数电课程设计电子时钟
数字电路课程设计——电子钟

电气工程学院数字电子电路课程设计报告书姓名:班级:学号:组员:完成日期:分数:设计过程(四)设计方案使用四个十进制计数器(74160N)设计成两个60进制计数器,分别表示“分”和“秒”。
再用两个十进制计数器(74160N)设计成一个24进制计数器,表示“时”。
用LED 7段数码显示器(DCD_HEX)分别显示“时”和“分”,指示灯(PROB_RED)闪烁来表示“秒”。
电路结构图:二.上机设计与仿真结果1.十进制计数器(74160N):74160N是同步十进制计数器,计数状态0000~1001共10个,从0000开始计数,直到第九个计数脉冲为止,重新开始计数,当EP=ET=1,RD'=LD'=0时,电路工作在工作状态,从0000开始计数,连续输入10个计数脉冲。
自动电子钟24进制60进制60进制时模块分模块秒模块时显示分显示秒闪烁设计过程2.上机设计电路图:60进制计数器U1674160NQA14QB13QC12QD11RCO15A3B4C5D6ENP7ENT10~LOAD9~CLR1CLK2U1774160NQA14QB13QC12QD11RCO15A3B4C5D6ENP7ENT10~LOAD9~CLR1CLK2U18A4012BP_5VVCC5V24十进制计数器设计过程3.仿真结果:三.软件实验方案及实验结果1.自动电子钟整体设计十进制计数器(74160N)采用整体置数方式(输入端整体置0)设计成60进制、60进制、24进制,分别表示分、秒、时;秒的CLK脉冲信号源于数字信号发生器(XFG1),分的脉冲信号CLK源于秒的进位输出信号,时的脉冲信号CLK源于进位输出信号;“时”“分”计数器的输出状态用LED 七段显示器(DCD_HEX)显示,“秒”由指示灯的闪烁来表示;计数满24 小时则整体置零,重新计数。
2.自动电子钟各模块的实现(1)时模块两个十进制计数器(74160N)通过整体置数法设计成24进制计数器,计数状态为00000000~00100011,即0~23,EP=ET=RD'=LD'=1时,计数器开始计数,累加24小时后从00000000重新计数,当RD'=1,LD'=时的进位输出信号时,计数器进行整体置数,置为00000000重新计数,仿真结果如图所示:设计过程(2)分模块两个十进制计数器(74160N)通过整体置数法设计成60进制计数器,计数状态为00000000~01011001,即0~59,EP=ET=RD'=LD'=1时,计数器开始计数,每累加60分发送一个“时脉冲”信号,重新从00000000开始计数,脉冲信号源为秒的进位输出信号,当RD'=1,LD'=分的进位输出信号时,计数器进行整体置数,置为00000000重新计数,仿真结果如图所示:设计过程(3)秒模块两个十进制计数器(74160N)通过整体置数法设计成60进制计数器,计数状态为00000000~01011001,即0~59,EP=ET=RD'=LD'=1时,计数器开始计数,每累加60秒发送一个“分脉冲”信号,重新从00000000开始计数,脉冲信号源为数字信号发生器(XFG1),当RD'=1,LD'=秒的进位输出信号时,计数器进行整体置数,置为00000000重新计数。
数字电路电子时钟课程设计

数字电路电子时钟课程设计整个数字钟由时间计数电路、晶体振荡电路、校正电路、整点报时电路组成。
其中以校正电路代替时间计数电路中的时、分、秒之间的进位,当校时电路处于正常输入信号时,时间计数电路正常计时,但当分校正时,其不会产生向时进位,而分与时的校位是分开的,而校正电路也是一个独立的电路。
电路的信号输入由晶振电路产生,并输入各电路方案论证:方案一数字电子钟由信号发生器、“时、分、秒”计数器、译码器及显示器、校时电路、整点报时电路等组成。
秒信号产生器是整个系统的时基信号,它直接决定计时系统的精度,一般用555构成的振荡器加分频器来实现。
优点:数字钟是一种用数字电路技术实现时、分、秒计时的装置,与机械式时钟相比具有更高的准确性和直观性,且无机械装置,具有更长的使用寿命,因此得到了广泛的使用。
方案二秒、分计数器为60进制计数器,小时计数器为24进制计数器。
实现这两种模数的计数器采用中规模集成计数器74LS90构成。
优点:简单易懂,比较好调试。
1 设计原理数字电子钟由信号发生器、“时、分、秒”计数器、译码器及显示器、校时电路、整点报时电路等组成。
秒信号产生器是整个系统的时基信号,它直接决定计时系统的精度,一般用555构成的振荡器加分频器来实现。
将标准秒脉冲信号送入“秒计数器”,该计数器采用60进制计数器,每累计60秒发出一个“分脉冲”信号,该信号将作为“分计数器”的时钟脉冲。
“分计数器”也采用60进制计数器,每累计60分,发出一个“时脉冲”信号,该信号将被送到“时计数器”。
“时计数器”采用24进制计数器,可以实现一天24h的累计。
译码显示电路将“时、分、秒”计数器的输出状态经七段显示译码器译码,通过六位LED显示器显示出来。
整点报时电路是根据计时系统的输出状态产生一个脉冲信号,然后去触发音频发生器实现报时。
校时电路是来对“时、分、秒”显示数字进行校对调整。
其数字电子钟系统框图如下:图 1 数字电子钟系统框图4 详细设计及实验步骤4.1秒脉冲信号发生器秒脉冲信号发生器是数字电子钟的核心部分,它的精度和稳定度决定了数字钟的质量。
数电电子钟课程设计

数电电子钟课程设计一、课程目标知识目标:1. 让学生掌握数字电路基础知识,特别是时序逻辑电路的原理和应用;2. 能够理解电子时钟的组成和工作原理,掌握电子时钟的设计方法;3. 学会使用常见数字电路元器件,如晶体振荡器、计数器、显示器件等,并能进行正确连接。
技能目标:1. 培养学生运用所学知识进行实际电子电路设计的能力,具备分析和解决实际问题的技能;2. 通过课程实践,提高学生动手操作能力,能够正确使用相关仪器和工具进行电子电路搭建;3. 培养学生团队协作和沟通能力,能够就设计过程中遇到的问题进行有效讨论和解决方案的提出。
情感态度价值观目标:1. 激发学生对电子科学的兴趣,培养积极探索、勇于创新的精神;2. 增强学生的环保意识,养成节约能源、爱护电子元器件的好习惯;3. 培养学生面对挫折和困难时,保持积极乐观的心态,勇于克服和解决问题。
课程性质:本课程为实践性较强的课程,旨在通过电子时钟的设计与制作,让学生将理论知识与实际应用相结合。
学生特点:学生具备一定的数字电路基础,对电子制作有较高的兴趣,但动手能力和实际问题解决能力有待提高。
教学要求:注重理论与实践相结合,充分调动学生的积极性,引导他们通过团队协作完成课程任务。
在教学过程中,关注学生个体差异,鼓励他们提出问题、解决问题,提高自主学习能力。
最终实现对课程目标的分解和达成。
二、教学内容本课程依据以下教材章节组织教学内容:1. 《数字电路》第四章:时序逻辑电路原理及其应用;2. 《电子技术》第三章:数字电路元器件及其特性;3. 《电子制作实践》第五章:电子时钟的设计与制作。
教学内容安排如下:1. 数字电路基础知识回顾,重点复习时序逻辑电路的原理和功能;2. 介绍电子时钟的组成,包括时钟振荡器、分频器、计数器、译码器、显示器件等;3. 讲解晶体振荡器的原理和选型,分析不同类型计数器的特点和应用;4. 实践操作部分,指导学生进行电子时钟的电路设计、元器件选型、电路搭建及调试;5. 依据课程进度,安排以下教学实践活动:a. 2学时:晶体振荡器实验,熟悉振荡器的工作原理和调试方法;b. 2学时:计数器实验,掌握不同类型计数器的连接和使用;c. 4学时:电子时钟设计与制作,分组进行电路设计、搭建、调试及展示。
数字电子钟设计(电子集成专业类课程设计)

电子线路课程设计——数字时钟的设计与制作一、设计目标1.通过这次课程设计,进一步熟悉和掌握数电和模电知识,掌握multisim仿真软件的使用。
2.学习数字时钟的硬件设计原理,熟练各种电路应用。
3.培养独立分析问题和解决问题的能力和创新思维。
二、设计功能要求(1)时的技术要求为“24翻1”,分和秒的要求为60进制进位(2)准确计时,以数字形式显示时,分,秒的时间(3)具有校时功能,可以分别对时及分进行单独校对,能校正到标准时间(4)拓展功能:整点报时三、数字钟电路系统工作原理1.数字钟的构成石英晶振为主要部件的振荡器、分频器、计数器、校时电路、数码显示、整点报时电路。
数字钟实际上是一个对标准频率(1HZ)进行计数的计数电路。
由于计数的起始时间不可能与标准时间一致,故需要在电路上加一个校时电路。
同时标准的1HZ时间信号必须做到准确稳定。
通常使用石英晶体振荡器电路构成数字钟。
2.电路设计框图如下由图可见:本数字钟电路主要由振荡器,分频器,校时电路,时分秒计数器,译码显示器及整点报时电路构成。
3、工作原理①振荡电路:由石英振荡器产生的32768HZ高频脉冲信号作为数字钟的时间基准。
石英晶体振荡器的特点是振荡频率准确、电路结构简单,易调整。
用反相器和石英晶体构成振荡电路如下图。
利用两非门G1和G2自我反馈,使他们工作在现行状态,然后利用石英晶体JU来控制震荡频率,同时用电容C1来作为两个非门之间的耦合。
两个非门输入和输出之间并联的电阻R1和R2作为负反馈元件,由于反馈作用很小,可以近似认为非门的输出输入压降相等,电容C2是为了防止寄生振荡。
电路图如下:仿真图如下:②分频电路:分频器的功能主要有产生标准秒脉冲信号和提供功能扩展电路所需的信号。
(共经过15级2分频集成电路)我们实验用的是CD4060、74LS74,其中CD4060是14级分频器,将石英晶振的高频变为二分频,74LS74是D触发器,可以用作二分频。
数电:电子时钟的设计【范本模板】

电子时钟的设计一、课程设计题目与要求根据数字电子技术所学理论和知识,进行数字式电子时钟的设计,具体要求如下:1、基本功能■设计一个分秒计数器,并具有译码显示功能:其中时为24进制,分秒为60进制;■小时、分钟及秒可手动校准;■具有清理功能。
2、扩展功能■实现整点报时功能,要求报时声响四低一高,报时声响持续一秒,间隔一秒,最后一响结束位整点。
3、按要求完成设计报告要求.二、设计目的通过完成设计,巩固所学知识,锻炼分析、解决问题能力,知识综合应用能力,也培养知识应用于工程的意识.三、电路设计及其工作原理本电路共有五大模块,分别是:秒脉冲发生器,秒六十进制计数电路、分六十进制计数点、时二十四进制计数电路、手动校准电路、整点报时电路。
现把电路图化整为零,分割成小块,逐步分析:(一)、秒脉冲发生器秒脉冲发生器是电子时钟的基本单元,由它产生时钟的基准信号,根据设计题目要求,此电子时钟显示时间最小单元为一秒,可见,基准信号频率应为1HZ。
参考课本可知,由555定时器做成的多谢振荡器能产生稳定的脉冲信号,故有如下设计:秒脉冲发生器逻辑电路图:其中555时基电路的内部等效电路可简化为如图(如下)所示的等效功能电路,显然,555电路内含两个比较器C1和C2、一个触发器、一个驱动器和一个放电晶体管.两个比较器分别被电阻R1、R2和R3构成的分压器设定的⅔V cc和⅓V cc.参考电压所限定.为进一步理解其电路功能,并灵活应用555集成块,下面简要说明其作用机理。
从图中可见,三个5kΩ电阻组成的分压器,使内部的两个比较器构成一个电平触发器,上触发电平为⅔V cc,下触发电平为⅓V cc。
在5脚控制端外接一个参考电源Vco,可以改变上、下触发电平值。
比较器Cl的输出同或非门l的输入端相接,比较器C2的输出端接到或非门2的输入端。
由于由两个或非门组成的RS触发器必须用负极极性信号触发,因此,加到比较器Cl同相端6脚的触发信号,只有当电位高于反相端5脚的电位时,RS触发器才翻转;而加到比较器C2反相端2脚的触发信号,只有当电位低于C2同相端的电位⅓V cc时,RS触发器才翻转.通过上面对等效功能电路和CA555时基电路的内部等效电路的分析,可得出555各功能端的真值表。
数字电子技术电子钟课程设计

1.1、数字钟电路系统的组成框架经过分析其原理方框图如图1-1所示。
采用计数器,译码器,七段LED 显示器,脉冲信号发生器等器件完成。
图1-3电子数字钟原理框图1.2、设计方案及其原理分析:数字钟原理框图如图1-3所示。
该系统工作的原理是:振荡器产生的稳定的高频脉冲信号,作为数字钟的时间基准,再经分频器输出标准秒脉冲。
秒计数器计满60秒后向分计数器进位,分计数器计满60秒后向小时计数器进位,小时计数器按照24小时为周期计数。
计数器进位输出经译码器送入显示器。
计时出现误差时可以用校时、校分、校秒。
扩展电路必须在主体电路正常运行的情况下才能进行功能扩展。
该系统由秒信号发生器、走时电路、校时电路等部分组成。
1、秒信号发生器的设计秒信准确的号发生器可使用晶体发生准确的脉冲信号,再经分频器输出标准的频率为1Hz秒脉冲;或使用LM555构成多谐振荡器,调整电阻可改变频率,使之产生秒信号。
2、走时电路的设计走时电路包括:秒计时器、分计时器、时计时器,每一部分都是用两片74LS161计数器级联构成。
其中秒与分计数器为十进制与六进制计数器级联构成,时计时器由三进制与十进制级联构成。
下图为秒、分计数器的设计原理图。
时计数器需要个位为十进制、十位只要计到2即可,不过需要24小时清零电路。
电路示意图如下图所示。
当个位为“4”,同时十位为“2”时,时计数器立即清零,由“0”开始重新计数。
3、校时电路的设计当数字钟接通电源或者计时出现误差时,需要校正时间(或称校时)。
校时是数字钟应具备的基本功能,一般电子手表都具有时、分、秒等功能。
为使电路简单,这里只进行分和小时的校时。
对校时电路的要求是,在小时校正时不影响分和秒的政党计数;在分校正时不影响秒和小时的政党计数。
校时方式有“快校时”和“慢校时”两种,“快校时”是通过开关控制,使计数器对1Hz的校时脉冲计数。
“慢校时”是用手动产生单脉冲作校时脉冲。
图5.5.4为校“时”、校“分”电路。
数电课程设计电子钟

数电课程设计电子钟一、课程目标知识目标:1. 让学生掌握数字电路基础知识,理解电子钟的工作原理。
2. 使学生了解并掌握电子钟各组成部分的功能及相互关系。
3. 培养学生运用数字电路知识分析、设计简单电子系统的能力。
技能目标:1. 培养学生运用所学知识,设计并搭建电子钟的能力。
2. 培养学生运用电子仪器、设备进行测试、调试和故障排查的能力。
3. 培养学生团队协作、沟通表达及解决问题的能力。
情感态度价值观目标:1. 培养学生对电子技术产生兴趣,激发学生学习积极性。
2. 培养学生严谨的科学态度和良好的实验习惯。
3. 培养学生具备创新意识和实践能力,增强学生对我国电子科技发展的自豪感。
课程性质分析:本课程属于电子技术课程,通过设计电子钟,使学生将所学数字电路知识应用于实际项目中,提高学生的实践能力。
学生特点分析:学生具备一定的数字电路基础知识,具有较强的动手能力和探究欲望,对实际应用场景感兴趣。
教学要求:结合学生特点,注重理论与实践相结合,培养学生的动手能力、创新能力和团队协作能力。
通过课程目标分解,实现对学生知识、技能和情感态度价值观的全面提升。
二、教学内容1. 数字电路基础知识回顾:逻辑门、组合逻辑电路、时序逻辑电路等。
2. 电子钟工作原理:振荡器、分频器、计数器、显示电路等。
3. 电子钟各组成部分功能及相互关系:晶振、分频器、秒、分、时计数器、显示驱动等。
4. 电子钟设计流程:需求分析、电路设计、仿真测试、硬件搭建、调试优化等。
5. 教学大纲:(1)第一周:回顾数字电路基础知识,介绍电子钟工作原理及各部分功能。
(2)第二周:分析电子钟各组成部分的相互关系,讲解设计流程。
(3)第三周:分组讨论,确定设计方案,进行电路设计和仿真测试。
(4)第四周:硬件搭建,进行调试和优化,确保电子钟正常工作。
6. 教材章节及内容:(1)第四章:数字电路基础,涉及逻辑门、组合逻辑电路等。
(2)第五章:时序逻辑电路,涉及计数器、寄存器等。
电子数字时钟课程设计报告(数电)

电子数字时钟课程设计报告(数电)第一篇:电子数字时钟课程设计报告(数电)数字电子钟的设计1.设计目的数字钟是一种用数字电路技术实现时、分、秒计时的装置,与机械式时钟相比具有更高的准确性和直观性,且无机械装置,具有更更长的使用寿命,因此得到了广泛的使用。
数字钟从原理上讲是一种典型的数字电路,其中包括了组合逻辑电路和时序电路。
因此,我们此次设计数字钟就是为了了解数字钟的原理,从而学会制作数字钟。
而且通过数字钟的制作进一步的了解各种在制作中用到的中小规模集成电路的作用及实用方法。
且由于数字钟包括组合逻辑电路和时叙电路。
通过它可以进一步学习与掌握各种组合逻辑电路与时序电路的原理与使用方法。
1.1设计指标1.时间以12小时为一个周期;2.显示时、分、秒;3.具有校时功能,可以分别对时及分进行单独校时,使其校正到标准时间; 1.2 设计要求1、电路设计原理说明2、硬件电路设计(要求画出电路原理图及说明)3、实物制作:完成的系统能达到题目的要求。
4、完成3000字的课程设计报告2.功能原理2.1 数字钟的基本原理数字电子钟由信号发生器、“时、分、秒”计数器、LED数码管、校时电路、整点报时电路等组成。
工作原理为时钟源用以产生稳定的脉冲信号,作为数字种的时间基准,要求震荡频率为1HZ,为标准秒脉冲。
将标准秒脉冲信号送入“秒计数器”,该计数器采用60进制计数器,每累计60秒发出一个“分脉冲”信号,该信号将作为“分计数器”的时钟脉冲。
“分计数器”也采用60进制计数器,每累计60分,发出一个“时脉冲”信号,该信号将被送到“时计数器”。
“时计数器”采用24进制计数器,可以实现24小时的累计。
LED数码管将“时、分、秒”计数器的输出状态显示。
校时电路是来对“时、分、秒”显示数字进行校对调整。
2.2 原理框图3.功能模块3.1 振荡电路多谐振荡器也称无稳态触发器,它没有稳定状态,同时无需外加触发脉冲,就能输出一定频率的矩形波形(自激振荡)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数字电子钟设计摘要数字钟被广泛用于个人家庭,车站, 码头、办公室等公共场所,成为人们日常生活中的必需品。
由于数字集成电路的发展和石英晶体振荡器的广泛应用,使得数字钟的精度,运用超过老式钟表, 而且大大地扩展了钟表原先的报时功能。
诸如定时自动报警、按时自动打铃、时间程序自动控制、定时广播、自动起闭路灯、定时开关烘箱、通断动力设备、甚至各种定时电气的自动启用等,所有这些,都是以钟表数字化为基础的。
因此,研究数字钟及扩大其应用,有着非常现实的意义。
数字电子钟一般由秒信号发生器、“时、分、秒”计数器、译码器及显示器、校时电路等组成。
秒信号是整个系统的时基信号,它直接决定计时系统的精度,一般用石英晶体振荡器加分频器来实现。
将秒信号送入秒计数器,它是六十进制计数器。
每累计六十秒发出一个“分脉冲”信号,这个信号作为“分计数器”的时钟脉冲。
“分计数器”也是六十进制计数器,它每累计六十分钟,发出一个“时脉冲”信号,此信号将被送到“时计数器”。
“时计数器”采用二十四进制计数器,可以实现一天二十四小时的累计。
译码显示电路将“时”、“分”、“秒”计数器的输出状态经七段显示译码器译码,通过六位LED显示器显示出来。
校时电路是用来对“时”、“分”、“秒”显示数字进行校对调整的。
本文通过对CD4060、CD4013、74LS160、74LS48和晶体振荡器的基本原理和基本功能的介绍,结合数字电子钟的设计过程让我们对电子钟的设计有了清楚的认识。
关键词:数字钟,晶体振荡器,计数器,CD4060,74LS160目录1绪论 (1)1.1. 课题描述 (1)1.2. 基本工作原理与框图 (1)2各部分电路原理及器件简介 (2)2.1 秒信号产生电路 (2)2.2 进制计数器电路 (4)2.2.1 74LS160功能简介 (4)2.2.2 60进制计数器 (4)2.2.3 24进制计数器 (5)2.3 译码显示电路 (6)2.3.1 CC4511 (6)2.3.2 译码显示电路图 (7)2.4 校时电路 (8)2.4.1 校时电路功能简介 (8)3方案的选择 (10)3.1 时钟信号源 (10)3.2 分频器的实现 (10)3.3 译码显示器 (10)总结 (11)致谢 (12)参考文献 (13)1绪论1.1. 课题描述在科技高速发展的今天,钟表业运用当今材料工业、电子工业和其他领域的最新技术,一定会生产出代表中国科学水平的产品。
我们希望钟表业的精英们在提高制造技术水平中不断创新,培育出拥有自主知识产权的品牌。
这正是中国钟表业发展的希望。
数字钟被广泛用于个人家庭,车站, 码头、办公室等公共场所,成为人们日常生活中的必需品。
由于数字集成电路的发展和石英晶体振荡器的广泛应用,使得数字钟的精度,运用超过老式钟表, 钟表的数字化给人们生产生活带来了极大的方便,而且大大地扩展了钟表原先的报时功能。
诸如定时自动报警、按时自动打铃、时间程序自动控制、定时广播、自动起闭路灯、定时开关烘箱、通断动力设备、甚至各种定时电气的自动启用等,所有这些,都是以钟表数字化为基础的。
本课题所设计的电子时钟是一个最基本的数字钟。
1.2. 基本工作原理与框图数字电子钟要想最终设计成功必须要有精确而稳定的秒信号产生,通常先用石英晶体振荡器产生32768Hz的脉冲,经过整形、分频产生1Hz的秒脉冲。
分频用CD4060分出2Hz的脉冲,再用CD4013分出1Hz的脉冲。
然后1Hz脉冲经过校时电路送到秒计数器的个位,秒计数器是由两块74LS160组成的六十进制计数器,其十位TC接校时电路。
校时电路的CP1接分计数器个位的CLK端,分计数器也是由两块74LS160组成的六十进制计数器,分计数器的十位的TC端接入校时电路。
校时电路的CP2接时计数器的CLK端,分计数器是由两块74LS160组成的二十四进制计数器。
校时电路的S1、S2、S3控制“校时”、“校分”和“校秒”。
各个计数器分别接译码器,各个译码器分别接显示器。
电路的基本原理就是这样,下面我将介绍各个模块的具体功能及原理。
以下是我在下面整合的全电路原理图。
图表 12各部分电路原理及器件简介2.1 秒信号产生电路这部分电路现有石英晶体振荡器产生32768Hz的脉冲,经过CD4060经过十四次分频后产生2Hz的脉冲。
再经过CD4013产生1Hz的脉冲。
原理比较简单。
CD4060是十四位二进制计数器。
它内部有十四级二分频器,有两个反相器。
RST为高电平时,计数器清零且振荡器使用无效。
在CIN下降沿,计数器以二进制计数。
CIN、COUT分别为时钟输入、输出端。
电源电压范围为3V~15V,输入电压范围为0V~VDD。
它有十六个引脚,Q4~Q10、Q12~Q14为计数器输出端。
VDD接正电源,Vss接地。
其引脚图如下所示:图表 2CD4013A为双D触发器,在CLK上升沿有效。
其特性表如下:输入输出注CP D R D S D Q n+1↑↑↓X X X 01XXXX11111Q n1不用同步置0同步置1保持异步置1异步置0不允许2.2 进制计数器电路2.2.1 74LS160功能简介图表3CP是脉冲输入端;CT(CO)是进位信号输出端;CEP和CET是计数器工作状态端;MR(CR)是异步清零端;PE是置数端;VCC接正电源,GND接地;P0~P4是数据输入端,Q1~Q4是计数器状态输出端。
电源电压7V,输入电压7V。
其状态表如下所示:输入输出注CRLD CET CEP CP P0P1P2P3Q0n+1Q1n+1Q2n+1Q3n+1CO0 1 1 1 1 x111xx1xxx1xx↑↑xxxaxxxxbxxxxcxxxxdxxx0 0 0 0a b c d计数保持保持清零置数2.2.2 60进制计数器60进制计数器是由两个74LS160十进制计数器经过一定的方式连接组成的。
具体连接是这样的,一片74LS160用低位,另一片设计成六进制计数器做为高位。
将高位片的Q2和Q1接入与非门,出来接入高位片的MR(CR),当高位片为0110时,MR(CR)为低电平,此时清零,实现了六十进制。
其连线图如下所示:图表 32.2.3 24进制计数器24进制计数器也是由两片74LS160组成的,当各位计数状态为Q3Q2Q1Q0=0100,十位计数状态为Q3Q3Q1Q0=0010时,计数器归零。
通过把个位Q2、十位Q1接入与非门,然后接入个位、十位的MR端。
令计数器清零,从而实现二十四进制计数器的功能。
其连线图如下所示:图表 42.3 译码显示电路2.3.1 CC4511本实验采用CC4511 BCD锁存器/七段译码/驱动器。
其中 A,B,C,D—BCD码输入端;a,b,c,d,e,f,g—译码输出端,输出“1”有效,用来驱动共阴极LED 数码管;LT—测试输入端,LT=“0”时,译码输出全为“1”;BI(RL)—消隐输入端;LE—锁定端,LE=“1”时译码器处于锁定状态,LE=0为正常译码。
其引脚图如下:图表5下表为CC4511功能表。
输入输出LE BI LT D C B A a b c d e f g 显示字形x x 0 x x x x 1 1 1 1 1 1 1 8x 0 1 x x x x 0 0 0 0 0 0 0 消隐0 1 1 0 0 0 0 1 1 1 1 1 1 0 00 1 1 0 0 0 1 0 1 1 0 0 0 0 10 1 1 0 0 1 0 1 1 0 1 1 0 1 20 1 1 0 0 1 1 1 1 1 1 0 0 1 30 1 1 0 1 0 0 0 1 1 0 0 1 1 40 1 1 0 1 0 1 1 0 1 1 0 1 1 50 1 1 1 1 1 0 0 0 1 1 1 1 1 60 1 1 1 1 1 1 1 1 1 0 0 0 0 70 1 1 1 0 0 0 1 1 1 1 1 1 1 80 1 1 x 0 0 1 1 1 1 0 0 1 1 92.3.2 译码显示电路图译码电路的功能是将“秒”、“分”、“时”计数器的输出代码进行翻译,变成相应的数字。
其电路图如下所示:图表 62.4 校时电路2.4.1 校时电路功能简介校时电路是数字中不可缺少的部分,当数字显示与实际时间不符时,就要根据标准时间进行校时。
其简单电路如下所示:图表 7S 1、S2、S3分别控制校“时”、校“分”和校外“秒”。
具体是这样的,当S3断开时,G7与非门打开,正常进行计秒。
当需要校秒时,闭合S3,此时G7与非门被断开,时间正确时打开S3正常计秒。
需要校分时闭合S2,此时低电平经过G8与非门后变为高电平,G5与非门打开,秒信号进来,使分计数器以秒的节奏快速计数。
而G6与非门此时被断开,来自秒十位的进位脉冲无效。
直到显示的时间和标准时间相同时打开S2,此时G5与非门被断开,G6与非门被打开,秒十位进位脉冲进来,1Hz脉冲信号无效,分计数器正常计时。
需要校准小时时,只需闭合S1此时G3与非门被断开,G1与非门接通,1Hz信号进来,使时计数器以秒的节奏快速计数。
当时计数器的显示与标准时间相同时,打开S1即可。
打开S1时G1与非门断开,1Hz脉冲信号无效。
G3与非门打开,接受分计数器的输出进位信号,使时计数器正常计数。
这就是校时电路的基本原理。
3方案的选择3.1 时钟信号源时钟信号源是时钟类项目的心脏,他的精确度直接影响到整个项目的性能。
要产生1Hz脉冲可用石英晶体振荡器和555多谐振荡器。
555多谐振荡器的优点是起振容易,振荡周期调节范围广,缺点是频率稳定性差,精度低,所以在本试验中不宜使用。
石英晶体振荡器不仅选频特性极好,而且谐振频率十分稳定,其稳定度可达10-10~10-11。
因此在本实验中我选择石英晶体振荡器。
3.2 分频器的实现因为时钟信号源已选中使用32768Hz,而输出的要求是1Hz的秒时钟信号,2的分频功能。
可以采用专用分频器,如六分频,十二分所以分频器需要实现15频,1/60分频器,常用集成电路有74LS92,74LS56,74LS57等。
也可以用各种进制计数器构成分频器,如CD4020,CD4040,CD4060,异步十进制计数器74LS90,同步十进制计数器74LS290,双时钟同步加减计数器74LS192都可以很容易构成十进制,十二进制,二十四进制,六十进制分频器。
还可以用脉冲分配器,如CD4017,CD4022.除此以外还可采用带有7段译码器的十进制计数器,连接LED时可以不再需要外加译码,如CD4026,CD4033。
结合本实验的特点,最后我使用了十四位2进制计数器CD4060,它可以进行214次分频,再用CD4013尽可以完成152分频了,就得到了1Hz脉冲。