方向的加速度为,弹簧秤的读数为.2、如图所示,在光滑水平面上有两个质量分别为m1和m2的物体A、B,m1>m2,A、B间水平连接着一轻质弹簧测力计.若用大小为F的水平力向右拉B,稳定后B的加速度大小为a1,弹簧测力计示数为F1;如果改用大小为F的水平力向左拉A,稳定后A的加速度大小为a2,弹簧测力计示数为F2.则以下关系式正确的是()A.a= a2,F1> F2B.a1= a2,F1< F2C.a1< a2,F1= F2D.a1> a2,F1> F23、如图所示,a、b、c为三个物块,M、N为两个轻质弹簧,R为跨过光滑定滑轮的轻绳,它们均处于平衡状态.则:()A.有可能N处于拉伸状态而M处于压缩状态B.有可能N处于压缩状态而M处于拉伸状态C.有可能N处于不伸不缩状态而M处于拉伸状态D.有可能N处于拉伸状态而M处于不伸不缩状4、如图所示,重力为G的质点M与三根相同的轻质弹簧相连,静止时,相邻两弹簧间的夹角均为120 ,已知弹簧A、B对质点的作用力均为2G,则弹簧C对质点的作用力大小可能为()A.2GB.GC.0D.3G四、绳与弹簧产生力的区别①绳(或接触面):认为是一种不发生明显形变就可产生弹力的物体,若剪断(或脱离)后,其弹力立即消失,不需要形变恢复时间,一般题目中所给的细线和接触面在不加特殊说明时,均可按此模型处理。
高考必会专题之弹簧问题

高考弹簧类问题复习弹簧类问题含有力的非突变模型---弹簧模型,这类问题能很好地考查同学们对物理过程的分析、物理知识的综合、以及数学知识的灵活应运,所以这类问题在近年的高考中频频出现。
为了帮助同学们复习好这部分内容,现浅谈如下几点,供同学们参考一、知识点聚焦1、弹簧的瞬时问题弹簧发生弹性形变时,弹力与其形变量成正比,因此,弹力不同,形变量不同,形变量不同,对应的弹力也不同。
解决这一类问题时一定要弄清“时刻”及“位置”的含义。
2、弹簧的平衡问题这类问题涉及的知识有胡克定律、力的平衡条件,一般可用f=kx或△f=k•△x和∑F=0等公式来求解。
3、弹簧的非平衡问题这类问题主要是指弹簧在相对位置发生变化时,所引起的力、加速度、速度、功、能和合外力等其他物理量发生变化的情况。
这类问题的解决,不但要涉及胡克定律、牛顿第二定律、还要涉及动能定理、能的转化和守恒定律等方面的内容。
4、弹簧弹力做功与动量、能量的综合问题在弹簧弹力做功的过程中弹力是个变力,所以这类问题一般与动量、能量联系,以综合题的形式出现。
这类问题有机地将动量守恒、机械能守恒、功能关系和能量转化等结合在一起,考查同学们的综合应用能力。
解决这类问题时,要细致分析弹簧的动态过程,综合利用动能定理和功能关系等知识解题。
二、典型例题分析(一)、“轻弹簧”类问题在中学阶段,凡涉及的弹簧都不考虑其质量,称之为"轻弹簧",是一种常见的理想化物理模型。
由于“轻弹簧”质量不计,选取任意小段弹簧分析,其两端所受张力一定平衡,否则,这小段弹簧的加速度会无限大。
故:轻质弹簧中各部分间的张力处处相等,均等于弹簧两端的受力。
弹簧一端受力为F,另一端受力一定也为F。
若是弹簧秤,则弹簧秤示数为F。
例1、如图所示,一个弹簧秤放在光滑的水平面上,外壳质量m不能忽略,弹簧及挂钩质量不计,施加水平方向的力F1、F2,且F1>F2则弹簧秤沿水平方向的加速度为 ,弹簧秤的读数为 .分析与解 以整个弹簧秤为研究对象:利用牛顿运动定律12F F ma -= ∴12F F a m -=仅以轻质弹簧为研究对象:则弹簧两端的受力都是F 1,所以弹簧秤的读数为F 1说明 F 2作用在弹簧秤外壳上,并没有作用在弹簧左端,弹簧左端的受力是由外壳内侧提供的。
高考二轮物理复习专题:弹簧问题(附答案)
专题弹簧类问题(附参考答案)高考动向弹簧问题能够较好的培养学生的分析解决问题的能力和开发学生的智力,借助于弹簧问题,还能将整个力学知识和方法有机地结合起来系统起来,因此弹簧问题是高考命题的热点,历年全国以及各地的高考命题中以弹簧为情景的选择题、计算题等经常出现,很好的考察了学生对静力学问题、动力学问题、能量守恒问题、功能关系问题等知识点的理解,考察了对于一些重要方法和思想的运用。
弹簧弹力的特点:弹簧弹力的大小可根据胡克定律计算(在弹性限度内),即F=kx,其中x是弹簧的形变量(与原长相比的伸长量或缩短量,不是弹簧的实际长度)。
高中研究的弹簧都是轻弹簧(不计弹簧自身的质量,也不会有动能和加速度)。
不论弹簧处于何种运动状态(静止、匀速或变速),轻弹簧两端所受的弹力一定等大反向。
弹簧的弹力属于接触力,弹簧两端必须都与其它物体接触才可能有弹力。
如果弹簧的一端和其它物体脱离接触,或处于拉伸状态的弹簧突然被剪断,那么弹簧两端的弹力都将立即变为零。
在弹簧两端都保持与其它物体接触的条件下,弹簧弹力的大小F=kx与形变量x成正比。
由于形变量的改变需要一定时间,因此这种情况下,弹力的大小不会突然改变,即弹簧弹力大小的改变需要一定的时间。
(这一点与绳不同,高中物理研究中,是不考虑绳的形变的,因此绳两端所受弹力的改变可以是瞬时的。
)一、与物体平衡相关的弹簧例.如图示,两木块的质量分别为m1和m2,两轻质弹簧的劲度系数分别为k1和k2,上面木块压在上面的弹簧上(但不拴接),整个系统处于平衡状态.现缓慢向上提上面的木块,直到它刚离开上面弹簧.在这过程中下面木块移动的距离为( )A.m1g/k1B.m2g/k2C.m1g/k2D.m2g/k2此题是共点力的平衡条件与胡克定律的综合题.题中空间距离的变化,要通过弹簧形变量的计算求出.注意缓慢上提,说明整个系统处于一动态平衡过程,直至m1离开上面的弹簧.开始时,下面的弹簧被压缩,比原长短(m1 + m2)g/k2,而m l刚离开上面的弹簧,下面的弹簧仍被压缩,比原长短m2g/k2,因而m2移动△x=(m1 + m2)·g/k2 -m2g/k2=m l g/k2.参考答案:C此题若求m l移动的距离又当如何求解?二、与分离问题相关的弹簧两个相互接触的物体被弹簧弹出,这两个物体在什么位置恰好分开?这属于临界问题。
专题:受力分析之弹簧问题
弹簧类问题的几种模子及其处理办法【1 】学生对弹簧类问题觉得头疼的重要原因有以下几个方面:起首,因为弹簧不竭产生形变,导致物体的受力随之不竭变更,加快度不竭变更,从而使物体的活动状况和活动进程较庞杂.其次,这些庞杂的活动进程中央所包含的隐含前提很难发掘.还有,学生们很难找到这些庞杂的物理进程所对应的物理模子以及处理办法.依据近几年高考的命题特色和常识的考核,就弹簧类问题分为以下几种类型进行剖析.一.弹簧类命题冲破要点1.弹簧的弹力是一种由形变而决议大小和偏向的力.当标题中消失弹簧时,起首要留意弹力的大小与偏向时刻要与当时的形变相对应,在标题中一般应从弹簧的形变剖析入手,先肯定弹簧原长地位.现长地位.均衡地位等,找出形变量x与物体空间地位变更的几何干系,剖析形变所对应的弹力大小.偏向,联合物体受其他力的情形来剖析物体活动状况.2.因软质弹簧的形变产生转变进程须要一段时光,在刹时内形变量可以以为不变,是以,在剖析瞬时变更时,可以以为弹力大小不变,即弹簧的弹力不突变.3.在求弹簧的弹力做功时,因该变力为线性变更,可以先求平均力,再用功的界说进行盘算,也可据动能定理和功效关系:能量转化和守恒定律求解.同时要留意弹力做功的特色:弹力做功等于弹性势能增量的负值.弹性势能的公式,高考不作定量请求,可作定性评论辩论,是以在求弹力的功或弹性势能的转变时,一般以能量的转化与守恒的角度来求解.二.弹簧类问题的几种模子1.均衡类问题例1.如图1所示,劲度系数为k1的轻质弹簧两头分别与质量为m1.m2的物块拴接,劲度系数为k2的轻质弹簧上端与物块m2拴接,下端压在桌面上(不拴接),全部体系处于均衡状况.现施力将m1迟缓竖直上提,直到下面谁人弹簧的下端刚离开桌面.在此进程中,m2的重力势能增长了______,m1的重力势能增长了________.例2.如上图2所示,A物体重2N,B物体重4N,中央用弹簧衔接,弹力大小为2N,此时吊A物体的绳的拉力为T,B对地的压力为F,则T.F的数值可能是A.7N,0 B.4N,2N C.1N,6N D.0,6N均衡类问题总结:这类问题一般把受力剖析.胡克定律.弹簧形变的特色分解起来,考核学生对弹簧模子根本常识的控制情形.只要学生静力学基本常识扎实,进修习惯较好,这类问题一般都邑水到渠成,此类问题相对较简略.2.突变类问题例3.如图3所示,一质量为m的小球系于长度分别为l1.l2的两根细线上,l1的一端吊挂在天花板上,与竖直偏向夹角为θ,l2程度拉直,小球处于均衡状况.现将l2线剪断,求剪断瞬时小球的加快度.若将图3中的细线l1改为长度雷同.质量不计的轻弹簧,如图4所示,其他前提不变,求剪断细线l2瞬时小球的加快度.突变类问题总结:不成伸长的细线的弹力变更时光可以疏忽不计,是以可以称为“突变弹力”,轻质弹簧的弹力变更须要一准时光,弹力逐渐减小,称为“渐变弹力”.所以,对于细线.弹簧类问题,当外界情形产生变更时(如撤力.变力.剪断),要从新对物体的受力和活动情形进行剖析,细线上的弹力可以突变,轻弹簧弹力不克不及突变,这是处理此类问题的症结.3.碰撞型弹簧问题此类弹簧问题属于弹簧类问题中相比较较简略的一类,而其重要特色是与碰撞问题相似,但是,它与碰撞类问题的一个显著不同就是它的感化进程相对较长,而碰撞类问题的感化时光极短.例4.如图6所示,物体B静止在滑腻的程度面上,B的左边固定有轻质的弹簧,与B质量相等的物体A以速度v向B活动并与弹簧产生碰撞,A.B始终沿同一向线,则A,B构成的体系动能损掉最大的时刻是A.A开端活动时 B.A的速度等于v时C.B的速度等于零时 D.A和B的速度相等时4:机械能守恒型弹簧问题对于弹性势能,高中阶段其实不须要定量盘算,但是须要定性的懂得,即知道弹性势能的大小与弹簧的形变之间消失直接的关系,对于雷同的弹簧,形变量一样的时刻,弹性势能就是一样的,不管是紧缩状况照样拉伸状况.例5.一劲度系数k=800N/m的轻质弹簧两头分别衔接着质量均为m=12kg的物体A.B,它们竖直静止在程度面上,如图7所示.现将一竖直向上的变力F感化在A上,使A开端向上做匀加快活动,经0.40s物体B刚要分开地面.求:⑴此进程中所加外力F的最大值和最小值.⑵此进程中力F所做的功.(设全部进程弹簧都在弹性限度内,取g=10m/s2)例6.如图8所示,物体B和物体C用劲度系数为k的弹簧衔接并竖直地静置在程度面上.将一个物体A从物体B的正上方距离B的高度为H0处由静止释放,下落伍与物体B碰撞,碰撞后A和B粘合在一路并连忙向下活动,在今后的活动中A.B不再分别.已知物体A.B.C的质量均为M,重力加快度为g,疏忽物体自身的高度及空气阻力.求:(1)A与B碰撞后刹时的速度大小.(2)A和B一路活动达到最大速度时,物体C对程度地面压力为多大?(3)开端时,物体A从距B多大的高度自由落下时,在今后的活动中才干使物体C正好分开地面?5.简谐活动型弹簧问题弹簧振子是简谐活动的经典模子,有一些弹簧问题,假如从简谐活动的角度思虑,应用简谐活动的周期性和对称性来处理,问题的难度将大大降低.例7.如图9所示,一根轻弹簧竖直竖立在程度面上,下端固定.在弹簧正上方有一个物块从高处自由下落到弹簧上端O,将弹簧紧缩.当弹簧被紧缩了x0时,物块的速度减小到零.从物块和弹簧接触开端到物块速度减小到零进程中,物块的加快度大小a随降低位移大小x变更的图像,可能是下图中的例8.如图10所示,一质量为m的小球从弹簧的正上方H高处自由下落,接触弹簧后将弹簧紧缩,在紧缩的全进程中(疏忽空气阻力且在弹性限度内),以下说法准确的是A.小球所受弹力的最大值必定大于2mgB.小球的加快度的最大值必定大于2gC.小球刚接触弹簧上端时动能最大D.小球的加快度为零时重力势能与弹性势能之和最大6.分解类弹簧问题例9.如图12所示,质量为m1的物体A经一轻质弹簧与下方地面上的质量为m2的物体B相连,弹簧的劲度系数为k,A.B都处于静止状况.一条不成伸长的轻绳绕过轻滑轮,一端连物体A,另一端连一轻挂钩.开端时各段绳都处于伸直状况,A上方的一段绳沿竖直偏向.如今挂钩上升一质量为m3的物体C并从静止状况释放,已知它正好能使B分开地面但不持续上升.若将C换成另一个质量为的物体D,仍从上述初始地位由静止状况释放,则此次B刚离地时D的速度的大小是若干?已知重力加快度为g.分解类弹簧问题总结:分解类弹簧问题一般物理情景庞杂,涉及的物理量较多,思维进程较长,标题难度较大.处理这类问题最好的办法是前面所述的“肢解法”,即把一个庞杂的问题“肢解”成若干个熟习的简略的物理情景,一一攻破.这就要肄业生具有扎实的基本常识,日常平凡擅长积聚罕有的物理模子及其处理办法,并具有把一个物理问题还原成物理模子的才能.。
弹簧相关知识点总结归纳
弹簧相关知识点总结归纳一、弹簧的基本特性1. 弹性弹簧的基本特性是具有一定的弹性,当受到外力压缩或拉伸时,可以储存能量并在外力作用结束后恢复原状。
这种特性使得弹簧可以在各种机械系统中发挥作用,并且可以根据需要进行弹性形变。
2. 强度弹簧通常需要具有较高的强度,以保证在长期使用过程中不会发生断裂或变形。
因此,制造弹簧的材料通常选用强度高的金属材料,如碳素钢、不锈钢等。
3. 蠕变在长期应力作用下,弹簧会发生塑性变形,即蠕变现象。
这对于要求弹簧长期稳定工作的场合来说是一个需要考虑的因素,通常需要通过合理的工艺和材料选择来减小蠕变效应。
4. 疲劳弹簧在长期使用过程中会受到交变应力的作用,使得弹簧材料容易发生疲劳现象。
因此,对于需要长期稳定工作的弹簧来说,需要通过材料选择、热处理等方式来提高其抗疲劳性能。
二、弹簧的种类1. 压缩弹簧压缩弹簧是一种在轴向方向上受力产生弹性形变的弹簧,通常用于各种机械系统中,如汽车悬挂系统、工业机械等。
2. 拉伸弹簧拉伸弹簧是一种在轴向方向上受拉力产生弹性形变的弹簧,常见于各种门窗、弹簧秤等家用和工业应用中。
3. 扭转弹簧扭转弹簧是一种在轴向方向上受扭转力产生弹性形变的弹簧,通常应用于各种机械系统的传动装置中。
4. 波纹管弹簧波纹管弹簧是一种利用金属波纹管的弹性形变来实现弹簧功能的特殊弹簧类型,常见于汽车减震器、阀门、管道接头等。
5. 线圈弹簧线圈弹簧是一种将金属线材绕成螺旋状的形式,通过压缩或拉伸来实现弹性形变的弹簧,广泛应用于各种机械装置中。
6. 平板弹簧平板弹簧是一种通过金属板材的弯曲来实现弹性形变的弹簧,通常用于各种摩擦副减振、悬架系统中。
7. 锁紧弹簧锁紧弹簧是一种通过摩擦力实现锁紧功能的特殊弹簧类型,常见于各种离合器、制动器等装置中。
8. 复合弹簧复合弹簧是将不同类型的弹簧组合在一起,以实现更复杂的弹性形变特性,广泛应用于需要多种弹性形变特性的装置中。
三、弹簧的工艺制造1. 材料选择弹簧的材料选择直接影响着弹簧的强度、疲劳性能和耐蠕变性能,通常选用碳素钢、不锈钢、合金钢等金属材料进行制造。
弹簧类问题的分类解析
弹簧类问题分类解析弹簧模型是高考中出现最多的模型之一,在填空、实验、计算题中都经常出现,考查范围很广,变化较多,是考查学生推理、分析综合能力的热点模型。
由于弹力与弹簧的形变成正比,在有关弹簧的题目中,物体的运动要影响弹簧的长度,长度的改变会影响力的变化.这样力与运动相联系,运动反过来又影响力的变化,几个矛盾联系在一起,学生往往感到感到较难分析.其实只要抓住弹簧几方面的特征,在解决问题的过程中如果就相关力学知识并结合弹簧本身特性进行分析,问题就可迎刃而解了。
一、对轻质弹簧而言,其内部弹力处处相等,等于弹簧一端所受外力F例1.如图所示,四个完全相同的弹簧都处于水平位置,它们的右端受到大小皆为F 的拉力作用,而左端的情况各不相同:①中弹簧的左端固定在墙上,②中弹簧的左端受大小也为F 的力F 的作用,③中弹簧的左端拴一个小木块,木块在光滑的平面上滑动,④中弹簧的左端拴一个小木块,木块在有摩擦的桌面上滑动。
若认为弹簧的质量都为零,以1 、2 、3 、4 依次表示四个弹簧的伸长量,则有( )A .2 >1B .4 >3C .1 >3D .2 =4解析 弹簧的伸长量与弹簧内部弹力相关,由此分析四根弹簧的伸长量的关系,只要将四种情况下弹簧内部弹力的大小关系分析清楚即可。
将整根弹簧从右到左分成很多小段,每小段标上序号1、2、3、4……,设每小段弹簧质量均为∆m ,则对1号小段弹簧,设2号小段弹簧对其向左的拉力为f 1,由牛顿第二定律有F – f 1 = ∆ma ;对2号小段弹簧,设3号小段弹簧对其向左拉力为f 2,因1号小段弹簧对其向右拉力为f 1',则有f 1' - f 2 = ∆ma .图中①、②两种情况下弹簧处于平衡状态,加速度a = 0,虽③、④弹簧加速度a ≠ 0,但弹簧为轻质弹簧,∆m = 0,则由上面两式有f 1 = f 2 = F ,以此类推可知弹簧中各小段间张力处处相等,均为F ,则四种情况下弹簧伸长量必均相等,应选择选项D .二.弹簧弹力的大小遵循胡克定律F = kx ,其中x 为弹簧的形变量,当形变量x 发生变化时,弹力F 也随之变化,是变力例2.一个弹簧台秤的秤盘质量和弹簧质量都可不计,盘内放一个物体PF F ② ③ ④处于静止。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题:弹簧类问题总结
类型一:关于弹簧的伸长量和弹力的计算 解决这类问题的方法是:
(1)根据物体所处的运动状态,运用牛顿定律或平衡条件求出弹簧受到的弹力,然后由胡克定律计算弹簧的形变量或原长等。
(2)由物体的运动情况和几何关系求出弹簧的形变量,然后用胡克定律计算弹力,进而求解物体的运动情况。
注意:弹簧可能产生拉力也可能产生压力,同一弹力弹簧可能有两个长度;轻质弹簧上的弹力大小处处相等。
1、如图所示,A 、B 是两个相同的弹簧,原长都是L 0=10 cm ,劲度系数k =500 N/m ,若悬挂的两个物体质量均为m ,现测得两个弹簧的总长为26cm ,则m =__________。
(g
取10m/s 2
)
2、如图所示,a 、b 、c 为三个物块,M 、N 为两个轻质弹簧,R 为跨过光滑定滑轮的轻绳,它们均处于平衡状态.则:( )
A.有可能N 处于拉伸状态而M 处于压缩状态
B.有可能N 处于压缩状态而M 处于拉伸状态
C.有可能N 处于不伸不缩状态而M 处于拉伸状态
D.有可能N 处于拉伸状态而M 处于不伸不缩状态
3、如图所示,两木块的质量分别为m 1和m 2,两轻质弹簧的劲度系数分别为k 1和k 2,上面木块压在上面的弹簧上(但不拴接),整个系统处于平衡状态.现缓慢向上提上面的木块,直到它刚离开上面弹簧.在这过程中下面木块移动的距离为( )
A. B. C. D.
4、如图所示,弹簧秤外壳质量为m 0,弹簧及挂钩的质量忽略不计,挂钩吊着一重物质量为m ,现用一方向竖直向上的外力F 拉着弹簧秤,使其向上做匀加速运动,则弹簧秤的读数为:
A.mg ;
B. ;
C.;
D.
5.如图所示,在一粗糙水平面上放有两个质量分别为m 1、m 2的铁块1、2,中间用一原长为L ,劲度系数为k 的轻弹簧连接起来,铁块与水平面的动摩擦因数为μ。
现有一水平力F 拉铁块2,当两个铁块一起以相同的加速度做匀速运动时,两铁块间的距离为
( )
A .k g m k m m F m L //)(1211μ+++
B .k g m L /1μ+
C .)(/211m m k F m L ++
D .k g m L /2μ+
6. 质量相等的两木块A 、B 用一轻弹簧栓接,静置于水平地面上,如图(a )所示。
现用一竖直向上的力F 拉动木块A ,使木块A 向上做匀加速直线运动,如图(b )所示。
从木块A 开始做匀加速直线运动到木块B 将要离开地面时的这一过程,下列说法正确的是(设
此过程弹簧始终处于弹性限度内 )( )
A .力F 一直增大
B .弹簧的弹性势能一直减小
C .木块A 的动能和重力势能之和先增大后减小
D .两木块A 、B 和轻弹簧组成的系统的机械能先增大后减小 7.一根大弹簧内套一根小弹簧,大弹簧比小弹簧长0.2m ,
它们的一端固定,另一端自由,如图所示,求这两根弹簧的劲度系数k 1(大弹簧)和k 2(小弹簧)分别为多少? (参考答案k 1=100N/m k 2=200N/m)
8.如图所示,轻质弹簧上面固定一块质量不计的薄板,在薄板上放重物,用手将重物向下压缩到一定程度后,突然将手撤去,则重物将被弹簧弹射出去,则在弹射过程中(重物与弹簧脱离之前)重物的运动情况是 ( ) A.一直加速运动 B .匀加速运动
C.先加速运动后减速运动 D .先减速运动后加速运动
9.如图所示,在倾角为θ的光滑斜面上有两个用轻质弹簧相连接的物块A 、B ,它们的质量分别为m A 、m B ,弹簧的劲度系数为k,C 为一固定挡板。
系统处一静止状态,现开始用一恒力F 沿斜面方向拉物块A 使之向上运动,求物块B 刚要离开C 时物块A 的加速度a 和从开始到此时物块A 的位移d ,重力加速度为g 。
A
B C θ
(b ) (a )
F A A B B
类型二:求与弹簧相连物体的瞬时加速度
1、如图所示,将两相同的木块a 、b 置于粗糙的水平地面上,中间用一轻弹簧连接,两侧用细绳固定于墙壁。
开始时a 、b 均静止。
弹簧处于伸长状态,两细绳均有拉力,a 所受摩擦力F fa ≠0,b 所受摩擦力F fb =0,现将右侧细绳剪断,则剪断瞬间 ( ) A.F fa 大小不变 B.F fa
方向改变
C.F fb 仍然为零
D.F fb 方向向右
2、如图所示,竖直光滑杆上套有一个小球和两根弹簧,两弹簧的一端各与小球相连,另一端分别用销钉M 、N 固定与杆上,小球处于平衡状态,设拔除销钉M 的瞬间,小球加速度的大小为12m/s 2,若不拔除销钉M 而拔除销钉N 瞬间,小球的加速度可能是(g=10 m/s 2)( )
A 、22 m/s 2,方向竖直向上
B 、22 m/s 2,方向竖直向下
C 、2 m/s 2,方向竖直向上
D 、2 m/s 2,方向竖直向下
3、如图(A )所示,一质量为m 的物体系于长度分别为1、2的两根细线上,1的一端悬挂在天花板上,与竖直方向夹角为θ,2水平拉直,物体处于平衡状态.现将2线剪断,求剪断瞬时物体的加速度.
(1)下面是某同学对该题的一种解法:
解:设1线上拉力为T 1,2线上拉力为T 2,重力为mg ,物体在三力作用下保持平衡: T 1cosθ=mg ,T 1sinθ=T 2,T 2=mgtanθ 剪断线的瞬间,T 2突然消失,物体即在T 2反方向获得加速度.因为mgtanθ=ma ,所
以加
速度a=gtanθ,方向在T 2反方向.
你认为这个结果正确吗?请对该解法作出评价并说明理由.
(2)若将图A 中的细线1改为长度相同、质量不计的轻弹簧,如图(B )所示,其他条件不变,求解的步骤与(1)完全相同,即a=gtanθ,你认为这个结果正确吗?请说明理由.
4.质量分别为m 和2m 的小球P 、Q 用细线相连,P 用轻弹簧悬挂在天花板下,开始系统处于静止。
下列说法中正确的是
A .若突然剪断细线,则剪断瞬间P 、Q 的加速度大小均为g
B .若突然剪断细线,则剪断瞬间P 、Q 的加速度大小分别为0和g
C .若突然剪断弹簧,则剪断瞬间P 、Q 的加速度大小均为g
D .若突然剪断弹簧,则剪断瞬间P 、Q 的加速度大小分别为3g 和0 总结:弹簧(或橡皮绳)两端同时连接有物体时,其形变恢复需要较长时间,在瞬时性问题中,其弹力的大小往往可看成是不变。
弹簧的弹力属于接触力,弹簧两端必须都与
P Q
其它物体接触才可能有弹力。
如果弹簧的一端和其它物体脱离接触,或处于拉伸状态的弹簧突然被剪断,那么弹簧两端的弹力都将立即变为零。
(弹簧的弹力属于接触力)
类型三:与弹簧相关的临界问题或极值问题
解决这类问题的方法是:根据物体所处的运动状态运用牛顿定律、功能关系或者能量守恒定律、胡克定律等列出方程——以弹簧的伸长量或弹簧的弹力为自变量
进行动态分析,从中找出临界状态、极值状态、转折状态以及对应的条件
——计算并进行必要的讨论。
1、一根劲度系数为k,质量不计的轻弹簧,上端固定,下端系一质量为
m的物体,有一水平板将物体托住,并使弹簧处于自然长度。
如图所示。
现让木板由静止开始以加速度a(a<g匀加速向下移动。
求经过多长时间
木板开始与物体分离。
2、如图所示,一劲度系数为k=800N/m的轻弹簧两端各焊接着两个质量均为m=12kg的物体A、B。
物体A、B和轻弹簧竖立静止在水平地面上,现要加一竖直向上的力F在上面物体A上,使物体A开始向上做匀加速运动,经0.4s物体B刚要离开地面,设整个过程中弹簧都处于弹性限度内,取g=10m/s2,求:(1)此过程中所加外力F的最大值和最小值。
(2)此过程中外力F所做的功。