数据挖掘导论教材配套教学——认识数据挖掘

合集下载

数据挖掘导论

数据挖掘导论

数据挖掘导论数据挖掘是一种从大量数据中发现隐藏模式、关联和趋势的技术。

它结合了统计学、人工智能和数据库技术,可以帮助企业和组织更好地理解和利用数据。

本文将介绍数据挖掘的基本概念、流程和常用算法,以及其在实际应用中的一些案例。

一、数据挖掘的基本概念数据挖掘是指通过自动或半自动的方式,从大量的数据中发现并提取出有用的信息和知识。

它可以帮助我们发现数据中的模式、关联、异常和趋势,从而为决策提供支持。

数据挖掘的基本任务包括分类、聚类、关联规则挖掘和异常检测。

分类是将数据分为不同的类别,聚类是将数据分为相似的组,关联规则挖掘是找出数据中的关联关系,异常检测是发现数据中的异常值。

二、数据挖掘的流程数据挖掘的流程主要包括问题定义、数据收集与预处理、特征选择与转换、模型选择与建立、模型评估与验证等步骤。

1. 问题定义:明确需要解决的问题,并确定数据挖掘的目标。

2. 数据收集与预处理:收集相关的数据,并对数据进行清洗、去噪、缺失值处理等预处理操作,以确保数据的质量和完整性。

3. 特征选择与转换:选择对问题有意义的特征,并对数据进行转换,以便于后续的建模和分析。

4. 模型选择与建立:选择适合问题的数据挖掘算法,并建立相应的模型。

5. 模型评估与验证:对建立的模型进行评估和验证,以确定模型的准确性和可靠性。

三、常用的数据挖掘算法数据挖掘算法有很多种,常用的包括决策树、朴素贝叶斯、支持向量机、神经网络、聚类算法等。

1. 决策树:通过构建树形结构来表示决策规则,可以用于分类和预测。

2. 朴素贝叶斯:基于贝叶斯定理和特征条件独立性假设,用于分类和概率估计。

3. 支持向量机:通过寻找最优超平面来进行分类和回归。

4. 神经网络:模拟人脑神经元之间的连接和传递过程,用于分类和预测。

5. 聚类算法:将数据分为相似的组,常用的聚类算法有K均值、层次聚类等。

四、数据挖掘的应用案例数据挖掘在各个领域都有广泛的应用,例如市场营销、金融风险评估、医疗诊断等。

小学教育ppt课件教案,了解数据挖掘

小学教育ppt课件教案,了解数据挖掘

03 数据挖掘在教育中的应用
CHAPTER
学生个体差异分析
学生个体差异分析
通过数据挖掘技术,分析学生的 学习行为、兴趣、能力等方面的 差异,为个性化教学提供依据。
总结
学生个体差异分析有助于教师更 好地了解学生,针对不同学生的 特点进行教学,提高教学效果。
教学质量评估
教学质量评估
利用数据挖掘技术对教师的教学质量 进行评估,通过分析教学过程中的数 据,了解教师的教学效果和存在的问 题。
教师培训与专业发展
为教师提供数据挖掘相关的培训课程,提升其数据处理和分析能 力。
学生信息素养培养
在教学中融入数据素养教育,帮助学生了解数据的重要性和处理方 法。
建立数据团队支持
成立专门的数据团队,为教师和学生提供技术支持和指导。
数据挖掘在教育中的未来发展
个性化教学
利用数据挖掘技术分析学生ห้องสมุดไป่ตู้学 习习惯和需求,为每个学生提供
总结
教学质量评估有助于提高教师的教学 水平,促进教学质量的提升。
课程设计与优化
课程设计与优化
通过数据挖掘技术对学生的学习行为和成绩进行分析,了解课程的难易程度、 知识点分布等,进而优化课程设计。
总结
课程设计与优化有助于提高课程的质量和教学效果,增强学生的学习体验。
04 小学教育中数据挖掘的挑战与前景
品德培养
小学教育也注重培养学生 的品德和价值观,包括诚 实、守信、尊重、友爱等 基本道德品质。
能力提升
小学教育还注重培养学生 的实践能力和创新精神, 鼓励学生发挥主观能动性 ,培养解决问题的能力。
小学教育的特点
基础性
小学教育是整个教育体系 的基础阶段,是学生身心 发展和学习习惯形成的关 键时期。

数据挖掘导论教材配套教学PPT——认识数据挖掘

数据挖掘导论教材配套教学PPT——认识数据挖掘

2022年3月23日星期三
第7页,共65页
1.2.1 概念学习
清华大学出版社
1、传统角度(Classical View)
– 所有概念都有明确的定义。
2、概率角度(Probabilistic View)
– 对个别样本实例进行概括性描述,概括性说明构成了概率角度 中的概念。
3、样本角度(Exemplar View)
Yes
No
Yes
Yes
Yes
Yes
Yes
No
No
Good
Yes
Viral
Yes
Not good
Yes
Bacterial
Yes
Good
Yes
Viral
No
Unknown
No
Viral
Yes
Unknown
No
Bacterial
Yes
Not good
No
Bacterial
Yes
Not good
No
Viral
– 样本角度中的概念是将某个概念中的典型实例组成一个集合, 使用该集合来描述概念定义。
2022年3月23日星期三
第8页,共65页
清华大学出版社
1.2.2 归纳学习(Induction-Based Learning)
• 基于归纳的学习
– 机器学习方式 – 人类学习最重要方式之一
• 人类通过对事物的特定实例的观察,对所掌握的已有 经验材料研究。
2022年3月23日星期三
第5页,共65页
1.2 机器学习
1.2.1 概念学习
清华大学出版社
• 通过对大量实例进行训练,从中发现经验化规律的过程。 • 机器学习结果的通常表现形式为概念。 • 机器最擅长的是学习概念。 • 概念(Concept)

浙江大学本科生《数据挖掘导论》课件.ppt

浙江大学本科生《数据挖掘导论》课件.ppt

2020-7-19
xx
8
关联规则基本模型(续)
关联规则是形如XY的逻辑蕴含式,其中XI, YI,且XY=。如果事务数据库D中有s%的事 务包含XY,则称关联规则XY的支持度为s%, 实际上,支持度是一个概率值。若项集X的支持度 记为support (X),规则的信任度为support (XY)/ support (X)。这是一个条件概率P (Y | X)。 也就是: support (XY)=P (X Y)
发现关联规则需要经历如下两个步骤:
找出所有频繁项集。 由频繁项集生成满足最小信任度阈值的规则。
2020-7-19
xx
11
Transaction-id 10 20 30 40
Items bought A, B, C A, C A, D B, E, F
Customer buys both
Customer buys diaper
目的: 发现数据中的规律 超市数据中的什么产品会一起购买?— 啤酒和尿布 在买了一台PC之后下一步会购买? 哪种DNA对这种药物敏感? 我们如何自动对Web文档进行分类?
2020-7-19
xx
4
频繁模式挖掘的重要性
许多重要数据挖掘任务的基础
关联、相关性、因果性 序列模式、空间模式、时间模式、多维 关联分类、聚类分析
2020-7-19
交易ID 2000 1000 4000 5000
购买的商品 A,B,C A,C A,D B,E,F
设最小支持度为50%, 最小可 信度为 50%, 则可得到
A C (50%, 66.6%)
C A (50%, 100%)
2020-7-19
xx
10
关联规则基本模型(续)

数据挖掘-数据挖掘导论

数据挖掘-数据挖掘导论
自六十年代开始,数据库及信息技术就逐步从基本的文件处理系统发展为更复 杂功能更强大的数据库系统;七十年代的数据库系统的研究与发展,最终导致了关 系数据库系统、数据建模工具、索引与数据组织技术的迅速发展,这时用户获得了 更方便灵活的数据存取语言和界面;此外在线事务处理(45:
2
数据
数据库 管理
数据仓库
数据挖掘
数据智能 分析
解决方案
图-- 数据到知识的演化过程示意描述

随着计算机硬件和软件的飞速发展,尤其是数据库技术与应用的日益普及,人 们面临着快速扩张的数据海洋,如何有效利用这一丰富数据海洋的宝藏为人类服务, 业已成为广大信息技术工作者的所重点关注的焦点之一。与日趋成熟的数据管理技 术与软件工具相比,人们所依赖的数据分析工具功能,却无法有效地为决策者提供 其决策支持所需要的相关知识,从而形成了一种独特的现象“丰富的数据,贫乏的 知识”。为有效解决这一问题,自二十世纪 9 年代开始,数据挖掘技术逐步发展起 来,数据挖掘技术的迅速发展,得益于目前全世界所拥有的巨大数据资源以及对将 这些数据资源转换为信息和知识资源的巨大需求,对信息和知识的需求来自各行各 业,从商业管理、生产控制、市场分析到工程设计、科学探索等。数据挖掘可以视 为是数据管理与分析技术的自然进化产物,如图-- 所示。
)。事实上, 一部人类文明发展史,就是在各种活动中,知识的创造、交流,再创造不断积累的 螺旋式上升的历史。
客观世界 客观世界
收集
数据 数据
分析
信息 信息
深入分析
知识 知识
决策与行动
图-- 人类活动所涉及数据与知识之间的关系描述
计算机与信息技术的发展,加速了人类知识创造与交流的这种进程,据德国《世 界报》的资料分析,如果说 ( 世纪时科学定律(包括新的化学分子式,新的物理关 系和新的医学认识)的认识数量一百年增长一倍,到本世纪 / 年代中期以后,每五 年就增加一倍。这其中知识起着关键的作用。当数据量极度增长时,如果没有有效 的方法,由计算机及信息技术来帮助从中提取有用的信息和知识,人类显然就会感 到像大海捞针一样束手无策。据估计,目前一个大型企业数据库中数据,约只有百 分之七得到很好应用。因此目前人类陷入了一个尴尬的境地,即“丰富的数据”( *)而“贫乏的知识0('

《数据挖掘》教学大纲

《数据挖掘》教学大纲

《数据挖掘》教学大纲一、课程的性质、目的与任务数据挖掘是综合了机器学习、统计和数据库的一门现代计算机技术,旨在发现海量数据中的模型与模式,具有巨大的应用前景。

在很多重要的领域,数据挖掘都发挥着积极的作用。

因此这门课程是计算机专业及相关专业的重要课程之一。

《数据挖掘》课程是计科专业与软工专业的专业任选课程,通过本课程的学习使学生掌握数据挖掘的基本概念,了解数据挖掘的定义和功能以及实现数据挖掘的主要步骤和具体实现方法,初步掌握数据挖掘的算法。

使同学们在学习本课程后,能实现简单的数据挖掘算法编程,了解实现数据挖掘的具体操作。

通过本课程的学习,要求学生达到:1.了解数据挖掘技术的整体概貌2.了解数据挖掘技术的主要应用及当前的研究热点问题和发展方向3.掌握最基本的概念、算法原理和技术方法二、课程教学基本内容与要求第一章引言(一)基本教学内容1.1什么激发了数据挖掘,为什么它是重要的1.2什么是数据挖掘1.3对何种数据进行挖掘1.4数据挖掘功能——可以挖掘什么类型的模式1.5所有模式都是有趣的吗1.6数据挖掘系统的分类1.9数据挖掘的主要问题(二)基本要求教学目的:掌握数据挖掘的基本概念、理解数据挖掘的形成与发展过程、了解数据挖掘的数据对象、了解数据挖掘所具有的功能。

教学重点:重点讲解数据挖掘的功能教学难点:数据挖掘功能第二章数据预处理(一)基本教学内容2.1 为什么要预处理数据2.2 描述性数据汇总2.3 数据清理2.4 数据集成和变换2.5 数据归约2.6 数据离散化和概念分层产生(二)基本要求教学目的:了解数据预处理的原因,掌握数据预处理的方法。

教学重点:数据清理、数据集成和变换、数据归约、数据离散化和概念分层教学难点:数据归约、数据离散化和概念分层第三章数据仓库与OLAP技术概述(一)基本教学内容3.1 什么是数据仓库3.2 多维数据模型3.3 数据仓库的系统结构3.4 数据仓库实现3.5 从数据仓库到数据挖掘(二)基本要求教学目的:理解数据仓库的概念,了解数据仓库的多维数据模型,理解数据仓库的系统结构,掌握数据立方体的有效计算。

数据挖掘教案

数据挖掘教案

1.4数据挖掘应用实例
某些具有特定的应用问题和应用背景的领域是最能体现数据挖掘作用的应用领域。

1.5数据挖掘的发展趋势
1.5.1数据挖掘研究方向
(1)专门用于知识发现的形式化和标准化的数据挖掘语言。

(2)数据挖掘过程中的便于用户理解的及人机交互的可视化方法。

(3)网络环境下的数据挖掘技术。

(4)加强对各种非结构化数据的挖掘。

1.5.2数据挖掘应用的热点
(1)网站的数据挖掘
(2)生物信息或基因的数据挖掘
(3)文本的数据挖掘
教学后记本章节的重点是数据挖掘与数据仓库的定义,难点是它们的应用价值,学生对它们的应用领域及案例相对较为感兴趣。

⑥建立广义索引
2.5.4数据仓库设计步骤
数据仓库系统开发时一个经过不断循环、反馈而使系统不断增长与完善的过程,其设计大体上可分为以下几个步骤:
(1)概念模型设计
(2)技术准备工作
(3)逻辑模型设计
(4)物理模型设计
(5)数据仓库生成
(6)数据仓库运行与维护
2.6数据仓库数据的访问
在一些特殊情况下,有可能会出现数据从仓库流向操作性环境的这种数据“回流”现象,当出现“回流”情况时,对数据仓库数据的访问有数据仓库数据的直接访问和间接访问两种方式。

2.6.1数据仓库数据的直接访问
所谓直接访问即操作环境下的一个传统应。

大数据高职系列教材之数据挖掘基础PPT课件:第1章 数据挖掘概念

大数据高职系列教材之数据挖掘基础PPT课件:第1章 数据挖掘概念

1.1 数据挖掘概述
1.1.2 数据挖掘常用算法概述
第一章 数据挖掘概念
(3) 支持向量机 支持向量机(Support Vector Machine,SVM)是建立在统计学理论的VC维理论和
结构风险最小原理基础上的,它在解决小样本、非线性及高维模式识别中表现出许 多特有的优势,并能够推广应用到函数拟合等其他机器学习问题中。支持向量机算 法将在后面章节做详细介绍。
第一章 数据挖掘概念
1. 什么是测量误差和数据收集误差 测量误差是测量中测量结果与实际值之间的差值叫误差。 数据收集误差是指收集数据时遗漏数据对象或属性值,或包含了其他数据对象等情况。
2. 什么是噪声 噪声是从物理角度而言,噪声是波形不规则的声音。
1.2 数据探索
1.2.2 数据质量
第一章 数据挖掘概念
第一章 数据挖掘概念
1.3 数据挖掘的应用
第一章 数据挖掘概念
1. 算法延展性
算法延展性即为算法弹性,随着数据产生、采集技术的快速进步,以GB、TB、PB(1GB=1024MB, 1TB=1024GB,1PB=1024TB)为单位的数据集越来越普遍。
2. 高维性
在以前的数据库构成中只有少量属性的数据集,现在大数据集群构成中是具有成百上千属性的数据集。
1.2 数据探索
1.2.1 数据概述
1. 属性 (1)区分属性可通过属性可能取值的个数来判断。 (2)非对称的属性 2. 数据集的一般特性
数据集一般具有三个特性,分别是维度、稀疏性、 分辨率三个,它们对数据挖掘有重要影响。 3. 较常见的数据类型
第一章 数据挖掘概念
1.2 数据探索
1.2.2 数据质量
1.3 数据挖掘的应用
1.3.3 数据挖掘的应用场景
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

图1.1 感冒类型诊断C4.5决策树
2022年3月22日星期二
第13页,共65页
分类未知实例
清华大学出版社
• 分类模型建立和检验完成后,就可以实际投入使用,即 用该模型对未知分类的实例进行分类。
表1.2 未知分类的数据实例
序号
Increased -lym Leukocytosis Fever 淋巴细胞升高 白细胞升高 发烧
2022年3月22日星期二
第7页,共65页
1.2.1 概念学习
清华大学出版社
1、传统角度(Classical View)
– 所有概念都有明确的定义。
2、概率角度(Probabilistic View)
– 对个别样本实例进行概括性描述,概括性说明构成了概率角度 中的概念。
3、样本角度(Exemplar View)
第1章 认识数据挖掘
数据挖掘定义 机器学习 数据查询 专家系统 数据挖掘过程/作用/技术/应用 Weka数据挖掘软件
本章目标
• 掌握数据挖掘的定义 • 了解机器学习中的基本方法
– 概念学习 – 归纳学习 – 有指导的学习 – 无指导的聚类
• 了解与数据挖掘有关的数据查询、专家系统 • 了解数据挖掘的过程、作用、技术、应用 • 掌握Weka数据挖掘软件的使用方法
Sore-
throat 咽痛
Cooling-
effect 退热效果
Group 群体发病
Cold-type 感冒类型
1
Yes
2
No
3
Yes
4
Yes
5
No
6
No
7
No
8
Yes
9
Yes
10
Yes
No
Yes
Yes
Yes
Yes
No
No
Yes
Yes
No
No
Yes
No
No
No
Yes
Yes
Yes
Yes
Yes
No
No
• 数据实例(Instance)
– 用于有指导学习的样本数据
• 训练实例(Training Instance)
– 用于训练的实例
• 检验实例(Test Instance)
– 分类模型建立完成后,经过检验实例进行检验,判断模型是否 能够很好地应用在未知实例的分类或预测中。
2022年3月22日星期二
第10页,共65页
Acute-
onset 起病急
Sore-
throat 咽痛
Cooling-
effect 退热效果
Group Cold-type 群体发病 感冒类型
No
Yes
Yes
No
No
Not good
No
?
Yes
No
Yes
No
Yes
Good
No
?
2022年3月22日星期二
第14页,共65页
产生式规则
• 归纳学习
– 从归纳中获取和探索新知识,并以概念的形式表现出来的学习。
2022年3月22日星期二
第9页,共65页
清华大学出版社
1.2.3 有指导的学习(Supervised Learning)
• 定义
– 通过对大量已知分类或输出结果值的实例进行训练,调整分类 模型的结构,达到建立能够准确分类或预测未知模型的目的。 这种基于归纳的概念学习过程被称为有指导(监督)的学习。
【例1.1】
给定如表1.1所示的数据集T,使用有指导的学习方 法建立分类模型,对未知类别的实例进行分类。
表1.1 感冒诊断假想数据集
清华大学出版社
表1.1 感冒诊断假想数据集
序号
Increased -lym 淋巴细胞升高
Leukocytosis 白细胞升高
Fever 发烧
Acute-
onset 起病急
清华大学出版社
2022年3月22日星期二
第2页,共65页
1.1 数据挖掘定义
数据挖掘(Data Mining)
清华大学出版社
• 技术角度
– 利用一种或多种计算机学习技术,从数据中自动分析并提取信 息的处理过程。
– 目的是寻找和发现数据中潜在的有价值的信息、知识、规律、 联系和模式。
– 数据挖掘与计算机科学有关,一般使用机器学习、统计学、联 机分析处理、专家系统和模式识别等多种方法来实现。
• 决策树有很多算法(第2章)
Sore-throat Yes Cooling-effect
Not good
Unknown Good
No
Cold Type=Viral (3/0)
Cold Type=Bacterial (4/1)
Cold Type=Viral (2/0)
Cold Type=Bacterial (1/0)
• 学科角度
– 数据挖掘是一门交叉学科,涉及数据库技术、人工智能技术、 统计学、可视化技术、并行计算等多种技术。
2022年3月22日星期二
第4页,共65页
数据挖掘(Data Mining)
清华大学出版社
• 商业角度
– 商业智能信息处理技术;
– 围绕商业目标开展的,对大量商业数据进行抽取、 转换、分析和处理,从中提取辅助商业决策的关键 性数据,揭示隐藏的、未知的或验证已知的规律性 ,是一种深层次的商业数据分析方法。
2022年3月22日星期二
第5页,共65页
1.2 机器学习
1.2.1 概念学习
清华大学出版社
• 通过对大量实例进行训练,从中发现经验化规律的过程。 • 机器学习结果的通常表现形式为概念。 • 机器最擅长的是学习概念。 • 概念(Concept)
– 具有某些共同特征的对象、符号或事件的集合。
• 概念可以从三个不同的角度来看待
No
Good
Yes
Viral
Yes
Good
Yes
Viral
Yes
Not good
No
Bacterial
2022年3月22日星期二
第12页,共65页
决策树(Decision Tree)
清华大学出版社
• 倒立树,非叶子节点表示在一个属性上的分类检查, 叶子节点表示决策判断的结果,该结果选择了正确分 类较多实例的分类。
Yes
No
Yes
Yes
Yes
Yes
Yes
No
No
Good
Yes
Viral
Yes
Not good
Yes
Bacterial
Yes
Good
Yes
Viral
No
Unknown
No
Viral
Yes
Unknown
No
Bacterial
Yes
Not good
No
Bacterial
Yes
Not good
No
Viral
– 样本角度中的概念是将某个概念中的典型实例组成一个集合, 使用该集合来描述概念定义。
2022年3月22日星期二
第8页,共65页
清华大பைடு நூலகம்出版社
1.2.2 归纳学习(Induction-Based Learning)
• 基于归纳的学习
– 机器学习方式 – 人类学习最重要方式之一
• 人类通过对事物的特定实例的观察,对所掌握的已有 经验材料研究。
相关文档
最新文档