模态分析基本内容简介
模态分析原理

模态分析原理模态分析是指通过对物体或系统的振动特性进行分析,来确定其固有频率、振型和振动模态等相关参数的一种分析方法。
在工程领域中,模态分析被广泛应用于结构设计、振动控制、故障诊断等方面,具有重要的理论和实际意义。
本文将对模态分析的原理进行介绍,希望能够帮助读者更好地理解和应用模态分析技术。
模态分析的基本原理是通过对系统的动力学方程进行求解,得到系统的固有频率和振型。
在进行模态分析时,需要考虑系统的质量、刚度和阻尼等因素,这些因素将直接影响系统的振动特性。
在实际工程中,通常会采用有限元方法或者试验测量的方式来获取系统的动力学参数,然后利用模态分析的理论进行计算和分析。
在进行模态分析时,首先需要建立系统的动力学模型,这包括系统的质量矩阵、刚度矩阵和阻尼矩阵等参数。
然后利用模态分析的理论,可以求解系统的特征方程,从而得到系统的固有频率和振型。
通过对系统的固有频率和振型进行分析,可以了解系统的振动特性,包括主要振动模态、振动形式和振动幅值等信息。
在实际工程中,模态分析通常用于结构设计和振动控制方面。
通过对结构的模态进行分析,可以确定结构的主要振动模态和固有频率,从而指导结构设计和优化。
同时,还可以通过模态分析来评估结构的振动响应,为振动控制和减震设计提供依据。
除了在结构设计和振动控制方面的应用外,模态分析还被广泛应用于故障诊断和结构健康监测等领域。
通过对系统的模态进行分析,可以发现系统的异常振动模态和频率,从而判断系统的工作状态和健康状况。
这对于提前发现系统的故障和隐患,具有重要的意义。
总之,模态分析作为一种重要的振动分析方法,具有广泛的应用前景和理论价值。
通过对系统的振动特性进行分析,可以深入理解系统的动力学行为,为工程设计和故障诊断提供重要的依据。
希望本文的介绍能够帮助读者更好地理解和应用模态分析技术,推动其在工程领域的进一步发展和应用。
模态分析算法原理与实例

5.模态计算中接触设置
Training Manual
Advanced Contact & Fasteners
模态计算中可以定义不同结构之间的接触,但是因为模态计 算是一个纯线性分析,因此模态计算中接触定义与其他非线性 问题中定义中的接触不同,模态计算中接触的具体设置如下:
6.预应力模态分析
• 具有预应力结构的模态分析; • 同样的结构在不同的应力状态下表现出不同的动力特性。
Advanced Contact & Fasteners
i 2
其中: fi的单位为Hz,即转/秒。 如果模型的约束不足导致产生刚体运动,则总体刚度矩阵[K]为半正 定型,则会出现固有频率为0的情况。
3.模态计算的方法
在大多数情况下,建议用户选用 Program Controlled选项,程序会自 动优化进行选择算法。
Training Manual
Advanced Contact & Fasteners
用户也可以设置输出应力和应变;
注意:模态计算中的应力和应变只是一个相对值,不是真实的应 力值;应力值并没有实际意义,但如果振型是相对于单位矩阵归 一的,则可以在给定的振型中比较不同点的应力,从而发现可能 存在的应力集中。
Training Manual
Advanced Contact & Fasteners
(1)Direct-Block Lanczos
-能够处理对称矩阵; -是一种功能强大的方法,当提取中型到大型模型(50000 ~ 100000 个 自由度)的大量振型时(40+),这种方法很有效; -经常应用在具有实体单元或壳单元的模型中; -可以很好地处理刚体振型; -需要较高的内存。
【清华ANSYS】5(1)--模态分析和结构动力时程分析

自由度 [TOTAL]让程序按照刚度/质量比选取一些附加的主自由度 [MLIST]可以列出定义的主自由度 [MDELETE]删除无关的主自由度
2004-4-21
Dept. CE, Tsinghua Univ. Tel:62772988
Subspace Method Block Lanczos Method PowerDynamics Method Reduced Householder Method Unsymmetric Method Damped Method QR Damped Method SX Method (用变分方法求解) 在Ansys中,指定了某种模态提取方法后,Ansys会自动 选择合适的方程求解器。
2004-4-21
Dept. CE, Tsinghua Univ. Tel:62772988
15
INTRODUCTION TO ANSYS
模态分析 —加载与求解
• 分析设置 —— 模态提取方法 Damped Method
Damped Method ,用于阻尼不可忽略的问题,例如轴承 问题。
需要指定阻尼,而且在模态分析中,阻尼的设置只有用 Damped Method 提取时才有效。 瑞利阻尼(ALPHAD and BETAD) 恒定阻尼比(DMPRAT) 材料阻尼比(MP, DAMP)
Dept. CE, Tsinghua Univ. Tel:62772988
22
INTRODUCTION TO ANSYS
模态分析 —加载与求解
RIGID 用于子空间 迭代法提取已知有 刚体运动结构的零 频率模态。 Subspace and PowerDynamics
第三讲 模态分析

对称边界条件只产生对 称的振型,所以将会丢 失一些振型。
完整模型
对称边界
反对称边界
中国科学技术大学CAD/CAM实验室 2005年7月
开始求解
Main Menu> Solution> Solve> Current LS
使用阻尼方法, 特征值和特征 向量都是复数 解。
中国科学技术大学CAD/CAM实验室 2005年7月
中国科学技术大学CAD/CAM实验室 2005年7月
模态分析的理论基础
特征值的平方根是 i , 它是结构的自然 圆周频率(弧度/秒),并可得出自然频率 fi = i /2p。
特征向量 {u}i 表示振型, 即假定结构以频 率 fi振动时的形状。
模态提取 是用来描述特征值和特征向量计
算的术语。
中国科学技术大学CAD/CAM实验室 2005年7月
Change Title …
在工作区右下角显示标题 不能输入中文 Utility Menu> Plot> Replot
中国科学技术大学CAD/CAM实验室 2005年7月
设置单元类型 1
3
中国科学技术大学CAD/CAM实验室 2005年7月
设置单元选项
注意:不是所有的单元 都能设置单元选项!
中国科学技术大学CAD/CAM实验室 2005年7月
扩展模态的步骤
① 进入求解器
➢ Main Menu> Solution
中国科学技术大学CAD/CAM实验室 2005年7月
定义单元的实常数
中国科学技术大学CAD/CAM实验室 2005年7月
定义材料属性
中国科学技术大学CAD/CAM实验室 2005年7月
模态分析

Training Manual
对于阻尼矩阵,程序支持材料阻尼和总体阻尼控制,当需要考虑模型中不 同的材料阻尼时,用户可以在工程数据模块为不同的材料定义刚度阻尼系数和 质量阻尼系数
Advanced Contact & Fasteners
2、模态分析理论和术语
2.2 有阻尼模态分析理论:
用户可以在进入Model中定义结构的总体阻尼特性:
5、模态的提取方法
在大多数情况下,建议用户选用 Program Controlled选项,程序会自 动优化进行选择算法。
Training Manual
Advanced Contact & Fasteners
(1)Direct-Block Lanczos
-能够处理对称矩阵; -是一种功能强大的方法,当提取中型到大型模型(50000 ~ 100000 个 自由度)的大量振型时(40+),这种方法很有效; -经常应用在具有实体单元或壳单元的模型中; -可以很好地处理刚体振型; -需要较高的内存。
Training Manual
Advanced Contact & Fasteners
-程序默认不考虑阻尼,如果需要考虑则进行激活;
-然后选择对应的模态计算方法,建议使用程序控制即可。
7、模态计算设置
7.3 输出控制 默认情况下,程序只输出模态振型和固有频率;
Training Manual
Advanced Contact & Fasteners
Training Manual
Advanced Contact & Fasteners
2、模态分析理论和术语
2.2 有阻尼模态分析理论:
考虑阻尼的模态计算输出的特征值是复数;
机械工程中的模态分析方法

机械工程中的模态分析方法在机械工程领域,模态分析是一种重要的工具,用于研究和评估机械系统或结构的动力特性。
通过模态分析,工程师可以了解结构的固有振动频率、振型及其相关参数,从而对系统进行设计、改进和优化。
一、模态分析的基本原理模态分析基于结构的自由振动特性。
当结构受到外界激励或内部失稳因素影响时,会出现自由振动。
模态分析通过对这种振动进行精确测量和分析,得到结构的模态参数。
在模态分析中,最关键的一步是确定结构的固有频率和相应的振型。
固有频率是结构在自由振动时所表现出的振动频率,它与结构的刚度密切相关。
振型则描述了结构在不同固有频率下的变形形态,是结构动态响应的关键指标。
二、模态分析的常用方法1.加速度法加速度法是最常用的模态分析方法之一。
它基于物体的加速度与力的关系,通过测量结构上的加速度响应来推导出结构的模态参数。
具体操作中,可以通过加速度传感器将结构上的振动信号采集下来,再使用信号处理算法对信号进行分析。
2.激励-响应法激励-响应法是另一种常见的模态分析方法。
该方法将结构受到的激励信号与结构的振动响应进行对比,从而得到结构的模态参数。
激励信号可以是一个冲击物、一次瞬态激励或周期性激励。
3.频率域方法频率域方法是一种基于结构在频域内的特性进行模态分析的方法。
它以傅里叶变换为基础,将结构的时域信号转化为频域信号,进而得到结构的固有频率和振型。
频率域方法具有计算效率高、信号处理简易等优点。
4.有限元法有限元法是一种数值方法,常用于模态分析中的结构模态分析。
该方法将结构分解为多个小单元,利用有限元理论和方法对结构进行数值模拟。
通过进行有限元分析和计算,可以得到结构的固有频率和振型。
三、模态分析的应用领域模态分析在机械工程领域中具有广泛的应用。
它可以帮助工程师了解和评估结构的动力特性,发现结构的固有频率、共振点和脆弱部位,从而进行系统的设计和优化。
模态分析在航空航天领域中有着重要的应用。
通过对飞机、火箭等结构进行模态分析,可以评估其动态特性和共振情况,保证飞行安全性和运行可靠性。
机械系统动力学特性的模态分析

机械系统动力学特性的模态分析机械系统动力学是研究物体在受到外力作用下的运动规律和机械系统动态特性的学科。
其中,模态分析是一种重要的方法,用于研究机械系统的固有振动特性。
本文将介绍机械系统动力学特性的模态分析方法及其应用。
一、模态分析的基本概念模态分析是研究机械系统振动模态的一种方法。
模态是指机械系统在自由振动状态下的振动形式和频率。
模态分析通过分析机械系统的初始条件、约束条件和外力等因素,确定机械系统的固有频率和振型,并进一步得到机械系统的振荡特性。
二、模态分析的基本步骤模态分析一般包括以下几个步骤:1. 系统建模:根据实际情况,将机械系统抽象为数学模型,包括质量、刚度、阻尼等参数。
2. 求解特征值问题:通过求解系统的特征值问题,得到系统的固有频率和振型。
3. 模态验算:将得到的固有频率和振型代入原始方程,验证其是否满足振动方程。
4. 模态分析:通过对系统的振动模态进行进一步分析,得到系统的动态响应和振动特性。
三、模态分析的应用模态分析在机械工程领域有广泛的应用。
主要包括以下几个方面:1. 结构优化设计:通过模态分析,可以评估机械系统的固有频率和振型,判断系统是否存在共振现象或其他异常振动情况,为结构设计提供依据。
2. 动力学特性分析:通过模态分析,可以了解机械系统的振动特性,包括固有频率、阻尼特性和模态质量等指标,为系统的动力学性能评估和优化提供依据。
3. 故障诊断与预测:模态分析可以用于机械系统的故障诊断和预测。
通过对机械系统振动模态的变化进行监测和分析,可以判断系统是否存在故障,并提前发现潜在的故障。
4. 振动控制技术:通过模态分析,可以了解机械系统振动的特征,并采取相应的振动控制措施。
比如调节系统的阻尼、改变系统的刚度等,来减小系统的振动幅度,提高系统的稳定性和工作性能。
四、模态分析存在的问题与挑战模态分析作为一种成熟的技术方法,仍然面临一些问题和挑战。
例如,模态分析需要对机械系统进行精确的建模,包括质量、刚度和阻尼等参数的准确度和全面性。
模态分析

1. 什么是模态分析?模态分析是研究结构动力特性一种近代方法,是系统辨别方法在工程振动领域中的应用。
模态是机械结构的固有振动特性,每一个模态具有特定的固有频率、阻尼比和模态振型。
这些模态参数可以由计算或试验分析取得,这样一个计算或试验分析过程称为模态分析。
这个分析过程如果是由有限元计算的方法取得的,则称为计算模态分析;如果通过试验将采集的系统输入与输出信号经过参数识别获得模态参数,称为试验模态分析。
通常,模态分析都是指试验模态分析。
振动模态是弹性结构的固有的、整体的特性。
如果通过模态分析方法搞清楚了结构物在某一易受影响的频率范围内各阶主要模态的特性,就可能预言结构在此频段内在外部或内部各种振源作用下实际振动响应。
因此,模态分析是结构动态设计及设备的故障诊断的重要方法。
模态分析最终目标在是识别出系统的模态参数,为结构系统的振动特性分析、振动故障诊断和预报以及结构动力特性的优化设计提供依据。
2. 模态分析有什么用处?模态分析所的最终目标在是识别出系统的模态参数,为结构系统的振动特性分析、振动故障诊断和预报以及结构动力特性的优化设计提供依据。
模态分析技术的应用可归结为以下几个方面:1. 评价现有结构系统的动态特性;通过结构的模态分析可以求得各阶模态参数(模态频率、模态振型以及模态阻尼),从而评价结构的动态特性是否符合要求,并校验理论计算结构的准确性。
2. 在新产品设计中进行结构动态特性的预估和优化设计;3. 诊断及预报结构系统的故障;近年来,结构故障技术发展迅速,而模态分析已成为故障诊断的一个重要方法。
利用结构模态参数的改变来诊断故障是一种有效方法。
例如,根据模态频率的变化可以判断裂纹的出现;根据振型的分析可以确定断裂的位置;根据转子支承系统阻尼的改变,可以诊断与预报转子系统的失稳等。
4. 控制结构的辐射噪声;结构噪声是由于结构振动所引起的。
结构振动时,各阶模态对噪声的“贡献”并不相同,对噪声贡献较大的几阶模态称为“优势模态”。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
模态分析是研究结构动力特性一种近代方法,是系统辨别方法在工程振动领域中的应用。
模态是机械结构的固有振动特性,每一个模态具有特定的固有频率、阻尼比和模态振型。
这些模态参数可以由计算或试验分析取得,这样一个计算或试验分析过程称为模态分析。
这个分析过程如果是由有限元计算的方法取得的,则称为计算模态分析;如果通过试验将采集的系统输入与输出信号经过参数识别获得模态参数,称为试验模态分析。
通常,模态分析都是指试验模态分析。
概述
振动模态是弹性结构固有的、整体的特性。
通过模态分析方法搞清楚了结构物在某一易受影响的频率范围内的各阶主要模态的特性,就可以预言结构在此频段内在外部或内部各种振源作用下产生的实际振动响应。
因此,模态分析是结构动态设计及设备故障诊断的重要方法。
机器、建筑物、航天航空飞行器、船舶、汽车等的实际振动模态各不相同。
模态分析提供了研究各类振动特性的一条有效途径。
首先,将结构物在静止状态下进行人为激振,通过测量激振力与响应并进行双通道快速傅里叶变换(FFT)分析,得到任意两点之间的机械导纳函数(传递函数)。
用模态分析理论通过对试验导纳函数的曲线拟合,识别出结构物的模态参数,从而建立起结构物的模态模型。
根据模态叠加原理,在已知各种载荷时间历程的情况下,就可以预言结构物的实际振动的响应历程或响应谱。
近十多年来,由于计算机技术、FFT分析仪、高速数据采集系统以及振动传感器、激励器等技术的发展,试验模态分析得到了很快的发展,受到了机械、电力、建筑、水利、航空、航天等许多产业部门的高度重视。
已有多种档次、各种原理的模态分析硬件与软件问世。
用处
模态分析的最终目标是识别出系统的模态参数,为结构系统的振动特性分析、振动故障诊断和预报以及结构动力特性的优化设计提供依据。
模态分析技术的应用可归结为以下几个方面:
1) 评价现有结构系统的动态特性;
2) 在新产品设计中进行结构动态特性的预估和优化设计;
3) 诊断及预报结构系统的故障;
4) 控制结构的辐射噪声;
5) 识别结构系统的载荷。
最佳悬挂点
模态试验时,一般希望将悬挂点选择在振幅较小的位置,最佳悬挂点应该是某阶振型的节点。
最佳激励点
最佳激励点视待测试的振型而定,若单阶,则应选择最大振幅点,若多阶,则激励点处各阶的振幅都不小于某一值。
如果是需要许多能量才能激励的结构,可以考虑多选择几个激励点。
最佳测试点
模态试验时测试点所得到的信息要求有尽可能高的信噪比,因此测试点不应该靠近节点。
在最佳测试点位置其AD DOF(Average Driving DOF Displacement)值应该较大,一般可用EI(Effective Independance)法确定最佳测试点。
模态参数有那些
模态参数有:模态频率、模态振型、模态质量、模态向量、模态刚度和模态阻尼等。
主模态主空间主坐标
无阻尼系统的各阶模态称为主模态,各阶模态向量所张成的空间称为主空间,其相应的模态坐标称为主坐标。
模态截断
理想的情况下我们希望得到一个结构的完整的模态集,实际应用中这即不可能也不必要。
实际上并非所有的模态对响应的贡献都是相同的。
对低频响应来说,高阶模态的影响较小。
对实际结构而言,我们感兴趣的往往是它的前几阶或十几阶模态,更高的模态常常被舍弃。
这样尽管会造成一点误差,但频响函数的矩阵阶数会大大减小,使工作量大为减小。
这种处理方法称为模态截断。
实模态和复模态
按照模态参数(主要指模态频率及模态向量)是实数还是复数,模态可以分为实模态和复模态。
对于无阻尼或比例阻尼振动系统,其各点的振动相位差为零或180度,其模态系数是实数,此时为实模态;对于非比例阻尼振动系统,各点除了振幅不同外相位差也不一定为零或180度,这样模态系数就是复数,即形成复模态。
有限元分析
1)利用有限元分析模型确定模态试验的测量点、激励点、支持点(悬挂点),参照计算振型对测试模态参数进行辩识命名,尤其是对于复杂结构很重要。
2)利用试验结果对有限元分析模型进行修改,以达到行业标准或国家标准要求。
3)利用有限元模型对试验条件所产生的误差进行仿真分析,如边界条件模拟、附加质量、附加刚度所带来的误差及其消除。
4)两套模型频谱一致性和振型相关性分析。
5)利用有限元模型仿真分析解决实验中出现的问题!
修正有限元分析的结果
用试验模态分析的结果怎么修正有限元分析的结果?
1)结构设计参数的修正,可用优化方法进行。
2)子结构校正因子修正。
3)结构矩阵元素修正,包括非零元素和全元素修正两种。
4)刚度矩阵和质量矩阵同时修正。