隧道结构计算

隧道结构计算
隧道结构计算

重庆交通大学教案

第6章隧道结构计算

6.1 概述

6.1.1 引言

隧道结构工程特性、设计原则和方法与地面结构完全不同,隧道结构是由周边围岩和支护结构两者组成共同的并相互作用的结构体系。各种围岩都是具有不同程度自稳能力的介质,即周边围岩在很大程度上是隧道结构承载的主体,其承载能力必须加以充分利用。隧道衬砌的设计计算必须结合围岩自承能力进行,隧道衬砌除必须保证有足够的净空外,还要求有足够的强度,以保证在使用寿限内结构物有可靠的安全度。显然,对不同型式的衬砌结构物应该用不同的方法进行强度计算。

隧道建筑虽然是一门古老的建筑结构,但其结构计算理论的形成却较晚。从现有资料看,最初的计算理论形成于十九世纪。其后随着建筑材料、施工技术、量测技术的发展,促进了计算理论的逐步前进。最初的隧道衬砌使用砖石材料,其结构型式通常为拱形。由于砖石以及砂浆材料的抗拉强度远低于抗压强度,采用的截面厚度常常很大,所以结构变形很小,可以忽略不计。因为构件的刚度很大,故将其视为刚性体。计算时按静力学原理确定其承载时压力线位置,检算结构强度。

在十九世纪末,混凝土已经是广泛使用的建筑材料,它具有整体性好,可以在现场根据需要进行模注等特点。这时,隧道衬砌结构是作为超静定弹性拱计算的,但仅考虑作用在衬砌上的围岩压力,而未将围岩的弹性抗力计算在内,忽视了围岩对衬砌的约束作用。由于把衬砌视为自由变形的弹性结构,因而,通过计算得到的衬砌结构厚度很大,过于安全。大量的隧道工程实践表明,衬砌厚度可以减小,所以,后来上述两种计算方法已经不再使用了。进入本世纪后,通过长期观测,发现围岩不仅对衬砌施加压力,同时还约束着衬砌的变形。围岩对衬砌变形的约束,对改善衬砌结构的受力状态有利,不容忽视。衬砌在受力过程中的变形,一部分结构有离开围岩形成“脱离区”的趋势,另一部分压紧围岩形成所谓“抗力区”,如图6-1所示。在抗力区内,约束着衬砌变形的围岩,相应地产生被动抵抗力,即“弹性

94

重庆交通大学教案

95

抗力”。 抗力区的范围和弹性抗力的大小,因围岩性质、围岩压力大小和结构变形的不同而不同。但是对这个问题有不同的见解,即局部变形理论和共同变形理论。

图6.1.1 图6.1.2

局部变形理论是以温克尔(E.Winkler )假定为基础的。它认为应力(i σ)和变形(i δ)之间呈直线关系,即i i k δσ=,k 为围岩弹性抗力系数,见图6.1.2(a)。这一假定,相当于认为围岩是一组各自独立的弹簧,每个弹簧表示一个小岩柱。虽然实际的弹性体变形是互相影响的,施加于一点的荷载会引起整个弹性体表面的变形,即共同变形,见图6.1.2(b)。但温克尔假定能反映衬砌的应力与变形的主要因素,且计算简便实用,可以满足工程设计的需要。应当指出,弹性抗力系数k 并非常数,它取决于很多因素,如围岩的性质、衬砌的形状和尺寸、以及荷载类型等。不过对于深埋隧道,可以视为常数。

共同变形理论把围岩视为弹性半无限体,考虑相邻质点之间变形的相互影响。它用纵向变形系数E 和横向变形系数μ表示地层特征,并考虑粘结力C 和内摩擦角?的影响。但这种方法所需围岩物理力学参数较多,而且计算颇为繁杂,计算模型也有严重缺陷,另外还假定施工过程中对围岩不产生扰动等,更是与实际情况不符。因而,我国很少采用。

本章将讨论局部变形理论中目前仍有实用价值的方法。

6.1.2 隧道结构体系的计算模型

国际隧道协会(ITA)在1987年成立了隧道结构设计模型研究组,收集和汇总了各

重庆交通大学教案

会员国目前采用的地下结构设计方法,如表6.1.1所示。经过总结,国际隧道协会认为,目前采用的地下结构设计方法可以归纳为以下4种设计模型:

表6.1.1 一些国家采用的设计方法概况

┌───┬──────────────┬───────────────┬──────────

││盾构开挖的│喷锚钢支撑的│中硬石质深埋隧道│

││软土质隧道│软土质隧道││

├───┼──────────────┼───────────────┼──────────┼

│奥地利│弹性地基圆环│弹性地基圆环、有限元法、收敛│经验法│

│││一约束法││

├───┼──────────────┼───────────────┼──────────┤

││覆盖层厚<2D,顶部无约束的│覆盖层厚<2D ,顶部无约束的│全支永弹性地基圆环│

│德国│弹性地基圆环;覆盖层厚>3D,│弹性地基圆环;覆盖层厚>3D,全│、有限元法、连续介质│

││全支承弹性地基圆环、有限元法│全支承弹性地基圆环、有限元法│或收敛—约束法│

├───┼──────────────┴───────────────┼──────────┤

│法国││有限元法、作用-反作用模型、经│连续介质模型、收敛│

││弹性地基圆环有限元法│验法│一约束法、经验法│

├───┼──────────────┬───────────────┼──────────┤

│日本│局部支承弹性地基圆环│局部支承弹性地基圆环、经验加│弹性地基框架、有限│

│││测试有限元法│元法、特性曲线法│

├───┼──────────────┼───────────────┼──────────┤

│││初期支护:有限元法、│初期支护:经验法│

│中国│自由变形或弹性地基圆环│收敛一约束法│永久支护:作用和反│

│││二期支护;弹性地基圆环│作用模型│

││││大型洞室:有限元法│

├───┼──────────────┼───────────────┼──────────┤

│瑞士││作用一反作用模型│有限元法,有时用│

││││收敛-约束法│

├───┼──────────────┼───────────────┴──────────┤

│英国│弹性地基圆环缪尔伍德法│收敛—约束法、│有限元法、收敛-约束│

│││经验法│法、经验法│

├───┼──────────────┼───────────────┬──────────┤

│美国│弹性地基圆环│弹性地基圆环、│弹性地基圆环、│

│││作用一反作用模型│有限元法、锚杆经验法│

└───┴──────────────┴───────────────┴──────────┘(1)以参照过去隧道工程实践经验进行工程类比为主的经验设计法;

(2)以现场量测和实验室试验为主的实用设计方法。例如,以洞周位移量测值为根据的收敛约束法;

(3)作用与反作用模型,即荷载—结构模型。例如,弹性地基圆环计算和弹性地基框架计算等计算法;

(4)连续介质模型,包括解析法和数值法。数值计算法目前主要是有限单元法。

从各国的地下结构设计实践看,目前,在设计隧道的结构体系时,主要采用两类

96

重庆交通大学教案

计算模型,一类是以支护结构作为承载主体,围岩作为荷载同时考虑其对支护结构的变形约束作用的模型。另一类则相反,视围岩为承载主体,支护结构则为约束围岩变形的模型。

前者又称为传统的结构力学模型。它将支护结构和围岩分开来考虑,支护结构是承载主体,围岩作为荷载的来源和支护结构的弹性支承, 故又可称为荷载-结构模型。在这类模型中隧道支护结构与围岩的相互作用是通过弹性支承对支护结构施加约束来体现的,而围岩的承载能力则在确定围岩压力和弹性支承的约束能力时间接地考虑。围岩的承载能力越高,它给予支护结构的压力越小,弹性支承约束支护结构变形的抗力越大,相对来说,支护结构所起的作用就变小了。

这一类计算模型主要适用于围岩因过分变形而发生松弛和崩塌,支护结构主动承担围岩“松动”压力的情况。所以说,利用这类模型进行隧道支护结构设计的关键问题,是如何确定作用在支护结构上的主动荷载,其中最主要的是围岩所产生的松动压力,以及弹性支承给支护结构的弹性抗力。一旦这两个问题解决了,剩下的就只是运用普通结构力学方法求出超静定体系的内力和位移了。属于这一类模型的计算方法有:弹性连续框架(含拱形)法、假定抗力法和弹性地基梁(含曲梁和圆环)法等都可归属于荷载结构法。当软弱地层对结构变形的约束能力较差时(或衬砌与地层间的空隙回填,灌浆不密实时),地下结构内力计算常用弹性连续框架法,反之,可用假定抗力法或弹性地基法。弹性连续框架法即为进行地面结构内力计算时的力法与变形法。假定抗力法和弹性地基梁法则已形成了一些经典计算方法。由于这个模型概念清晰,计算简便,易于被工程师们所接受,放至今仍很通用,尤其是对模筑衬砌。

第二类模型又称为岩体力学模型。它是将支护结构与围岩视为一体,作为共同承载的隧道结构体系,故又称为围岩-结构模型或复合整体模型,见图6.2(b)。在这个模型中围岩是直接的承载单元,支护结构只是用来约束和限制围岩的变形,这一点正好和上述模型相反。复合整体模型是目前隧道结构体系设计中力求采用的并正在发展的模型,因为它符合当前的施工技术水平。在围岩-结构模型中可以考虑各种

97

重庆交通大学教案

几何形状,围岩和支护材料的非线性特性,开挖面空间效应所形成的三维状态,以及地质中不连续面等等。在这个模型中有些问题是可以用解析法求解,或用收敛-约束法图解,但绝大部分问题,因数学上的困难必须依赖数值方法,尤其是有限单元法。利用这个模型进行隧道结构体系设计的关键问题,是如何确定围岩的初始应力场,以及表示材料非线性特性的各种参数及其变化情况。一旦这些问题解决了,原则上任何场合都可用有限单元法围岩和支护结构应力和位移状态。

6.2 隧道衬砌上的荷载类型及其组合

围岩压力与结构自重力是隧道结构计算的基本荷载。明洞及明挖法施工的隧道,填土压力与结构自重力是结构的主要荷载。《公路隧道设计规范》(JTJ026-90)中在对隧道结构进行计算时,列出了荷载类型,如表6.1.1所示,并按其可能出现的最不利组合考虑。其他各种荷载除公路车辆荷载之外,在结构计算时考虑的机率很小,有的也很难准确的表达与定量,表中所列荷载不论机率大小,力求其全,是为了体现荷载体系的完整,也是为了在结构计算时荷载组合的安全系数取值,并与《铁路隧道设计规范》(JBJ3-85)的取值保持一致。同时又本着公路隧道荷载分类向公路荷载分类方法靠的原则,在形式上与《公路桥涵设计通用规范》(JTJ 021—89)保持一致,在取用荷载组合安全系数时又能与铁路隧道荷载分类相对应。表6-2中的永久荷载加基本可变荷载对应于铁路隧道设计规范中的主要荷载,其它可变荷载对应于铁路隧道的附加荷载,偶然荷载对应于铁路的特殊荷载。表6.2.1所列的荷载及分类不适用于新奥法(NATM)设计与施工的隧道。

由于隧道设计中贯彻了“早进晚出”的原则,洞口接长明洞的边坡都干很高,加之落石多为滚滑、跳跃落下,直接砸落在明洞上者极少。而当遇有大量落石和堕落高度较大的石块,可设法避开或者采取清除危石加固坡面等措施,故一般情况下落石冲击力可不考虑。

当有落石危害须检算冲击力时,则只计洞顶实际填土重力(不包括坍方堆积土石重力)和落石冲击力的影响。落石冲击力的计算,目前研究还不深入,实测资料也很

98

重庆交通大学教案

少,故对其计算未做规定,具体设计时可通过现场量测或有关计算验证。

设计山岭公路隧道建筑物时,一般不需考虑列车活载及公路车辆活载,只有当隧道结构构件承受公路车辆活载及列车活载才按有关规定进行计算。

作用在衬砌上的荷载,按其性质也可以区分为主动荷载与被动荷载。主动荷载是主动作用于结构、并引起结构变形的荷载;被动荷载是因结构变形压缩围岩而引起的围岩被动抵抗力,即弹性抗力,它对结构变形起限制作用。

主动荷载包括主要荷载(指长期及经常作用的荷载,有围岩压力、回填土荷载、衬砌自重、地下静水压力等)和附加荷载(指非经常作用的荷载,有灌浆压力、冻胀压力、混凝土收缩应力、温差应力以及地震力等)。计算荷载应根据这两类荷载同时存在的可能性进行组合。在一般情况下可仅按主要荷载进行计算。特殊情况下才进行必要的组合,并选用相应的安全系数检算结构强度。

被动荷载主要指围岩的弹性抗力,它只产生在被衬砌压缩的那部分周边上。其分布范围和图式一般可按工程类比法假定,通常可作简化处理。

6.3半衬砌的计算

99

沥青路面结构计算书

新建路面设计 1. 项目概况与交通荷载参数 该项目位于西南地区,属于二级公路,设计时速为40Km/h,12米双车道公路,设计使用年限为12.0年,根据交通量OD调查分析,断面大型客车和货车交通量为1849辆/日, 交通量年增长率为8.2%, 方向系数取55.0%, 车道系数取 70.0%。根据交通历史数据,按表A.2.6-1确定该设计公路为TTC4类,根据表 A.2.6-2得到车辆类型分布系数如表1所示。 表1. 车辆类型分布系数 根据路网相邻公路的车辆满载情况及历史数据的调查分析,得到各类车型非满载与满载比例,如表2所示。 表2. 非满载车与满载车所占比例(%) 根据表6.2.1,该设计路面对应的设计指标为沥青混合料层永久变形与无机结合料层疲劳开裂。根据附表A.3.1-3,可得到在不同设计指标下,各车型对应的非满载车和满载车当量设计轴载换算系数,如表3所示。 表3. 非满载车与满载车当量设计轴载换算系数

根据公式(A.4.2)计算得到对应于沥青混合料层永久变形的当量设计轴载累计作用次数为8,109,551, 对应于无机结合料层疲劳开裂的当量设计轴载累计作用次数为562,339,245。本公路设计使用年限内设计车道累计大型客车和货车交通量为4,989,710,交通等级属于中等交通。 2. 初拟路面结构方案 初拟路面结构如表4所示。 表4. 初拟路面结构 路基标准状态下回弹模量取50MPa,回弹模量湿度调整系数Ks取1.00,干湿与冻融循环作用折减系数Kη取1.00,则经过湿度调整和干湿与冻融循环作用折减的路基顶面回弹模量为50MPa。 3. 路面结构验算 3.1 沥青混合料层永久变形验算 根据表G.1.2,基准等效温度Tξ为20.1℃,由式(G.2.1)计算得到沥青混合料层永久变形等效温度为21.5℃。可靠度系数为1.04。 根据B.3.1条规定的分层方法,将沥青混合料层分为6个分层,各分层厚度(hi)如表5所示。利用弹性层状体系理论,分别计算设计荷载作用下各分层顶部的竖向压应力(Pi)。根据式(B.3.2-3)和式(B.3.2-4),计算得到d1=-8.23,d2=0.77。把d1和d2的计算结果带入式(B.3.2-2),可得到各分层的永久变形修正系数(kRi),并进而利用式(B.3.2-1)计算各分层永久变形量(Rai)。各计算结果汇总于表5中。 各层永久变形累加得到沥青混合料层总永久变形量Ra=19.2(mm),根据表3.0.6-1,沥青层容许永久变形为20.0(mm),拟定的路面结构满足要求。

隧道结构计算

一.基本资料 惠家庙公路隧道,结构断面尺寸如下图,内轮廓半径为 6.12m ,二衬 厚度为 0.45m 。围岩为 V 级,重度为19.2kN/m3,围岩弹性抗力系数为 1.6×105kN/m3,二衬材料为 C25 混凝土,弹性模量为 28.5GPa ,重度 为 23kN/m 3。考虑到初支和二衬分别承担部分荷载,二衬作为安全储备,对其围岩压力进行折减,对本隧道按照 60%进行折减。求二衬内力,作出内力图,偏心距分布图。 1)V1级围岩,二衬为素混凝土,做出安全系数分布图,对二衬安全性进行验算。 2)V2级围岩,二衬为钢筋混凝土,混凝土保护层厚度 0.035m ,按结构设计原理对其进行配筋设计。 二.荷载确定 1.围岩竖向均布压力:q=0.6×0.45?1 2-S γω 式中: S —围岩级别,此处S=5; γ--围岩重度,此处γ=19.2KN/3m ; ω--跨度影响系数,ω=1+i (m l -5),毛洞跨度m l =13.14+2?0.06=13.26m ,其中0.06m 为一侧平均超挖量,m l =5—15m 时,i=0.1,此处ω=1+0.1?(13.26-5)=1.826。 所以,有:q=0.6×0.451 -52 ??19.2?1.826=151.456(kPa )

此处超挖回填层重忽略不计。 2.围岩水平均布压力:e=0.4q=0.4?151.456=60.582(kPa ) 三.衬砌几何要素 5. 3.1 衬砌几何尺寸 内轮廓线半径126.12m , 8.62m r r == 内径12,r r 所画圆曲线的终点截面与竖直轴的夹角1290,98.996942φφ=?=?; 拱顶截面厚度00.45m,d = 墙底截面厚度n 0.45m d = 此处墙底截面为自内轮廓半径2r 的圆心向内轮廓墙底做连线并延长至与外轮廓相交,其交点到内轮廓墙底间的连线。 外轮廓线半径: 110 6.57m R r d =+= 2209.07m R r d =+= 拱轴线半径: '1200.5 6.345m r r d =+= '2200.58.845m r r d =+= 拱轴线各段圆弧中心角: 1290,8.996942θθ=?=? 5.3.2 半拱轴线长度S 及分段轴长S ? 分段轴线长度: '1 1190π 3.14 6.3459.9667027m 180180S r θ? = = ??=?? '2228.996942π 3.148.845 1.3888973m 180180S r θ?==??=?? 半拱线长度: 1211.3556000m S S S =+= 将半拱轴线等分为8段,每段轴长为: 11.3556 1.4194500m 88 S S ?= ==

(全过程精细讲解)路面结构设计及计算

路面结构设计及计算 7.1 轴载分析 路面设计以双轴组单轴载100KN 作为标准轴载 a.以设计弯沉值为指标及验算沥青层层底拉应力中的累计当量轴次。 (1)轴载换算 轴载换算采用如下的计算公式:35 .421? ? ? ??=P P N C C N i i (7.1) 式中: N —标准轴载当量轴次,次/日 i n —被换算车辆的各级轴载作用次数,次/日 P —标准轴载,KN i p —被换算车辆的各级轴载,KN K —被换算车辆的类型数 1c —轴载系数,)1(2.111-+=m c ,m 是轴数。当轴间距离大于3m 时,按单独的一个轴载计算;当轴间距离小于3m 时,应考虑轴数系数。 2c :轮组系数,单轮组为6.4,双轮组为1,四轮组为0.38。

轴载换算结果如表所示: 注:轴载小于25KN 的轴载作用不计。 (2)累计当量轴数计算 根据设计规,一级公路沥青路面的设计年限为15年,四车道的车道系数η取0.40,γ =4.2 %,累计当量轴次: ][γ η γ13651)1(N N t e ??-+= [] 次)(.5484490042 .040 .0327.184********.0115 =???-+= (7.2) 验算半刚性基层层底拉应力的累计当量轴次 b.轴载换算 验算半刚性基底层底拉应力公式为 8 1 ' 2' 1' ) (∑==k i i i P p n c c N (7.3) 式中:'1c 为轴数系数,)1(21' 1-+=m c '2c 为轮组系数,单轮组为1.85,双轮组为1,四轮组为0.09。 计算结果如下表所示: 表7.3

注:轴载小于50KN 的轴载作用不计。 [] γ η γ'13651)1(N N t e ??-+= ? [] 次3397845% 042.040 .0313.13473651%) 042.01(15 =???-+= 7.2 结构组合与材料选取 由上面的计算得到设计年限一个行车道上的累计标准轴次约为700万次左右,根据规推荐结构,路面结构层采用沥青混凝土(15cm )、基层采用石灰粉煤灰碎石(厚度待定)、底基层采用石灰土(30cm )。 规规定高速公路一级公路的面层由二至三层组成,查规,采用三层沥青面层,表面层采用细粒式密级配沥青混凝土(厚4cm ),中间层采用中粒式密级配沥青混凝土(厚5cm ),下面层采用粗粒式密级配沥青混凝土(厚6cm )。 7.3 各层材料的抗压模量与劈裂强度 查有关资料的表格得各层材料抗压模量(20℃)与劈裂强度

隧道工程课程设计70946

隧道工程课程设计说明书The structural design of the Tunnel 作者姓名:黄浩刘彦强 专业、班级:道桥1002班道桥1003班 学号:311007020711 311007020815 指导教师:陈峰宾 设计时间:2014/1/9 河南理工大学 Henan Polytechnic University

目录 目录 (3) 隧道工程课程设计 0 一.课程设计题目 0 二.隧道的建筑限界 0 三.隧道的衬砌断面 0 四.荷载确定 (1) 4.1围岩压力计算 (1) 4.2围岩水平压力 (1) 4.3浅埋隧道荷载计算 (2) (1)作用在支护结构上的垂直压力 (2) 五.结构设计计算 (3) 5.1计算基本假定 (3) 5.2内力计算结果 (4) 5.3 V级围岩配筋计算 (5) 5.4偏心受压对称配筋 (6) 5.5受弯构件配筋 (7) 5.6箍筋配筋计算 (7) 5.7强度验算 (7) 5.8最小配筋率验算: (9)

取 50 s a mm = ,有 ()() 942 0.02092% 100050050 s s A b h a ρ===> ?-?- 满足规范要求. (9) 六.辅助施工措施设计 (9) 6.1双侧壁导坑施工方法 (9) 6.2开挖方法 (9) 6.3施工工序 (10)

隧道工程课程设计 一.课程设计题目 某单车道时速350Km/h高速铁路隧道Ⅴ级围岩段结构及施工方法设计 二.隧道的建筑限界 根据《铁路隧道设计规范》有关条文规定,隧道的建筑限界高度H取6.55m,宽度取8.5m,如图所示。 三.隧道的衬砌断面 拟定隧道的衬砌,衬砌材料为C25混凝土,弹性模量Ec=2.95*107kPa,重度γh=23kN/m3,衬砌厚度取50cm,如图所示。

路面结构设计计算示例

课程名称: 学生: 学生学号: 专业班级: 指导教师: 年月日

路面结构设计计算 1 试验数据处理 1.1 路基干湿状态和回弹模量 1.1.1 路基干湿状态 路基土为粘性土,地下水位距路床顶面高度0.98m~1.85m。查路基临界高度参考值表可知IV5区H1=1.7~1.9m,H2=1.3~1.4m,H3=0.9~1.0m,本路段路基处于过湿~中湿状态。 1.1.2 土基回弹模量 1) 承载板试验 表1.1 承载板试验数据 承载板压力(MPa) 回弹变形 (0.01mm) 拟合后的回弹变形 (0.01mm) 0.02 20 10 0.04 35 25 0.06 50 41 0.08 65 57 0.10 80 72 0.15 119 剔除 0.20 169 剔除 0.25 220 剔除 计算路基回弹模量时,只采用回弹变形小于1mm的数据,明显偏离拟合直线的点可剔除。拟合过程如图所示:

路基回弹模量: 210101 1000 (1)4 n i i n i i p D E l πμ===-=∑∑ 2)贝克曼梁弯沉试验 表1.2 弯沉试验数据 测点 回弹弯沉(0.01mm ) 1 155 2 182 3 170 4 174 5 157 6 200 7 147 8 173 9 172 10 207 11 209 12 210 13 172 14 170 根据试验数据: l = ∑ll l = 155+?+170 14 =178.43

15.85(0.01mm)S = =s = √∑(ll ?l )2l ?1 =20.56(0.01mm) 式中:l ——回弹弯沉的平均值(0.01mm ); S ——回弹弯沉测定值的标准差(0.01mm ); l i ——各测点的回弹弯沉值(0.01mm ); n ——测点总数。 根据规要求,剔除超出(2~3)l S ±的测试数据,重新计算弯沉有效数据的平均值和标准差。计算代表弯沉值: 1174.79 1.64515.85200.86(0.01mm)a l l Z S - =+=+?=l 1=l +l l l =178.43+ 1.645×20.56=21 2.25 Z a 为保证率系数,高速公路、一级公路取2.0,二、三级公路取1.645,四级公路取1.5。 土基的回弹模量: 220201220.70106.5 (1)(10.35)0.71246.3(MPa)200.860.01 p E l δμα??= -=?-?=? 1.2 二灰土回弹模量和强度 1. 2.1 抗压回弹模量 二灰土抗压回弹模量为:735MPa 。 1.2.2 f50mm×50mm试件劈裂试验 表1.3 二灰土试件劈裂试验数据 f50mm×50mm试件劈裂试验 最大荷载(N ) 2t P Dh σπ= (kPa ) 处理结果 有效数据平均值t σ(kPa ) 250.57 有效数据样本标准差S (kPa ) 12.07 变异系数C v (%) 4.82 变异系数应小于6%,否则可在剔除偏差较大的数据后,重新计算平均值和标准差。设计

路面结构设计计算书

公路路面结构设计计算示例 、刚性路面设计 交通组成表 1 )轴载分析 路面设计双轮组单轴载 100KN ⑴ 以设计弯沉值为指标及验算面层层底拉力中的累计当量轴次。 ①轴载换算: 双轴一双轮组时,按式 i 1.07 10 5 p °型;三轴一双轮组时,按式 N s i N i P i 16 100 式中:N s ——100KN 的单轴一双轮组标准轴载的作用次数; R —单轴一单轮、单轴一双轮组、双轴一双轮组或三轴一双轮组轴型 i 级轴载的总重KN ; N i —各类轴型i 级轴载的作用次数; n —轴型和轴载级位数; i —轴一轮型系数,单轴一双轮组时, i =1 ;单轴一单轮时,按式 3 2.22 10 P 0.43 计算; 8 0.22 2.24 10 R 计算

N i1 NA 注:轴载小于40KN 的轴载作用不计。 ②计算累计当量轴次 根据表设计规范,一级公路的设计基准期为 30年,安全等级为二级,轮迹横向分布系数 g r 0.08,则 , :t 30 N N s (1 g r ) 1 365 834.389 (1 0.08) g r 4 4 量在100 10 ~ 2000 10中,故属重型交通。 2) 初拟路面结构横断面 由表3.0.1,相应于安全等级二级的变异水平为低 ~中。根据一级公路、重交通等级和低级变异水平等 级,查表 初拟普通混凝土面层厚度为 24cm ,基层采用水泥碎石,厚 20cm ;底基层采用石灰土,厚 20cm 。 普通混凝土板的平面尺寸为宽 3.75m ,长5.0m 。横缝为设传力杆的假缝。 式中:E t ――基层顶面的当量回弹模量,; E 0——路床顶面的回弹模量, E x ――基层和底基层或垫层的当量回弹模量, E 1,E 2 ――基层和底基层或垫层的回弹模量, h x ――基层和底基层或垫层的当量厚度, 1 365 0.2 6900125362 其交通 0.08 查表的土基回弹模量 设计弯拉强度:f cm 结构层如下: E 。 35.0MP a ,水泥碎石 E 1 1500MP a ,石灰土 E ? 550 MP a 5.0MP a E c 3.1 104 MP a 水泥混凝土 24cm E = . x .g'-iF 水泥碎石20cm E :=150OMP Q 石灰土 20cm E =53C MPa E x h 2 D x h ; E z h ; h x 12 3 1500 0.2 12 4.700(MN ( 12D ( W E t 12 6.22 0.202 1500 0.202 550 2 2 1025MP a 0.202 0.202 m 0)2 ( 1 4 3 550 0.2 (0.2 12 m) ( 1025 0.380m 1 )1 E 2h 2 0.2) 4 2 ( 1500 0.2 550 0.2 1 )1 1.51(牙) E 。 0.45 6.22 1 1.51 (^) 0.45 35 4.165 E x 、0.55 1 1.44( ) 1 E E 1 ah E ( -) 4.165 0.38635 1.44 (些)0.55 35 0.786 1025 丄 ( )3 212276MP a 35 按式() s tc 计算基层顶面当量回弹模量如下: h 12 E 1 h ;E 2 2 3) 确定基层 E , E

隧道工程课程设计

1初始条件 某高速公路隧道通过III 类围岩(即IV 级围岩),埋深H=30m ,隧道围岩天然容重γ=23 KN/m3,计算摩擦角ф=35o ,变形模量E=6GPa,采用矿山法施工;衬砌材料采用C25喷射混凝土,材料容重322/h KN m γ=,变形模量25h E GPa =。 2隧道洞身设计 2.1隧道建筑界限及内轮廓图的确定 该隧道横断面是根据两车道高速公路IV 级围岩来设计的,根据《公路隧道设计规范》确定隧道的建筑限界如下: W —行车道宽度;取3.75×2m C —余宽;因设置检修道,故余宽取为0m J —检修道宽度;双侧设置,取为1.0×2m H —建筑限界高度;取为5.0m2L L —左侧向宽度;取为1.0m R L —右侧向宽度;取为1.5m L E —建筑限界左顶角宽度;取1.0m R E —建筑限界右顶角宽度;取1.0m h —检修道高度;取为0.25m

隧道净宽为1.0+1.0+7.50+1.50+1.0=12m 设计行车速度为120km/h,建筑限界左右顶角高度均取1m ;隧道轮廓线如下图: 图1 隧道内轮廓限界图 根据规范要求,隧道衬砌结构厚度为50cm (一次衬砌为15cm 和二次衬砌35cm )通过作图得到隧道的尺寸如下: 图2 隧道内轮廓图 得到如下尺寸:11.2m R 5.6m R 9.47m R 321===,, 3隧道衬砌结构设计 3.1支护方法及衬砌材料 根据《公路隧道设计规范》(JTG-2004),本设计为高速公路,采用复合式衬砌,复合式衬砌是由初期支护和二次衬砌及中间防水层组合而成的衬砌形式。 复合式衬砌应符合下列规定: 1初期支护宜采用锚喷支护,即由喷射混凝土,锚杆,钢筋网和钢筋支架等支护形式单独或组合使用,锚杆宜采用全长粘结锚杆。 2二次衬砌宜采用模筑混凝土或模筑钢筋混凝土结构,衬砌截面宜采用连结圆顺的等厚衬砌断面,仰拱厚度宜与拱墙厚度相同。 IV 级围岩:

隧道 结构计算分析

一、计算原则和依据 1、采用ANSYS有限元通用程序(注:该程序是目前唯一通过 ISO9001国际认证的有限元计算分析程序)对竹篱晒网隧道进行结构受力及变形分析。 2、采用地层-结构模型对暗挖隧道的受力和变形进行分析。 3、分析对象为纵向宽1m的隧道结构和地层。 4、依据《竹篱晒网隧道施工图设计文件》、《公路路隧道设计规范》等建立计算模型。 二、计算内容 对竹篱晒网隧道的计算,分别取洞口段、洞身段中V、IV、III级围岩进行计算,取断面计算如下: 1、出洞段KY2+760(V级围岩,采用双侧壁法施工); 2、洞身段KY2+480(IV级围岩,采用环形台阶法施工); 3、洞身段KY2+500(III级围岩,采用台阶法施工)。 三、结构计算模型、荷载 1、计算模型 采用隧道与地层共同作用的地层-结构模式,模拟分析施工过程地层和结构的受力及变形特点。计算模型所取范围是:水平方向取隧道两侧3倍洞跨,而竖直方向,仰拱以下地层,以洞跨的3倍为限,即从

仰拱至地层下3倍洞跨深度范围,隧道拱顶以上地层:V级围岩1 级围岩根据计算高度取值。计算中地层及初期支护III取至地面,IV、材料的弹塑性实体单元模拟,而DP(初衬喷砼及钢架除外)采用了、二次衬砌采用弹性梁模拟,为使点和点之间位移初衬(钢架喷砼)初衬和二衬之间用只传递轴初衬和地层之间用约束方程联系、协调,向压力的链杆连接。)来死”(ALIVE生”(KILL)、“ANSYS程序中,采用单元的“时,受力体系模拟衬砌和临时支撑的施作和拆除过程,当单元“死”,而后被激单元的应力、应变不计(即内力为0)不受其影响,“死”的单元只对以后的单元不计以前自身应变,也就是说,“活”“活”应力发生变化时产生作用。2、计算荷载毛洞”模拟开挖过程中,先计算初始应力,每开挖一步形成“时,释放一部分初始应力,施作支护时释放余下的初始应力。采用莫尔—库仑屈服准则对结构的开挖过程进行有限元计算中,)模型计算结构非线形(DP 弹塑性分析。也即采用Drucker-Prager 的变形特性。其等效应力为:??????T?????SMS3??m2??1????????T式中;11??2 ?????????00S1?11?0zymxm3??so2sin6c c;????????y??ni3s3sin33?? —材料的内聚力,MPa;—材料的内摩擦角。?c屈服准则为: 2 ??????T????0?3M?S?FS???ym2??计算时将地层以岩性和11??2 地质特点划分为几个不同的类别,各层计算时围岩的物理力学指标依据施工图中《地质详勘报告》加以选取。具体如表1所示。 有限元计算围岩物理力学参数 表1

公路隧道设计规范

公路隧道设计规范(JTG D70-2004) 1 总则 (1) 2 主要术语与符号 (2) 3 隧道调查及围岩分级 (5) 4 总体设计 (11) 5 建筑材料 (17) 6 荷载 (22) 7 洞口及洞门 (25) 8 衬砌结构设计 (27) 9 结构计算 (33) 10 防水与排水 (40) 11 小净距及连拱隧道 (42) 12 辅助通道 (44) 13 辅助工程措施 (48) 14 特殊地质地段 (51) 15 隧道内路基与路面 (54) 16 机电及其它设施…………………………………………………………………68 附录A围岩分级有关规定 (60) 附录B隧道标准内轮廓 (63) 附录C型钢特性参数表 (65) 附录D释放荷载的计算方法 (69) 附录E浅埋隧道荷载的计算方法 (71) 附录F偏压隧道衬砌荷载的计算方法 (74) 附录G明洞设计荷载的计算方法 (75) 附录H洞门土压力荷载的计算方法 (77) 附录I荷载结构法 (78) 附录J地层结构法 (80) 附录K钢筋混凝土受弯和受压构件配筋量计算方法 (88) 附录L本规范用词说明 (94) 在编制过程中,编制组对全国已建和在建的公路隧道进行了较广泛的调查研究,搜集并分析了大量设计文件、工程报告、营运管理报告,就有关专题进行了研究,并听取了全国有关设计院和专家的意见。考虑到我国公路隧道技术起步较晚,其经验和基础性工作不足,因此在我国经验的基础上又采用或借鉴了国外公路隧道的成功经验和先进技术。 本次修订中,充分考虑了与其它相关标准、规范的协调性,并保持一致。同时,在全面修订的原则下,尽量按原《规范》的风格编排撰写。本次修订的重点为调查、围岩分类、总体设计、锚喷支护与衬砌、洞口段工程、结构计算、特殊构造设计、特殊地质地段设计等,并增加了三车道隧道、连拱隧道和小净距隧道等内容。 关于强制性条款 《公路隧道设计规范》(JTG D70-2004)中第1.0.3、1.0.5、1.0.6、1.0.7、3.1.1、3.1.3、7.1.2、8.1.2、10.1.1、15.1.1、15.1.2、16.1.1条为强制性条款,必须 按照国家有关工程建设标准强制性条文的有关规定严 格执行。《工程建设标准强制性条文》(公路工程部

路面结构设计计算书有计算过程的样本

公路路面结构设计计算示例 一、 刚性路面设计 交通组成表 1) 轴载分析 路面设计双轮组单轴载100KN ⑴ 以设计弯沉值为指标及验算面层层底拉力中的累计当量轴次。 ① 轴载换算: 16 1100∑=? ?? ??=n i i i i s P N N δ 式中 : s N ——100KN 的单轴—双轮组标准轴载的作用次数; i P —单轴—单轮、 单轴—双轮组、 双轴—双轮组或三轴—双轮组轴型i 级轴载的总重KN; i N —各类轴型i 级轴载的作用次数; n —轴型和轴载级位数; i δ—轴—轮型系数, 单轴—双轮组时, i δ=1; 单轴—单轮时, 按 式43.031022.2-?=i i P δ计算; 双轴—双轮组时, 按式22.05 1007.1--?=i i P δ; 三轴—双轮组时, 按式22.08 1024.2--?=i i P δ计算。

轴载换算结果如表所示 车型 i P i δ i N 16)(P P N i i i δ 解放CA10B 后轴 60.85 1 300 0.106 黄河JN150 前轴 49.00 43.03491022.2-?? 540 2.484 后轴 101.6 1 540 696.134 交通SH361 前轴 60.00 43.03601022.2-?? 120 12.923 后轴 2?110.00 22.052201007.1--?? 120 118.031 太脱拉138 前轴 51.40 43.0340.511022.2-?? 150 1.453 后轴 2?80.00 22.051601007.1--?? 150 0.969 吉尔130 后轴 59.50 1 240 0.059 尼桑CK10G 后轴 76.00 1 1800 2.230 16 1 )( P P N N i i i n i δ∑== 834.389 注: 轴载小于40KN 的轴载作用不计。 ② 计算累计当量轴次 根据表设计规范, 一级公路的设计基准期为30年, 安全等级为二级, 轮迹横向分布系数η是0.17~0.22取0.2, 08.0=r g , 则 [][] 362 .69001252.036508 .01 )08.01(389.8343651)1(30=??-+?=?-+=ηr t r s e g g N N 其 交通量在4 4102000~10100??中, 故属重型交通。 2) 初拟路面结构横断面 由表3.0.1, 相应于安全等级二级的变异水平为低~中。根据一级公路、 重交通等级和低级变异水平等级, 查表 4.4.6 初拟普通混凝土面层厚度为24cm, 基层采用水泥碎石, 厚20cm; 底基层采用石灰土, 厚20cm 。普通混凝土板的平面尺寸为宽3.75m, 长5.0m 。横缝为设传力杆的假缝。 3) 确定基层顶面当量回弹模量tc s E E , 查表的土基回弹模量a MP E 0.350=, 水泥碎石a MP E 15001=, 石灰土

隧道衬砌计算

第五章隧道衬砌结构检算 5.1结构检算一般规定 为了保证隧道衬砌结构的安全,需对衬砌进行检算。隧道结构应按破损阶段法对构件截面强度进行验算。结构抗裂有要求时,对混凝土应进行抗裂验算。5.2 隧道结构计算方法 本隧道结构计算采用荷载结构法。其基本原理为:隧道开挖后地层的作用主要是对衬砌结构产生荷载,衬砌结构应能安全可靠地承受地层压力等荷载的作用。计算时先按地层分类法或由实用公式确定地层压力,然后按照弹性地基上结构物的计算方法计算衬砌结构的内力,并进行结构截面设计。 5.3 隧道结构计算模型 本隧道衬砌结构验算采用荷载—结构法进行验算,计算软件为ANSYS10.0。 取单位长度(1m)的隧道结构进行分析,建模时进行了如下简化处理或假定: ①衬砌结构简化为二维弹性梁单元(beam3),梁的轴线为二次衬砌厚度中线位置。 ②围岩的约束采用弹簧单元(COMBIN14),弹簧单元以铰接的方式支撑在衬砌梁单元之间的节点上,该单元不能承受弯矩,只有在受压时承受轴力,受拉时失效。计算时通过多次迭代,逐步杀死受拉的COMBIN14单元,只保留受压的COMBIN14单元。

图5-1 受拉弹簧单元的迭代处理过程 ③衬砌结构上的荷载通过等效换算,以竖直和水平集中力的模式直接施加到梁单元节点上。 ④衬砌结构自重通过施加加速度来实现,不再单独施加节点力。 ⑤衬砌结构材料采用理想线弹性材料。 ⑥衬砌结构单元划分长度小于0.5m。 隧道结构计算模型及荷载施加后如图5-2所示。

5.4 结构检算及配筋 本隧道主要验算明洞段、Ⅴ级围岩段和Ⅳ级围岩段衬砌结构。根据隧道规范深、浅埋判定方法可知,Ⅴ级围岩段分为超浅埋段、浅埋段和深埋段。Ⅳ级围岩段为深埋段。根据所给的材料基本参数和修改后的程序,得出各工况下的结构变形图、轴力图、建立图和弯矩图。从得出的结果可知,Ⅴ级围岩深埋段,所受内力均较大,故对此工况进行结构检算。 5.4.1 材料基本参数 (1)Ⅴ级围岩 围岩重度318.5/kN m γ=,弹性抗力系数300/k MPa m =,计算摩擦角 045?=o ,泊松比u=0.4。 (2) C25钢筋混凝土 容重325/kN m γ=,截面尺寸 1.00.6b h m m ?=?,弹性模量29.5Pa E G =。轴心抗压强度:12.5cd a f MP =;弯曲抗压强度:13.5cmd a f MP =;轴心抗拉强度: 1.33cd a f MP =;泊松比u=0.2; (3) HPB235钢筋物理力学参数 密度:37800/s kg m ρ=; 抗拉抗压强度:188std scd a f f MP ==; 弹性模量: 210s a E GP =; 5.4.2 结构内力图和变形图(Ⅴ级围岩深埋段) 5.4.3 结构安全系数 从上面的轴力图和弯矩图可知,需要对截面8、11、21、47、73进行检算, 而根据对称性可知只需要对截面8、11、47进行检算。 (1)配筋前检算 混凝土和砌体矩形截面轴心及偏心受压构件的抗压强度应按下式计算:

隧道工程计算题

计算题 【围岩等级确定】参见书本P.96-99 例题:某公路隧道初步设计资料如下 (1)岩石饱和抗压极限强度为62MPa (2)岩石弹性波速度为4.2km/s (3)岩体弹性波速度为2.4km/s (4)岩体所处地应力场中与工程主轴垂直的最大主应力σmax=9.5Mpa (5)岩体中主要结构面倾角20°,岩体处于潮湿状态 求该围岩类别为?(来源:隧道工程课件例题) 解:1.岩体的完整性系数Kv Kv=(Vpm/Vpr)2=(2.4/4.2) 2=0.33 岩体为破碎。 2.岩体的基本质量指标BQ (1)90 Kv+30=90*0.33+30=59.7 Rc=62>59.7 取Rc=59.7 (2)0.04Rc+0.4=2.79 Kv =0.33>2.79 取Kv =0.33 (3)BQ=90+3Rc+250 Kv=90+3*59.7+250*0.33=351.6 3.岩体的基本质量分级 由BQ=351.6可初步确定岩体基本质量分级为III级 4.基本质量指标的修正 (1)地下水影响修正系数K1 岩体处于潮湿状态,BQ=351.6,因此取K1=0.1 (2)主要软弱面结构面产状修正系数K2

因为主要软弱结构面倾角为20,故取K2=0.3 (3)初始应力状态影响修正系数K3 Rc/σmax=62/9.5=6.53 岩体应力情况为高应力区 由BQ=351.6查得高应力初始状态修正系数K3=0.5 (4)基本质量指标的修正值[BQ] [BQ]=BQ-100(K1+K2+K3)=351.6-100(0.1+0.3+0.5)=261.6 5.岩体的最终定级 因为修正后的基本质量指标[BQ]=261.6,所以该岩体的级别确定为IV 级。 【围岩压力计算】参见书本P.103-109 某隧道内空净宽6.4m ,净高8m ,Ⅳ级围岩。已知:围岩容重γ=20KN/m 3 ,围岩似摩擦角 φ=530,摩擦角θ=300 ,试求埋深为3m 、7m 、15m 处的围岩压力。( 来源:网络) 解: 14.1)54.6(1.01=-+=ω 坍塌高度:h=1 s 2 45.0-?x ω=14.1845.0??=m 104.4 垂直均布压力:08.8214.120845.0245.01 4=???=???=-ωγq Kn/m2 荷载等效高度:m q h q 104.420 08 .82== = γ 浅埋隧道分界深度:m h H q q )() 26.10~208.8104.45.2~2()5.2~2(=?== 1、 当埋深H=15m 时,H 》q H ,属于深埋。 垂直均布压力:h q γ==20x4.104=82.1 Kn/m2 ; 水平均布压力:e=(0.15~0.3)q =(0.15~0.3)x82.1=(12.3~24.6) Kn/m2 2、当埋深H=3m 时,H 《q h ,属于浅埋。 垂直均布压力:q=γ H = 20x3= 60 Kn/m2,

隧道结构计算

重庆交通大学教案 第6章隧道结构计算 6.1 概述 6.1.1 引言 隧道结构工程特性、设计原则和方法与地面结构完全不同,隧道结构是由周边围岩和支护结构两者组成共同的并相互作用的结构体系。各种围岩都是具有不同程度自稳能力的介质,即周边围岩在很大程度上是隧道结构承载的主体,其承载能力必须加以充分利用。隧道衬砌的设计计算必须结合围岩自承能力进行,隧道衬砌除必须保证有足够的净空外,还要求有足够的强度,以保证在使用寿限内结构物有可靠的安全度。显然,对不同型式的衬砌结构物应该用不同的方法进行强度计算。 隧道建筑虽然是一门古老的建筑结构,但其结构计算理论的形成却较晚。从现有资料看,最初的计算理论形成于十九世纪。其后随着建筑材料、施工技术、量测技术的发展,促进了计算理论的逐步前进。最初的隧道衬砌使用砖石材料,其结构型式通常为拱形。由于砖石以及砂浆材料的抗拉强度远低于抗压强度,采用的截面厚度常常很大,所以结构变形很小,可以忽略不计。因为构件的刚度很大,故将其视为刚性体。计算时按静力学原理确定其承载时压力线位置,检算结构强度。 在十九世纪末,混凝土已经是广泛使用的建筑材料,它具有整体性好,可以在现场根据需要进行模注等特点。这时,隧道衬砌结构是作为超静定弹性拱计算的,但仅考虑作用在衬砌上的围岩压力,而未将围岩的弹性抗力计算在内,忽视了围岩对衬砌的约束作用。由于把衬砌视为自由变形的弹性结构,因而,通过计算得到的衬砌结构厚度很大,过于安全。大量的隧道工程实践表明,衬砌厚度可以减小,所以,后来上述两种计算方法已经不再使用了。进入本世纪后,通过长期观测,发现围岩不仅对衬砌施加压力,同时还约束着衬砌的变形。围岩对衬砌变形的约束,对改善衬砌结构的受力状态有利,不容忽视。衬砌在受力过程中的变形,一部分结构有离开围岩形成“脱离区”的趋势,另一部分压紧围岩形成所谓“抗力区”,如图6-1所示。在抗力区内,约束着衬砌变形的围岩,相应地产生被动抵抗力,即“弹性 94

隧道设计计算书

《地下结构课程设计》任务书 ——地铁区间隧道结构设计 学校:交通大学 学院:土木建筑工程学院 :俊 学号:11231214 班级:土木1108班 指导教师:贺少辉、晓静

目录 一.设计任务 (3) 1.1 工程地质条件 (3) 1.2 其他条件 (3) 二.设计过程 (5) 2.1 根据给定的隧道或车站埋深判断结构深、浅埋 (5) 2.2 计算作用在结构上的荷载 (5) 2.2.1永久荷载 (5) 2.2.2可变荷载 (7) 2.3 进行荷载组合..................................... 错误!未定义书签。 2.3.1承载能力极限状态................................ 错误!未定义书签。 2.3.2正常使用极限状态 (7) 2.4 绘出结构受力图 (8) 2.5 利用midas程序计算结构力 (8) 2.5.1 midas程序建模过程 9 2.5.2 绘制力分析图 11 三. 结构配筋计算 ......................................... 错误!未定义书签。 3.1 基本条件 11 3.1 顶板配筋计算 (15) 3.2 侧板配筋计算 (18) 3.3 底板配筋计算 (20) 四.最终配筋: (23) 五.参考资料 22 六、设计总结............................................. 错误!未定义书签。

一、设计任务 对某区间隧道进行结构检算,求出力,并进行配筋计算。具体设计基本资料如下: 1.1 工程地质条件 线路垂直于永定河冲、洪积扇的轴部,第四纪地层沉积韵律明显,地层由上到下依次为:杂填土、粉土、细砂、圆砾土、粉质粘土、卵石土。其主要物理力学指标如表1,本地区地震烈度为6度。 1.2 其他条件 地下水位在地面以下12m处;隧道顶板埋深14m;采用暗挖法施工,隧道断面型式为马蹄形。

沥青路面结构设计

第四章路面结构设计 1.1设计资料 (1)自然地理条件 新建济南绕城高速,道路路基宽度为24.5米,全长5km,结合近几年济南经济增长及人口增长的情况,根据近期的交通量预测该路段的年平均交通量为5000辆/日,交通量平均年增长率γ=4%。路面结构设计为沥青混凝土路面结构, 设计年限为15年。 (2)土基回弹模量 济南绕城高速北环所在地区为属于温带季风气候,季风明显,四季分明,春季干旱少雨,夏季温热多雨,秋季凉爽干燥,冬季寒冷少雪。据区域资料,年平均气温13.8℃,无霜期178天,最高月均温27.2℃(7月),最低月均温-3.2℃ ω=1.3;因此该路基(1月),年平均降水量685毫米。道路沿线土质路基稠度c Ⅱ区,根据【JTG 处于干燥状态,根据公路自然区划可知济南绕城高速处于5 D50-2006】《公路沥青路面设计规范》中表5.1.4-1可确定工程所在地土基回弹模量设计值为46MPa。 (3)交通资料

1.2交通分析 (1)轴载换算 路面设计以双轮组-单轴载为100KN 为标准轴载,以BZZ-100表示。标准轴载的计算参数按表1-2确定。 ○ 1当以设计弯沉为指标时及验算沥青层层底拉应力时,凡大于25kN 的各级轴载Pi 的作用次数Ni 按下式换算成标准轴载P 的当量作用次数N 的计算公式为: 35 .4121∑=? ?? ??=k i i i P P N C C N 式中:N ——标准轴载当量轴次数(次/d ); Ni ——被换算的车型各级轴载作用次数(次/d ); P ——标准轴载(kN ); Pi ——被换算车型的各级轴载(kN ); C1——被换算车型的各级轴载系数,当其间距大于3m 时,按单独的一个 轴计算,轴数系数即为轴数m ,当其间距小于3m 时,按双轴或多轴计算,轴数系数为C1=1+1.2(m-1); C2——被换算车型的各级轴载轮组系数,单轮组为6.4,双轮组为1.0, 四轮组为0.38。 沥青路面营运第一年双向日平均当量轴次为: 35 .41 21∑=? ?? ??=k i i i P P N C C N = 4709.00(次/d ) ○ 2当以半刚性层底拉应力为设计指标时,标准轴载当量轴次数N ': 8 121 k i i i P N C C N P =?? '''= ? ??∑ 式中: 1C ' ——轴数系数 2C ' ——轮组系数,单轮组为18.5,双轮组为1.0,四轮组为0.09。 注:轴载小于50KN 的特轻轴重对结构的影响可以忽略不计,所以不纳入当 量换算。 沥青路面营运第一年双向日平均当量轴次:

水泥混凝土路面计算书

首页 一、计算题目 地道引路水泥混凝土路面结构计算。 二、设计选用的规范及依据 1、《公路水泥混凝土路面设计规范》(JTG D40-2002); 2、《城市道路设计规范》(CJJ37-90) 3、本工程地质勘查资料。 三、计算采用程序 公路与城市道路路面设计程序系统2003版。 四、拟采用的计算步骤 1、由于本工程无现状交通量资料,根据道路通行能力换算为标准轴载,然后计算出设计弯沉值。 2、拟订路面结构,对其进行荷载应力分析及温度应力分析,并验算防冻厚度。

水泥混凝土路面设计 设计内容: 新建水泥混凝土路面设计 变异水平的等级: 低级 可靠度系数: 1.33 面层类型: 普通混凝土面层 序路面行驶单轴单轮轴载单轴双轮轴载双轴双轮轴载三轴双轮轴载交通量号车辆名称组的个数总重组的个数总重组的个数总重组的个数总重 (kN) (kN) (kN) (kN) 1 标准轴载0 0 1 100 0 0 0 0 2050 行驶方向分配系数 1 车道分配系数.55 轮迹横向分布系数.2 交通量年平均增长率 5 % 混凝土弯拉强度 5 MPa 混凝土弯拉模量31000 MPa 混凝土面层板长度 5 m 地区公路自然区划Ⅱ 面层最大温度梯度88 ℃/m 接缝应力折减系数.87 基(垫)层类型----新建公路土基上修筑的基(垫)层 层位基(垫)层材料名称厚度(mm) 回弹模量(MPa) 1 贫混凝土180 17000 2 水泥稳定粒料180 1600 3 级配碎砾石150 300 4 土基30

混凝土基层材料弯拉强度FJ= 4 MPa 基层顶面当量回弹模量(不包栝混凝土基层) ET= 154.3 MPa HB= 280 rg= .922 SPS1= .82 SPR1= 2.25 BX1= .5 STM1= 1.92 KT= .5 STR1= .96 SCR1= 3.21 GSCR1= 4.27 RE1=-14.6 % SPS2= .29 SPR2= 1.03 GSPR2= 1.37 RE2=-65.75 %设计车道使用初期标准轴载日作用次数: 1128 路面的设计基准期: 30 年 设计基准期内标准轴载累计作用次数: 5470841 路面承受的交通等级:重交通等级 基层顶面当量回弹模量(不包栝混凝土基层) : 154.3 MPa 混凝土面层设计厚度: 280 mm 验算路面防冻厚度: 路面最小防冻厚度500 mm 新建基(垫)层总厚度510 mm 验算结果表明, 路面总厚度满足路面防冻要求. 通过对设计层厚度取整, 最后得到路面结构设计结果如下: 普通混凝土面层280 mm 贫混凝土180 mm 水泥稳定粒料180 mm 级配碎砾石150 mm

隧道结构设计检算

第3章隧道结构设计检算 3.1 隧道结构设计检算方法 隧道结构的设计检算包括对初期支护和二次衬砌的设计检算,本章只介绍对二次衬砌的设计检算,初期支护由工程类比法确定,不对其进行检算。二次衬砌的设计检算采用荷载-结构模型,将全部荷载施加到衬砌结构上,根据求得的衬砌内力对已拟定配筋的衬砌进行检算,并对检算未通过的衬砌调整截面配筋,直到检算通过为止。整个设计检算过程如下: (1)由隧道的纵断面图,确定隧道的围岩级别及相应埋深; (2)根据围岩级别和衬砌内轮廓尺寸,由工程类比法初步拟定隧道的支护和衬砌参数,绘制复合式衬砌断面图; (3)由《铁路隧道设计规范》,计算围岩压力并确定典型计算断面; (4)采用荷载-结构模型,利用ANSYS建模进行衬砌内力的计算; (5)由计算求得的弯矩、轴力进行衬砌结构配筋的检算。 3.2 隧道衬砌荷载计算 3.2.1 各级围岩段基本情况 根据大瑶山隧道的纵断面图,可得该隧道的围岩级别及长度、隧道埋深等数据,见表3-1所示: 表3-1 大瑶山隧道各围岩段情况 围岩级别长度(m)隧道埋深(m)Ⅱ320 281.60~363.74 Ⅲ7425 26.06~650.00 Ⅳ1880 7.24~554.28 Ⅴ703 0~27.63 大瑶山隧道为时速250km/h的客专双线铁路隧道,设计所给的建筑限界及衬砌内轮廓是相同的,但由于隧道所处围岩级别的不同,其采用的复合式衬砌的形式和厚度也会有所不同,从而导致各围岩段隧道开挖轮廓线的不同。各级围岩段隧道的开挖净高和净宽初步拟定见表3-2所示。 表3-2 隧道开挖净高和净宽 围岩级别开挖净高(m) 开挖净宽(m)

相关文档
最新文档