Linux进程同步

Linux进程同步
Linux进程同步

Linux进程同步

1.概述

Linux系统同一时间可能有多个进程在执行,因此需要一些同步机制来同步各个进程对于共享资源的访问。在Linux内核中有相应的同步技术实现,包括原子操作、信号量、读写信号量、自旋锁和等待队列等等。本文从同步的机制出发,重点研究讨论了Linux系统非阻塞的同步机制、Linux系统内核同步机制、Linux系统多线程的同步机制。

我们在实际生活中经常碰到这样的一类问题:有时候我们在使用打印机实现某种功能的时候,有可能使多个任务的打印结果交织在一起,造成混乱。这时多任务之间的同步操作便显得非常重要。比如在工业控制中的多个相互合作的任务,可以将数据采集、数据处理和数据输出划分为不同的任务。在它们之间建立一种必要的通信机制,使得采集任务可以通知数据处理任务。在新采集的数据已经处理完毕的时候,数据处理任务可以及时的通知输出任务,告诉输出任务需要实现的结果已经经过计算完成,需要通过输出设备输出。多任务的引入主要有以下有点:多任务的引入改善了系统的资源利用率,并且提高了系统的吞吐量,尤其是在嵌入式多任务操作系统中,但是与此同时多任务的引入也带来了另外的问题,那就是多个任务间如何协调、合作共同完成一个大的系统功能。特别是当我们在竞争使用临界资源,或是需要相互通知某些事件发生时。

另外在Linux操作系统里,在某一个时间段里,有些资源可能被很多内核同时来调用,这时我们便需要一套同步机制来同步各内核执行单元对共享数据的访问。尤其是在多核通信的机制上更需要同步机制来协调进程之间的通信。在Linux内核中有相应的技术实现,主要包括原子操作、信号量、读写信号量、自旋锁和等待队列。利用常用的同步机制可以有效地实现多任务、多内核之间的优化,实现其之间的合理调度。

2.同步机制

2.1临界资源与临界区

我们把在一段时间内只允许一个任务访问的资源叫做临界资源。这里与vxworks中的信号量的使用比较的类似。任务在占有CPU之后,还需要相应的资源才可以正常的执行。如果此时任务需要的资源被其它任务所占有,那么当前任务必须等待前一个任务完成并释放该资源后,才可以执行。把程序中使用临界资源的代码称为临界区。如果此刻临界资源未能访问,该任务便可以进入临界区,并将其设置为被访问状态。然后,即可以对临界资源进行操作。待任务完成后释放其占用的资源。

2.2 进程的上下文

在任务执行的过程中我们需要注意下面的问题。在经过通过系统调用,用户空间的应用程序,进入内核空间的时候。这时用户空间的进程往往要传递很多变量、参数的值给内核,内核在运行的时候也要保存用户进程所需要的一些寄存器值、变量等。

而我们所说的“进程上下文”,可以看作是用户进程传递给内核的这些参数以及内核要保存的那一整套的变量和寄存器值以及当时的环境等。具体来说就是各个变量和数据,包括所有的寄存器变量、进程打开的文件、内存信息等。通常一个任务的上下问主要由以下几个部分组成。分别是用户级上下文、寄存器上下文以及系统级上下文。用户级上下文主要包括正文、数据、用户堆栈以及共享存储区;寄存器上下文主要包括通用寄存器、程序寄存器、处理器状态寄存器、堆栈指标;系统级上下文:进程控制块task_struct、内存管理信息、内核栈。

2.3 内核任务

我们把内核中执行的一切活动对象称之为内核任务,每个内核任务都拥有一个独立的程序计数器、堆栈和一组寄存器。更重要的是它们都属于内核调度的范畴,我们可以在内核中交错地调用他们。内核任务主要包含“内核线程”、“系统调用”、“硬件中断”、“半底任务”等几类。

内核线程可以理解成在内核中运行的特殊进程,它有自己的“进程上下”,所以同样被进程调度程序调度,也可以睡眠,自动放弃CPU,这样和系统调用一样与系统中其它内核任务有共享数据的可能。总而言之,内核任务就是把任务活动中需要的资源、以及所操作的一切资源的活动对象的总和。

2.4 共享资源

在多任务的处理中,每个任务都是独立在运行,他们之间没有直接联系,由于其运行的独立性,它们并不知道其它任务的存在。但是,这些任务在运行时,都会使用某些公共的资源。而这些资源往往数有限,甚至由于其本身的性质,只能被某些任务单独占有。因此,这些资源不能允许用户随意使用.而应该使用一种机制,保证对资源的使用是满足系统的限制条件的。常见的机制有:锁、信号量等。

另外资源的共享又可以分为两种情况。一种是资料共享:应用程序使用多个任务,同时并行处理一组资料时,应该提供某种互斥机制,限制同时只有一个任务访问该组数据。

计算中大量存在。另外一种是共享外部设各:多个应用程序同时访问独占性的外部设备。由于资源的有限、资源的本身属性、任务的特性等等共同构成了在任务调用资源或对资源进行访问的时候受到种种限制。这便要求我们进一步的优化资源的配置,优化任务的调度。

2.5原子操作

这与资源的保护有点类似。它的核心思想就是找到某种特定的方式,在一个资源被当前的任务访问的时候,其它任务不能访问相同的资源。这是实际上与互斥也很类似。常用的解决方案可以分为两类。一类是软件方法;一类是硬件方法。软件解决方法包括:关闭中断或关闭调度、使用锁变量、轮换法。硬件的使用这里就不做太多的介绍。本文的立足点主要是研究在任务调度使用时在软件上的同步机制,所以本文重点强调了这几个方面。

3.进程同步示例-信号量

在公共汽车上,司机和售票员各司其职. 司机正常行车、到站停车、启动开车;售票员售票、开车门、关车门。司机和售票员之间应该密切配合、协调一致、以确保行车安全。请用PV 操作实现司机和售票员之间的同步.

分析:司机和售票员在到站、开门、关门、启动开车几件事情上存在有同步关系:到站后才能开门,关门后才能开车. 用2 个私有信号量stop 、run 分别表示可以开门和可以开车。由于初始状态是汽车行车和售票员售票,所以初值应该都为0.到站后才会有司机发消息让开门。程序如下:

司机: 售票员:

REPEAT REPEAT

正常行车售票

到站停车P(stop)

V(stop) 开车门

P(run) 关车门

启动开车V(run)

UNTIL false UNTIL false

如果司机和售票员的工作流程如下,司机:启动开车、正常行车、到站停车;售票员:开车门、关车门、售票。此时,由于初始状态为停车而还没开门状态,。设stop =1、run = 0 。

2 个程序为:

司机售票员:

REPEAT REPEAT

P(run) P(stop)

启动开车开车门

正常行车关车门

到站停车售票

V(stop) V(run)

UNTIL false UNTIL false

需要注意的是2 个进程同步时,程序编制和信号量初值有关. 若S1 = 1 ,S2 = 0 则进程1 为: P(S1) V(S2) 。进程2 为P (S2) V (S1)。即申请自己的信号,释放对方的信号量;若S1 =0 ,S2 = 0 则进程1 为: V (S2) P (S1) 。进程2 为P(S2) V ( s1) ,即其中一个进程先执行,然后释放对方的信号量,再申请自己的信号量

4.linux下的信号量

4.1Posix信号量

Posex信号量接口总结(见下表):

下面一行是无名信号量,可与pipe相类比,其值保存在内存中,可用于进程和线程同步; 中间部分,是两者的公用接口。

4.11公共接口

4.111 接口函数说明

#include

int sem_wait(sem_t *sem);

测试所指定信号量的值,它的操作是原子的。

若sem>0,那么它减1并立即返回。

若sem==0,则睡眠直到sem>0,此时立即减1,然后返回。

int sem_trywait(sem_t *sem);

其他的行为和sem_wait一样,除了:若sem==0,不是睡眠,而是返回一个错误EAGAIN。int sem_post(sem_t *sem);

把指定的信号量sem的值加1;

呼醒正在等待该信号量的任意线程。

int sem_getvalue(sem_t *sem, int *sval);

取回信号量sem的当前值,把该值保存到sval中。

若有1个或更多的线程或进程调用sem_wait阻塞在该信号量上,该函数返回两种值:

1) 返回0

2) 返回阻塞在该信号量上的进程或线程数目

linux采用返回的第一种策略。注意:在这些函数中,只有sem_post是信号安全的函数,它是可重入函数。

4.112 接口使用的一般流程

sem_init(&sem);

sem_wait(&sem);

critical area;

sem_post(&sem);

remainder area

4.12.无名信号量

无名信号量是保存在变量类型为sem_t的内存中。

int sem_init(sem_t *sem,

int pshared, unsigned int value);

1)pshared==0 用于同一多线程的同步;

2)若pshared>0 用于多个进程间的同步,此时sem必须放在共享内存中。

int sem_destroy(sem_t *sem);

只能销毁由sem_init初始化的信号量,否则后果不可预料也。

参考文献

[1] Alessadro Ruini.linux 设备驱动开发程序[M].魏永明,译. 第3版。北京:中国电力出版社,2006:109-125

[2] 刘循编Linux 操作系统及其应用编程北京-高等教育出版社2011

[3] 文东戈, 孙昌立, 王旭编著Linux操作系统实用教程北京-清华大学出版社2010

[4] 宋敬彬, 孙海滨等编著Linux网络编程北京-清华大学出版社2010

[5]邱铁, 于玉龙, 徐子川编著Linux应用与开发典型实例精讲北京-清华大学出版社2010.05

附录

Linux系统编程实验六进程间通信

实验六:进程间通信 实验目的: 学会进程间通信方式:无名管道,有名管道,信号,消息队列, 实验要求: (一)在父进程中创建一无名管道,并创建子进程来读该管道,父进程来写该管道(二)在进程中为SIGBUS注册处理函数,并向该进程发送SIGBUS信号(三)创建一消息队列,实现向队列中存放数据和读取数据 实验器材: 软件:安装了Linux的vmware虚拟机 硬件:PC机一台 实验步骤: (一)无名管道的使用 1、编写实验代码pipe_rw.c #include #include #include #include #include #include int main() { int pipe_fd[2];//管道返回读写文件描述符 pid_t pid; char buf_r[100]; char* p_wbuf; int r_num; memset(buf_r,0,sizeof(buf_r));//将buf_r初始化 char str1[]=”parent write1 “holle””; char str2[]=”parent write2 “pipe”\n”; r_num=30; /*创建管道*/ if(pipe(pipe_fd)<0) { printf("pipe create error\n"); return -1; } /*创建子进程*/ if((pid=fork())==0) //子进程执行代码 {

//1、子进程先关闭了管道的写端 close(pipe_fd[1]); //2、让父进程先运行,这样父进程先写子进程才有内容读sleep(2); //3、读取管道的读端,并输出数据 if(read(pipe_fd[0],buf_r, r_num)<0) { printf(“read error!”); exit(-1); } printf(“%s\n”,buf_r); //4、关闭管道的读端,并退出 close(pipe_fd[1]); } else if(pid>0) //父进程执行代码 { //1、父进程先关闭了管道的读端 close(pipe_fd[0]); //2、向管道写入字符串数据 p_wbuf=&str1; write(pipe_fd[1],p_wbuf,sizof(p_wbuf)); p_wbuf=&str2; write(pipe_fd[1],p_wbuf,sizof(p_wbuf)); //3、关闭写端,并等待子进程结束后退出 close(pipe_fd[1]); } return 0; } /*********************** #include #include #include #include #include #include int main() { int pipe_fd[2];//管道返回读写文件描述符 pid_t pid; char buf_r[100]; char* p_wbuf; int r_num;

Linux 查看进程和删除进程

1. 在 LINUX 命令平台输入 1-2 个字符后按 Tab 键会自动补全后面的部分(前提是要有这个东西,例如在装了 tomcat 的前提下, 输入 tomcat 的 to 按 tab)。 2. ps 命令用于查看当前正在运行的进程。 grep 是搜索 例如: ps -ef | grep java 表示查看所有进程里 CMD 是 java 的进程信息 ps -aux | grep java -aux 显示所有状态 ps 3. kill 命令用于终止进程 例如: kill -9 [PID] -9 表示强迫进程立即停止 通常用 ps 查看进程 PID ,用 kill 命令终止进程 网上关于这两块的内容 ----------------------------------------------------------------------------------- PS ----------------------------------------------------------------------------------- 1. ps 简介 ps 命令就是最根本相应情况下也是相当强大地进程查看命令.运用该命令可以确定有哪些进程正在运行和运行地状态、进程是否结束、进程有没有僵死、哪些进程占用了过多地资源等等.总之大部分信息均为可以通过执行该命令得到地. 2. ps 命令及其参数 ps 命令最经常使用地还是用于监控后台进程地工作情况,因为后台进程是不和屏幕键盘这些标准输入/输出设 备进行通信地,所以如果需要检测其情况,便可以运用 ps 命令了. 该命令语法格式如下: ps [选项] -e 显示所有进程,环境变量 -f 全格式 -h 不显示标题 -l 长格式 -w 宽输出 a 显示终端上地所有进程,包括其他用户地进程 r 只显示正在运行地进程 x 显示没有控制终端地进程 O[+|-] k1 [,[+|-] k2 [,…]] 根据 SHORT KEYS、k1、k2 中快捷键指定地多级排序顺序显示进程列表. 对于 ps 地不同格式都存在着默认地顺序指定.这些默认顺序可以被用户地指定所覆盖.在这里面“+”字符是可选地,“-” 字符是倒转指定键地方向. pids 只列出进程标识符,之间运用逗号分隔.该进程列表必须在命令行参数地最后一个选项后面紧接着给出,中间不能插入空格.比如:ps -f1,4,5.

【IT专家】linux下根据进程号PID查找程序路径

本文由我司收集整编,推荐下载,如有疑问,请与我司联系 linux下根据进程号PID查找程序路径 2017/05/26 0 1、执行ps -u hdfs查看hdfs用户下在运行的进程; ?如:ps -u hdfs PID TTY TIME CMD27939 ? 16:07:09 java31211 ? 00:23:16 HwChrDecode ?2、进入/proc相应进程PID的文件夹 ?#cd /proc/27939#ls –ail ?可以看到对应的程序路径 ?ls -ail总计01831010306 dr-xr-xr-x 5 hdfs hadoop 0 03-23 09:13 . 1 dr-xr-xr-x 280 root root 0 03-18 10:18 ..1831010327 dr-xr-xr-x 2 hdfs hadoop 0 05-26 10:33 attr1831010315 -r-------- 1 hdfs hadoop 0 05-26 10:28 auxv1831010316 -r--r--r-- 1 hdfs hadoop 0 05-26 04:18 cmdline1831010337 -rw-r--r-- 1 hdfs hadoop 0 05-26 10:28 coredump_filter1831010326 -r--r--r-- 1 hdfs hadoop 0 05-26 10:28 cpuset1831010310 lrwxrwxrwx 1 hdfs hadoop 0 05-26 10:28 cwd - /data1/hadoop/uts2-agent1831010314 -r-------- 1 hdfs hadoop 0 05-26 10:28 environ1831010312 lrwxrwxrwx 1 hdfs hadoop 0 05-26 10:28 exe - /usr/java/jdk1.6.0_35/bin/java1831010313 dr-x------ 2 hdfs hadoop 0 05-26 10:33 fd1831010370 -r--r--r-- 1 hdfs hadoop 0 05-26 10:28 io1831010368 -r-------- 1 hdfs hadoop 0 05-26 10:28 limits1831010334 -rw-r--r-- 1 hdfs hadoop 0 05-26 10:28 loginuid1831010319 -r--r--r-- 1 hdfs hadoop 0 05-26 10:28 maps1831010309 -rw------- 1 hdfs hadoop 0 05-26 10:28 mem1831010321 -r--r--r-- 1 hdfs hadoop 0 05-26 04:17 mounts1831010322 -r-------- 1 hdfs hadoop 0 05-26 10:28 mountstats1831010320 -r--r--r-- 1 hdfs hadoop 0 05-26 10:28 numa_maps1831010336 -rw-r--r-- 1 hdfs hadoop 0 05-26 10:28 oom_adj1831010335 -r--r--r-- 1 hdfs hadoop 0 05-26 10:28 oom_score1831010311 lrwxrwxrwx 1 hdfs hadoop 0 05-26 10:28 root - /1831010325 -r--r--r-- 1 hdfs hadoop 0 05-26 10:28 schedstat1831010324 -r--r--r-- 1 hdfs hadoop 0 05-26 10:28 smaps1831010317 -r--r--r-- 1 hdfs hadoop 0 05-26 04:18 stat1831010318 -r--r--r-- 1 hdfs hadoop 0 05-26 10:21 statm1831010308 -r--r--r-- 1 hdfs hadoop 0 05-26 04:18 status1831010307 dr-xr-xr-

Linux进程间通信(2)实验报告

实验六:Linux进程间通信(2)(4课时) 实验目的: 理解进程通信原理;掌握进程中信号量、共享内存、消息队列相关的函数的使用。实验原理: Linux下进程通信相关函数除上次实验所用的几个还有: 信号量 信号量又称为信号灯,它是用来协调不同进程间的数据对象的,而最主要的应用是前一节的共享内存方式的进程间通信。要调用的第一个函数是semget,用以获得一个信号量ID。 int semget(key_t key, int nsems, int flag); key是IPC结构的关键字,flag将来决定是创建新的信号量集合,还是引用一个现有的信号量集合。nsems是该集合中的信号量数。如果是创建新集合(一般在服务器中),则必须指定nsems;如果是引用一个现有的信号量集合(一般在客户机中)则将nsems指定为0。 semctl函数用来对信号量进行操作。 int semctl(int semid, int semnum, int cmd, union semun arg); 不同的操作是通过cmd参数来实现的,在头文件sem.h中定义了7种不同的操作,实际编程时可以参照使用。 semop函数自动执行信号量集合上的操作数组。 int semop(int semid, struct sembuf semoparray[], size_t nops); semoparray是一个指针,它指向一个信号量操作数组。nops规定该数组中操作的数量。 ftok原型如下: key_t ftok( char * fname, int id ) fname就是指定的文件名(该文件必须是存在而且可以访问的),id是子序号,虽然为int,但是只有8个比特被使用(0-255)。 当成功执行的时候,一个key_t值将会被返回,否则-1 被返回。 共享内存 共享内存是运行在同一台机器上的进程间通信最快的方式,因为数据不需要在不同的进程间复制。通常由一个进程创建一块共享内存区,其余进程对这块内存区进行读写。首先要用的函数是shmget,它获得一个共享存储标识符。 #include #include #include int shmget(key_t key, int size, int flag); 当共享内存创建后,其余进程可以调用shmat()将其连接到自身的地址空间中。 void *shmat(int shmid, void *addr, int flag); shmid为shmget函数返回的共享存储标识符,addr和flag参数决定了以什么方式来确定连接的地址,函数的返回值即是该进程数据段所连接的实际地

Linux操作系统进程管理的分析与应用

Linux操作系统进程管理的分析与应用(1)发布时间:2006.05.19 07:12来源:LinuxSir作者:北南南北目录 1、程序和进程; 1.1 进程分类; 1.2 进程的属性; 1.3 父进程和子进程; 2、进程管理; 2.1 ps 监视进程工具; 2.1.1 ps参数说明; 2.1.2 ps 应用举例; 2.2 pgrep 3、终止进程的工具 kill 、killall、pkill、xkill; 3.1 kill 3.2 killall 3.3 pkill 3.4 xkill 4、top 监视系统任务的工具; 4.1 top 命令用法及参数; 4.2 top 应用举例; 5、进程的优先级: nice和renice; 6、关于本文; 7、后记; 8、参考文档; 9、相关文档; 1、程序和进程; 程序是为了完成某种任务而设计的软件,比如OpenOffice是程序。什么是进程呢?进程就是运行中的程序。 一个运行着的程序,可能有多个进程。比如 https://www.360docs.net/doc/57700326.html, 所用的WWW服务器是apache服务器,当管理员启动服务后,可能会有好多人来访问,也就是说许多用户来同时请求httpd服务,

apache服务器将会创建有多个httpd进程来对其进行服务。 1.1 进程分类; 进程一般分为交互进程、批处理进程和守护进程三类。 值得一提的是守护进程总是活跃的,一般是后台运行,守护进程一般是由系统在开机时通过脚本自动激活启动或超级管理用户root来启动。比如在Fedora或Redhat中,我们可以定义httpd 服务器的启动脚本的运行级别,此文件位于/etc/init.d目录下,文件名是httpd, /etc/init.d/httpd 就是httpd服务器的守护程序,当把它的运行级别设置为3和5时,当系统启动时,它会跟着启动。 [root@localhost ~]# chkconfig --level 35 httpd on 由于守护进程是一直运行着的,所以它所处的状态是等待请求处理任务。比如,我们是不是访问 https://www.360docs.net/doc/57700326.html, ,https://www.360docs.net/doc/57700326.html, 的httpd服务器都在运行,等待着用户来访问,也就是等待着任务处理。 Linux操作系统进程管理的分析与应用(2)发布时间:2006.05.19 07:12来源:LinuxSir作者:北南南北 1.2 进程的属性; 进程ID(PID):是唯一的数值,用来区分进程; 父进程和父进程的ID(PPID); 启动进程的用户ID(UID)和所归属的组(GID); 进程状态:状态分为运行R、休眠S、僵尸Z; 进程执行的优先级; 进程所连接的终端名; 进程资源占用:比如占用资源大小(内存、CPU占用量); 1.3 父进程和子进程; 他们的关系是管理和被管理的关系,当父进程终止时,子进程也随之而终止。但子进程终止,父进程并不一定终止。比如httpd服务器运行时,我们可以杀掉其子进程,父进程并不会因为子进程的终止而终止。 在进程管理中,当我们发现占用资源过多,或无法控制的进程时,应该杀死它,以保护系统的稳定安全运行;

Linux下查看进程和线程

在Linux中查看线程数的三种方法 1、top -H 手册中说:-H : Threads toggle 加上这个选项启动top,top一行显示一个线程。否则,它一行显示一个进程。 2、ps xH 手册中说:H Show threads as if they were processes 这样可以查看所有存在的线程。 3、ps -mp 手册中说:m Show threads after processes 这样可以查看一个进程起的线程数。 查看进程 1. top 命令 top命令查看系统的资源状况 load average表示在过去的一段时间内有多少个进程企图独占CPU zombie 进程:不是异常情况。一个进程从创建到结束在最后那一段时间遍是僵尸。留在内存中等待父进程取的东西便是僵尸。任何程序都有僵尸状态,它占用一点内存资源,仅仅是表象而已不必害怕。如果程序有问题有机会遇见,解决大批量僵尸简单有效的办法是重起。kill是无任何效果的stop模式:与sleep进程应区别,sleep会主动放弃cpu,而stop 是被动放弃cpu ,例单步跟踪,stop(暂停)的进程是无法自己回到运行状态的。 cpu states: nice:让出百分比irq:中断处理占用 idle:空间占用百分比iowait:输入输出等待(如果它很大说明外存有瓶颈,需要升级硬盘(SCSI)) Mem:内存情况 设计思想:把资源省下来不用便是浪费,如添加内存后free值会不变,buff值会增大。判断物理内存够不够,看交换分区的使用状态。 交互命令: [Space]立即刷新显示 [h]显示帮助屏幕

linux进程间通讯的几种方式的特点和优缺点

1. # 管道( pipe ):管道是一种半双工的通信方式,数据只能单向流动,而且只能在具有亲缘关系的进程间使用。进程的亲缘关系通常是指父子进程关系。 # 有名管道(named pipe) :有名管道也是半双工的通信方式,但是它允许无亲缘关系进程间的通信。 # 信号量( semophore ) :信号量是一个计数器,可以用来控制多个进程对共享资源的访问。它常作为一种锁机制,防止某进程正在访问共享资源时,其他进程也访问该资源。因此,主要作为进程间以及同一进程内不同线程之间的同步手段。 # 消息队列( message queue ) :消息队列是由消息的链表,存放在内核中并由消息队列标识符标识。消息队列克服了信号传递信息少、管道只能承载无格式字节流以及缓冲区大小受限等缺点。 # 信号( sinal ) :信号是一种比较复杂的通信方式,用于通知接收进程某个事件已经发生。#共享内存( shared memory):共享内存就是映射一段能被其他进程所访问的内存,这段共享内存由一个进程创建,但多个进程都可以访问。共享内存是最快的IPC方式,它是针对其他进程间通信方式运行效率低而专门设计的。它往往与其他通信机制,如信号量,配合使用,来实现进程间的同步和通信。 # 套接字( socket ) :套解口也是一种进程间通信机制,与其他通信机制不同的是,它可用于不同及其间的进程通信。 管道的主要局限性正体现在它的特点上: 只支持单向数据流; 只能用于具有亲缘关系的进程之间; 没有名字; 管道的缓冲区是有限的(管道制存在于内存中,在管道创建时,为缓冲区分配一个页面大小);管道所传送的是无格式字节流,这就要求管道的读出方和写入方必须事先约定好数据的格式,比如多少字节算作一个消息(或命令、或记录)等等; 2. 用于进程间通讯(IPC)的四种不同技术: 1. 消息传递(管道,FIFO,posix和system v消息队列) 2. 同步(互斥锁,条件变量,读写锁,文件和记录锁,Posix和System V信号灯) 3. 共享内存区(匿名共享内存区,有名Posix共享内存区,有名System V共享内存区) 4. 过程调用(Solaris门,Sun RPC) 消息队列和过程调用往往单独使用,也就是说它们通常提供了自己的同步机制.相反,共享内存区

Linux 进程管理实验

Linux 进程管理实验 一、实验内容: 1. 利用bochs观测linux0.11下的PCB进程控制结构。 2. 利用bochs观测linux0.11下的fork.c源代码文件,简单分析其中的重要函数。 3. 在fork.c适当位置添加代码,以验证fork函数的工作原理。 二、Linux进程管理机制分析 Linux有两类进程:一类是普通用户进程,一类是系统进程,它既可以在用户空间运行,又可以通过系统调用进入内核空间,并在内核空间运行;另一类叫做内核进程,这种进程只能在内核空间运行。在以i386为平台的Linux系统中,进程由进程控制块,系统堆栈,用户堆栈,程序代码及数据段组成。Linux系统中的每一个用户进程有两个堆栈:一个叫做用户堆栈,它是进程运行在用户空间时使用的堆栈;另一个叫做系统堆栈,它是用户进程运行在系统空间时使用的堆栈。 1.Linux进程的状态: Linux进程用进程控制块的state域记录了进程的当前状态,一个Linux 进程在它的生存期中,可以有下面6种状态。 1.就绪状态(TASK_RUNNING):在此状态下,进程已挂入就绪队列,进入准备运行状态。 2.运行状态(TASK_RUNNING):当进程正在运行时,它的state域中的值不改变。但是Linux会用一个专门指针(current)指向当前运行的

任务。 3.可中断等待状态(TASK_INTERRUPTIBLE):进程由于未获得它所申请的资源而处在等待状态。不管是资源有效或者中断唤醒信号都能使等待的进程脱离等待而进入就绪状态。即”浅睡眠状态”。 4.不可中断等待状态(TASK_UNINTERRUPTIBLE):这个等待状态与上面等待状态的区别在于只有当它申请的资源有效时才能被唤醒,而其它信号不能。即“深睡眠状态”。 5.停止状态(TASK_STOPPED):当进程收到一个SIGSTOP信号后就由运行状态进入停止状态,当收到一个SINCONT信号时,又会恢复运行状态。挂起状态。 6.终止状态(TASK_ZOMBIE):进程因某种原因终止运行,但进程控制块尚未注销。即“僵死状态”。 状态图如下所示: 2.Linux进程控制块:

Linux系统中的ps进程查看命令使用实例集锦

这篇文章主要介绍了Linux系统中的ps进程查看命令使用实例集锦,包括对ps命令的常用参数总结,整理得非常全面,需要的朋友可以参考下 linux 中ps命令是Process Status的缩写。ps命令可以列出系统中当前运行的进程,所列出的进程是执行ps命令这个时刻正在运行的进程。 如果要动态显示进程信息,需要使用top命令。 通过ps命令,可以确定哪些进程正在运行和运行状态、进程是否结束、进程是否僵死,哪些进程占用过多资源等。 要杀死进程,使用kill命令,例:kill 12345 (12345为进程的pid) linux进程有5种状态 1.运行(正在运行或在运行队列中等待) 2.中断(休眠中,受阻,或等待某个条件的形成或接受到信号) 3.不可中断(收到信号不唤醒和不可运行,进程必须等待直到有中断发生) 4.僵死(进程已终止,但进程描述符存在,直到父进程调用wait4()系统调用后释放) 5.停止(进程受到SIGSTOP,SIGSTP,SIGTIN,SIGTOU信号后停止运行) ps 5种进程状态的标识码如下: R 运行runnable(on run queue) S 中断sleeping D 不可中断uninterruptible sleep (usually IO) Z 僵死a defunct("zombie") process T 停止traced or stopped 命令参数 a 显示所有进程 -a 显示同一终端下的所有程序 -A 显示所有进程 c 显示进程的真实名称 -N 反向选择

-e 等于“-A” e 显示环境变量 f 显示程序间的关系 -H 显示树状结构 r 显示当前终端的进程 T 显示当前终端的所有程序 u 指定用户的所有进程 -au 显示较详细的资讯 -aux 显示所有包含其他使用者的进程 -C<命令> 列出指定命令的状况 –lines<行数> 每页显示的行数 –width<字符数> 每页显示的字符数 –help 显示帮助信息 –version 显示版本显示 输出列的含义 F 代表这个程序的旗标(flag),4 代表使用者为super user S 代表这个程序的状态(STAT),关于各STAT 的意义将在内文介绍 UID 程序被该UID 所拥有 PID 进程的ID PPID 则是其上级父程序的ID C CPU 使用的资源百分比 PRI 这个是Priority (优先执行序) 的缩写,详细后面介绍 NI 这个是Nice 值,在下一小节我们会持续介绍 ADDR 这个是kernel function,指出该程序在内存的那个部分。如果是个running的程序,一般就是“-“

linux进程管理篇

目录:(内容较多,加个目录) |-进程管理 进程常用命令 |- w查看当前系统信息 |- ps进程查看命令 |- kill终止进程 |- 一个存放内存中的特殊目录/proc |- 进程的优先级 |- 进程的挂起与恢复 |- 通过top命令查看进程 计划任务 |- 计划任务的重要性 |- 一次性计划at和batch |- 周期性计划crontab 进程管理的概念 进程和程序区别 1.程序是静态概念,本身作为一种软件资源长期保存;而进程是程序的执行过程,它是动态概念,有一定的生命期,是动态产生和消亡的。 2.程序和进程无一一对应关系。一个程序可以由多个时程公用;另一一方面,一个进程在活动中有可顺序地执行若干个程序 父子进程的关系 1.子进程是由一个进程所产生的进程,产生这个子进程的进程称为父进程 2.在linux系统中,使用系统调用fork创建进程。fork复制的内容包括父进程的数据和堆栈段以及父进程的进程环境。 3.父进程终止子进程自然终止。 前台进程和后台进程 前台进程 在shell提示处理打入命令后,创建一个子进程,运行命令,Shell等待命令退出,然后返回到对用户给出提示符。这条命令与Shell异步运行,即在前台运行,用户在它完成之前不能执行别一个命令

很简单,我们在执行这个查找命令时,无法进行其它操作,这个查找就属于前台进程 后台进程 在Shell提示处打入命令,若后随一个&,Shell创建子进程运行此命令,但不等待命令退出,而直接返回到对用户给出提示。这条命令与Shell同步运行,即在后台运行。“后台进程必须是非交互式的” 再来看这个命令就变成了后台进程,我们用同样的条件进行查找,把查找记过放到hzh/test/init.find这个文件中。不影响我们前台其它的操作。 进程的状态

Linux2 进程的启动方式

Linux2 进程的启动方式 程序或者命令的执行实际上是通过进程实现的。通常情况下,程序或者命令是保存在硬盘上的,当在命令行中输入一个可执行程序的文件名或者命令并按下Enter 键后,系统内核就将该程序或者命令的相关代码加载到内存中开始执行。系统会为该程序或者命令创建一个或者多个相关的进程,通过进程完成特定的任务。启动进程的方式有两种,分别为前台启动方式和后台启动方式。 1.以前台方式启动进程 在终端窗口的命令行上输入一个Linux命令并按Enter键,就是以前台方式启动了一个进程。例如,在终端窗口上执行“find /-name myfile.txt”命令,就以前台方式启动了一个进程,在该进程还未执行完时,可按下Ctrl+z组合键将该进程暂时挂起,然后使用ps命令查看该进程的有关信息,如图5-1所示。 图5-1 以前台方式启动进程 2.以后台方式启动进程 要在命令行上以后台方式启动进程,需要在执行的命令后添加一个“&”。例如,在终端窗口的命令行上输入命令“find / -name myfile2.txt &”并按下Enter键后将从后台启动一个进程。启动后,系统会显示如下所示的信息: 这里的数字2表示该进程是运行于后台的第2个进程,数字3516是该进程的PID(即进程标识码,用于惟一地标识一个进程)。 然后,出现了shell提示符,这表示已返回到前台。这时,执行ps命令将能够看到现在在系统中有两个由find命令引起的进程,它们的标识号是不同的,因而是两个不同的进程,其中,PID为3385的进程就是刚才被挂起的进程。 如果执行jobs命令可以查看当前控制台中的后台进程,如图5-2所示,可以看到当前在后台有两个进程,其中一个处于运行(Running)状态,另一个,即被挂起的进程处于停止(Stopped)状态。等过一段时间后再使用ps命令进行查看,会发现PID为3516的进程已经结束了,而PID为3385的进程还存在。

Linux 进程的启动方式

Linux 进程的启动方式 程序或者命令的执行实际上是通过进程实现的。通常情况下,程序或者命令是保存在硬盘上的,当在命令行中输入一个可执行程序的文件名或者命令并按下Enter 键后,系统内核就将该程序或者命令的相关代码加载到内存中开始执行。 系统会为该程序或者命令创建一个或者多个相关的进程,通过进程完成特定的任务。启动进程的方式有两种,分别为前台启动方式和后台启动方式。 1.以前台方式启动进程 在终端窗口的命令行上输入一个Linux命令并按Enter键,以前台方式启动了一个进程。例如,在终端窗口上执行“find /-name myfile.txt”命令,就可以以前台的方式启动一个进程。而在该进程还未执行完时,可按下Ctrl+z组合键将该进程暂时挂起。然后,可以使用ps命令查看该进程的有关信息,如图41所示。 图41 前台方式启动进程 2.以后台方式启动进程 在前台运行的进程是正在进行交互操作的进程,它可以从标准输入设备接收输入,并将输出结果送到标准输出设备,在同一时刻只能有一个进程在前台运行。而在后台运行的进程一般不需要进行交互操作,不接收终端的输入。 通常情况下,可以让一些运行时间较长而且不接受终端输入的程序以后台方式运行,让操作系统调度它。 要在命令行上以后台方式启动进程,需要在执行的命令后添加一个“&”。例如,在终端窗口的命令行上输入命令“find / -name myfile2.txt &”并按下Enter键后将从后台启动一个进程。启动后,系统会显示如下所示的信息: 这里的数字2表示该进程是运行于后台的第2个进程,数字3516是该进程的PID(即进程标识码,用于惟一地标识一个进程)。 然后,出现了shell提示符,这表示已返回到前台。这时,执行ps命令将能够看到现在在系统中有两个由find命令引起的进程,它们的标识号是不同的,因而是两个不同的进程,其中,PID为3385的进程就是刚才被挂起的进程。 如果执行jobs命令可以查看当前控制台中的后台进程,可以看到当前在后台有两个进程,其中一个处于运行(Running)状态,另一个,即被挂起的进程处于停止

LINUX 查找进程及终止进程操作的相关命令

使用linux操作系统,难免遇到一些软件卡壳的问题,这时就需要使用linux下强大的kill命令来结束相关进程。这在linux系统下是极其容易的事情,你只需要kill xxx即可,这里xxx代表与此软件运行相关的进程PID号。 首先,我们需要使用linux下另外一个命令ps查找与进程相关的PID号:ps aux | grep program_filter_word 1)ps a 显示现行终端机下的所有程序,包括其他用户的程序。 2)ps -A 显示所有程序。 3)ps c 列出程序时,显示每个程序真正的指令名称,而不包含路径,参数或常驻服务的标示。 4)ps -e 此参数的效果和指定A参数相同。 5)ps e 列出程序时,显示每个程序所使用的环境变量。 6)ps f 用ASCII字符显示树状结构,表达程序间的相互关系。 7)ps -H 显示树状结构,表示程序间的相互关系。 8)ps -N 显示所有的程序,除了执行ps指令终端机下的程序之外。 9)ps s 采用程序信号的格式显示程序状况。 10)ps S 列出程序时,包括已中断的子程序资料。 11)ps -t<终端机编号; 指定终端机编号,并列出属于该终端机的程序的状况。 12)ps u 以用户为主的格式来显示程序状况。 13)ps x 显示所有程序,不以终端机来区分。 最常用的方法是ps aux,然后再通过管道使用grep命令过滤查找特定的进程,然后再对特定的进程进行操作。 其次,使用kill命令结束进程:kill xxx 1)作用 kill命令用来中止一个进程。

2)格式 kill [ -s signal | -p ] [ -a ] pid ... kill -l [ signal ] 3)参数 -s:指定发送的信号。 -p:模拟发送信号。 -l:指定信号的名称列表。 pid:要中止进程的ID号。 Signal:表示信号。 4)说明 进程是Linux系统中一个非常重要的概念。Linux是一个多任务的操作系统,系统上经常同时运行着多个进程。我们不关心这些进程究竟是如何分配的,或者是内核如何管理分配时间片的,所关心的是如何去控制这些进程,让它们能够很好地为用户服务。 Linux操作系统包括三种不同类型的进程,每种进程都有自己的特点和属性。交互进程是由一个Shell启动的进程。交互进程既可以在前台运行,也可以在后台运行。批处理进程和终端没有联系,是一个进程序列。监控进程(也称系统守护进程)是Linux系统启动时启动的进程,并在后台运行。例如,httpd 是著名的Apache服务器的监控进程。 kill命令的工作原理是,向Linux系统的内核发送一个系统操作信号和某个程序的进程标识号,然后系统内核就可以对进程标识号指定的进程进行操作。比如在top命令中,我们看到系统运行许多进程,有时就需要使用kill中止某些进程来提高系统资源。在讲解安装和登陆命令时,曾提到系统多个虚拟控制台的作用是当一个程序出错造成系统死锁时,可以切换到其它虚拟控制台工作关闭这个程序。此时使用的命令就是kill,因为kill是大多数Shell内部命令可以直接调用的。 5)应用实例 (1)强行中止(经常使用杀掉)一个进程标识号为324的进程: #kill -9 324 (2)解除Linux系统的死锁

Linux下的进程间通信-详解

Linux下的进程间通信-详解 详细的讲述进程间通信在这里绝对是不可能的事情,而且笔者很难有信心说自己对这一部分内容的认识达到了什么样的地步,所以在这一节的开头首先向大家推荐著 名作者Richard Stevens的著名作品:《Advanced Programming in the UNIX Environment》,它的中文译本《UNIX环境高级编程》已有机械工业出版社出版,原文精彩,译文同样地道,如果你的确对在Linux下编程有浓 厚的兴趣,那么赶紧将这本书摆到你的书桌上或计算机旁边来。说这么多实在是难抑心中的景仰之情,言归正传,在这一节里,我们将介绍进程间通信最最初步和最 最简单的一些知识和概念。 首先,进程间通信至少可以通过传送打开文件来实现,不同的进程通过一个或多个文件来传递信息,事实上,在很多应用系统里,都使用了这种方法。但一般说来, 进程间通信(IPC:InterProcess Communication)不包括这种似乎比较低级的通信方法。Unix系统中实现进程间通信的方法很多,而且不幸的是,极少方法能在所有的Unix系 统中进行移植(唯一一种是半双工的管道,这也是最原始的一种通信方式)。而Linux作为一种新兴的操作系统,几乎支持所有的Unix下常用的进程间通信 方法:管道、消息队列、共享内存、信号量、套接口等等。下面我们将逐一介绍。 2.3.1 管道 管道是进程间通信中最古老的方式,它包括无名管道和有名管道两种,前者用于父进程和子进程间的通信,后者用于运行于同一台机器上的任意两个进程间的通信。 无名管道由pipe()函数创建: #include int pipe(int filedis[2]); 参数filedis返回两个文件描述符:filedes[0]为读而打开,filedes[1]为写而打开。filedes[1]的输出是filedes[0]的输入。下面的例子示范了如何在父进程和子进程间实现通信。 #define INPUT 0 #define OUTPUT 1 void main() { int file_descriptors[2]; /*定义子进程号 */ pid_t pid; char buf[256]; int returned_count; /*创建无名管道*/ pipe(file_descriptors); /*创建子进程*/ if((pid = fork()) == -1) { printf("Error in fork\n"); exit(1); } /*执行子进程*/ if(pid == 0) { printf("in the spawned (child) process...\n"); /*子进程向父进程写数据,关闭管道的读端*/ close(file_descriptors[INPUT]); write(file_descriptors[OUTPUT], "test data", strlen("test data"));

Linux实验五 进程管理命令

实验五进程管理命令 一、实验目的 (1)了解如何监视系统运行状态 (2)掌握查看、删除进程的正确方法 (3)掌握命令在后台运行的用法 (4)掌握进程手工、调度启动的方法 二、常用命令 who 查看当前在线用户 top 监视系统状态 ps 查看进程 kill 向进程发信号 bg 把进程变成后台运行 & 把进程变成后台运行 fg 把后台进程变成前台运行 jobs 显示处于后台的进程。 at 在指定的时刻执行指定的命令或命令序列 batch 在系统负载较低、资源较空闲时执行命令或命令序列以上命令的具体用法请参阅教材、课件和man手册 三、实验内容 1、用top命令察看当前系统的状态,并识别各进程的有关栏目。 2、用ps命令察看系统当前的进程,并把系统当前的进程保存到文件 process中。

3、用ps命令察看系统当前有没有init进程。 4、输入“cat <回车>” 按-z 键,出现什么情况?输入fg命令出现什么情况? 答:将cat进程挂起,fg将挂起进程调到前台运行 按-c 键,出现什么情况? 答;强制中断 5、输入“find / -name ls*>temp &”,该命令的功能是什么? 查看该进程; 答:在根目录下按名字查找以ls开头的文件,并把查询结果保存到temp文件,并且把进程置为后台运行 输入killall find命令后,再查看该进程。 答:输入该命令后回车后,和fand相关的进程全部被杀死 6、输入“find / -name ls*>temp &” 输入jobs命令,出现什么情况? 答;查看后台进程的信息 输入fg命令出现什么情况? 答:将后台进程调到前台运行

04--Linux系统编程-进程间通信

IPC方法 Linux环境下,进程地址空间相互独立,每个进程各自有不同的用户地址空间。任何一个进程的全局变量在另一个进程中都看不到,所以进程和进程之间不能相互访问,要交换数据必须通过内核,在内核中开辟一块缓冲区,进程1把数据从用户空间拷到内核缓冲区,进程2再从内核缓冲区把数据读走,内核提供的这种机制称为进程间通信(IPC,InterProcess Communication)。 在进程间完成数据传递需要借助操作系统提供特殊的方法,如:文件、管道、信号、共享内存、消息队列、套接字、命名管道等。随着计算机的蓬勃发展,一些方法由于自身设计缺陷被淘汰或者弃用。现今常用的进程间通信方式有: ①管道(使用最简单) ②信号(开销最小) ③共享映射区(无血缘关系) ④本地套接字(最稳定) 管道 管道的概念: 管道是一种最基本的IPC机制,作用于有血缘关系的进程之间,完成数据传递。调用pipe系统函数即可创建一个管道。有如下特质: 1. 其本质是一个伪文件(实为内核缓冲区) 2.由两个文件描述符引用,一个表示读端,一个表示写端。 3. 规定数据从管道的写端流入管道,从读端流出。 管道的原理: 管道实为内核使用环形队列机制,借助内核缓冲区(4k)实现。 管道的局限性: ①数据自己读不能自己写。 ②数据一旦被读走,便不在管道中存在,不可反复读取。 ③由于管道采用半双工通信方式。因此,数据只能在一个方向上流动。 ④只能在有公共祖先的进程间使用管道。

常见的通信方式有,单工通信、半双工通信、全双工通信。 pipe函数 创建管道 int pipe(int pipefd[2]); 成功:0;失败:-1,设置errno 函数调用成功返回r/w两个文件描述符。无需open,但需手动close。规定:fd[0] →r;fd[1] →w,就像0对应标准输入,1对应标准输出一样。向管道文件读写数据其实是在读写内核缓冲区。 管道创建成功以后,创建该管道的进程(父进程)同时掌握着管道的读端和写端。如何实现父子进程间通信呢?通常可以采用如下步骤: 1.父进程调用pipe函数创建管道,得到两个文件描述符fd[0]、fd[1]指向管道的读端和写端。 2.父进程调用fork创建子进程,那么子进程也有两个文件描述符指向同一管道。 3.父进程关闭管道读端,子进程关闭管道写端。父进程可以向管道中写入数据,子进程将管道中的数据读出。由于管道是利用环形队列实现的,数据从写端流入管道,从读端流出,这样就实现了进程间通信。 练习:父子进程使用管道通信,父写入字符串,子进程读出并,打印到屏幕。【pipe.c】 思考:为甚么,程序中没有使用sleep函数,但依然能保证子进程运行时一定会读到数据呢? 管道的读写行为 使用管道需要注意以下4种特殊情况(假设都是阻塞I/O操作,没有设置O_NONBLOCK标志): 1.如果所有指向管道写端的文件描述符都关闭了(管道写端引用计数为0),而仍然有进程从管道的读端读数据,那么管道中剩余的数据都被读取后,再次read会返回0,就像读到文件末尾一样。

查看Linux进程占用的资源

查看Linux进程占用的资源 查看Linux系统下某一个进程占用的资源是进行系统调测的关键。它不仅涉及到健壮性,也涉及到程序的调优。尤其是对于那些需要长时间在内存中运行的程序,如果发生随着外部运行环境的变化而导致的资源占用的不当起伏,势必导致程序运行的潜在风险。 top top是灵活的CPU状态的查看工具,类似任务管理器。Top命令一般分成两部分进行显示,第一部分是当前系统的运行概况: 第一行(top): top - 17:03:45 up 58 days, 4:01, 1 user, load average: 0.00, 0.02, 0.00 “17:03:45”为系统当前时刻; “58 days,4:01”为系统启动后到现在的运作时间; “1 user”为当前登录到系统的用户,更确切的说是登录到用户的终端数--同一个用户同一时间对系统多个终端的连接将被视为多个用户连接到系统,这里的用户数也将表现为终端的数目;“load average”为当前系统负载的平均值,后面的三个值分别为1分钟前、5分钟前、15分钟前进程的平均数,一般的可以认为这个数值超过CPU数目时,CPU将比较吃力的负载当前系统所包含的进程; 第二行(Tasks): “172 total”为当前系统进程总数; “1 running”为当前运行中的进程数; “171 sleeping”为当前处于等待状态中的进程数; “0 stoped”为被停止的系统进程数; “0 zombie”为僵死的进程数; 第三行(Cpus): 显示CPU利用率的详细信息,如果有多个CPU,屏幕将在每行显示一个CPU 的信息。 第四行(Mem): 显示可用的和已利用的内存 第五行(Swap): 表示类别同第四行(Mem),但此处反映着交换分区(Swap)的使用情况。通常,交换分区(Swap)被频繁使用的情况,将被视作物理内存不足而造成的。 其余的显示内容以表格格式显示进程。下面对各列进行解释:各个不同的列的内容为: PID 进程的进程ID USER 运行该进程的用户 PRI 进程的优先级

相关文档
最新文档