【题型归类练习】圆周运动
6.1 圆周运动 习题—2020-2021学年人教版(2019)高中物理必修第二册

一、圆周运动分题型练习同轴转动1.汽车后备箱盖一般都有可伸缩的液压杆,如图甲所示,图乙为简易侧视示意图,液压杆上端固定于后盖上A点,下端固定于箱内O′点,B也为后盖上一点,后盖可绕过O点的固定铰链转动,在合上后备箱的过程中()甲乙A.A点相对于O′点做圆周运动B.B点相对于O′点做圆周运动C.A与B相对于O点线速度大小相同D.A与B相对于O点角速度大小相同2.如图所示是一个玩具陀螺.a、b和c是陀螺外表面上的三个点.当陀螺绕垂直于地面的轴线以角速度ω稳定旋转时,下列表述正确的是()A.a、b和c三点的线速度大小相等B.a、b和c三点的角速度相等C.a、b的角速度比c的大D.c的线速度比a、b的大3.(多选)甲、乙两个做匀速圆周运动的质点,它们的角速度之比为3∶1,线速度之比为2∶3,那么下列说法中正确的是()A.它们的半径之比为2∶9B.B.它们的半径之比为1∶2C.它们的周期之比为2∶3D.D.它们的周期之比为1∶34.如图所示,两个小球固定在一根长为l的杆的两端,绕杆上的O点做圆周运动。
当小球A的速度为v A时,小球B的速度为v B,则轴心O到小球A的距离是()A.v A(v A+v B)l B.vAlvA+v BC.vA+v B lvAD.vA+v B lvB5.如图所示,一偏心轮绕垂直纸面的轴O匀速转动,a和b是轮边缘上的两个点,则偏心轮转动过程中a、b两点()A.角速度大小相同B.线速度大小相同C.周期大小不同D.转速大小不同6.如图所示,圆环以直径AB为轴匀速转动,已知其半径R=0.5 m,转动周期T=4 s,求环上P点和Q点的角速度和线速度总结:同轴转动的各点角速度、转速、周期相等,线速度与半径成正比。
传动装置7.(多选)-如图所示为某一皮带传动装置。
主动轮的半径为r1,从动轮的半径为r2.已知主动轮做顺时针转动,转速为n,转动过程中皮带不打滑.下列说法正确的是( )A.从动轮做顺时针转动B.从动轮做逆时针转动C.从动轮的转速为r 1 r 2 nD.从动轮的转速为r2r1n8.如图所示为锥形齿轮的传动示意图,大齿轮带动小齿轮转动,大、小齿轮的角速度大小分别为ω1、ω2,两齿轮边缘处的线速度大小分别为v1、v2,则() A.ω1<ω2,v1=v2B.ω1>ω2,v1=v2C.ω1=ω2,v1>v2D.ω1=ω2,v1<v29.(多选)变速自行车靠变换齿轮组合来改变行驶速度,如图是某一变速车齿轮转动结构示意图,图中A轮有48齿,B轮有42齿,C轮有18齿,D轮有12齿,则() A.该车可变换两种不同挡位B.该车可变换四种不同挡位C.当A轮与D轮组合时,两轮的角速度之比ωA∶ωD=1∶4D.当A轮与D轮组合时,两轮角速度之比ωA∶ωD=4∶110.在如图所示的传动装置中,B、C两轮固定在—起绕同—转轴转动。
高考物理生活中圆周运动常见题型及答题技巧及练习题(含答案)含解析

高考物理生活中的圆周运动常有题型及答题技巧及练习题( 含答案 ) 含分析一、高中物理精讲专题测试生活中的圆周运动1.有一水平搁置的圆盘,上边放一劲度系数为k 的弹簧,如下图,弹簧的一端固定于轴O 上,另一端系一质量为m 的物体 A,物体与盘面间的动摩擦因数为μ,开始时弹簧未发生形变,长度为l.设最大静摩擦力大小等于滑动摩擦力.求:(1)盘的转速ω多大时,物体 A 开始滑动?(2)当转速迟缓增大到 2 ω时, A 仍随圆盘做匀速圆周运动,弹簧的伸长量△x 是多少?【答案】( 1)g3mgl ( 2)4 mgl kl【分析】【剖析】(1)物体 A 随圆盘转动的过程中,若圆盘转速较小,由静摩擦力供给向心力;当圆盘转速较大时,弹力与摩擦力的协力供给向心力.物体 A 刚开始滑动时,弹簧的弹力为零,静摩擦力达到最大值,由静摩擦力供给向心力,依据牛顿第二定律求解角速度ω0 .(2)当角速度达到 2 ω0时,由弹力与摩擦力的协力供给向心力,由牛顿第二定律和胡克定律求解弹簧的伸长量△x.【详解】若圆盘转速较小,则静摩擦力供给向心力,当圆盘转速较大时,弹力与静摩擦力的协力供给向心力.(1)当圆盘转速为 n0时, A 马上开始滑动,此时它所受的最大静摩擦力供给向心力,则有:μmg= mlω02,解得:ω0=g .l即当ω0g时物体 A 开始滑动.=l(2)当圆盘转速达到 2 ω0时,物体遇到的最大静摩擦力已不足以供给向心力,需要弹簧的弹力来增补,即:μmg +k△x= mrω12,r=l+△x解得: Vx=3 mglkl 4 mg【点睛】当物体有关于接触物体刚要滑动时,静摩擦力达到最大,这是常常用到的临界条件.此题重点是剖析物体的受力状况.2.如下图,带有1 圆滑圆弧的小车A 的半径为R,静止在圆滑水平面上.滑块 C 置于4木板 B 的右端, A、 B、 C 的质量均为m, A、 B 底面厚度同样.现 B、 C 以同样的速度向右匀速运动, B 与 A 碰后即粘连在一同, C 恰巧能沿 A 的圆弧轨道滑到与圆心等高处.则: (已知重力加快度为g)(1)B、C 一同匀速运动的速度为多少?(2)滑块 C 返回到 A 的底端时AB 整体和 C 的速度为多少?【答案】(1)v023gR( 2)v12 3gR,v253gR 33【分析】此题考察动量守恒与机械能相联合的问题.(1)设 B、 C 的初速度为v , AB 相碰过程中动量守恒,设碰后AB 整体速度 u,由mv02mu ,解得 u v0 2C 滑到最高点的过程:mv02mu3mu1mv0212mu213mu 2mgR222解得v0 2 3gR(2)C从底端滑到顶端再从顶端滑究竟部的过程中,知足水平方向动量守恒、机械能守恒,有 mv02mu mv12mv21mv0212mu21mv1212mv222222解得:v123gR ,v253gR333.图示为一过山车的简略模型,它由水平轨道和在竖直平面内的圆滑圆形轨道构成,BC 分别是圆形轨道的最低点和最高点,其半径R=1m,一质量 m=1kg 的小物块(视为质点)从左側水平轨道上的 A 点以大小 v0= 12m/ s 的初速度出发,经过竖直平面的圆形轨道后,停在右边水平轨道上的 D 点.已知 A、B 两点间的距离 L1= 5. 75m,物块与水平轨道写的动摩擦因数0. 2,取 g= 10m/ s2,圆形轨道间不互相重叠,求:(1)物块经过 B 点时的速度大小 v B;(2)物块抵达 C 点时的速度大小 v C;(3) BD 两点之间的距离 L2,以及整个过程中因摩擦产生的总热量Q【答案】 (1) 11m / s (2) 9m / s(3) 72J【分析】【剖析】【详解】(1)物块从 A 到 B 运动过程中,依据动能定理得:mgL11mv B21mv0222解得: v B 11m / s(2)物块从 B 到 C 运动过程中,依据机械能守恒得:1mv B21mv C2mg·2R 22解得: v C 9m / s(3)物块从 B 到 D 运动过程中,依据动能定理得:mgL201mv B2 2解得: L2 30.25m对整个过程,由能量守恒定律有:Q1mv0202解得: Q=72J【点睛】选用研究过程,运用动能定理解题.动能定理的长处在于合用任何运动包含曲线运动.知道小滑块能经过圆形轨道的含义以及要使小滑块不可以离开轨道的含义.4.如下图,一个固定在竖直平面上的圆滑半圆形管道,管道里有一个直径略小于管道内径的小球,小球在管道内做圆周运动,从 B 点离开后做平抛运动,经过0.3s 后又恰巧与倾0R 1m ,小球可看作质点且其质量为角为45的斜面垂直相碰.已知半圆形管道的半径为m1kg ,g 10m / s2,求:(1)小球在斜面上的相碰点 C 与 B 点的水平距离;(2)小球经过管道上 B 点时对管道的压力大小和方向.【答案】( 1)0.9m;( 2)1N【分析】【剖析】(1)依据平抛运动时间求得在 C 点竖直分速度,而后由速度方向求得v,即可依据平抛运动水平方向为匀速运动求得水平距离;(2)对小球在 B 点应用牛顿第二定律求得支持力N B的大小和方向.【详解】(1)依据平抛运动的规律,小球在 C 点竖直方向的分速度v y=gt=10m/s水均分速度v x=v y tan450=10m/s则B 点与 C 点的水平距离为: x=v x t=10m(2)依据牛顿运动定律,在 B 点v2N B+mg=mR解得N B=50N依据牛顿第三定律得小球对轨道的作使劲大小N, =N B=50N方向竖直向上【点睛】该题考察竖直平面内的圆周运动与平抛运动,小球恰巧垂直与倾角为45°的斜面相遇到是解题的重点,要正确理解它的含义.要注意小球经过 B 点时,管道对小球的作使劲可能向上,也可能向下,也可能没有,要依据小球的速度来剖析.5.如下图,圆滑水平面 AB 与竖直面内的半圆形导轨在 B 点相接,导轨半径为 R.一个质量为 m 的物体将弹簧压缩至 A 点后由静止开释,在弹力作用下物体获取某一直右速度后离开弹簧,当它经过 B 点进入导轨瞬时对导轨的压力为其重力的7 倍,以后向上运动恰能达成半个圆周运动抵达 C 点.试求:(1)弹簧开始时的弹性势能.(2)物体从 B 点运动至 C 点战胜阻力做的功.(3)物体走开 C 点后落回水平面时的速度大小.【答案】 (1)3mgR (2)0.5mgR (3) 5 mgR2【分析】试题剖析:( 1)物块抵达 B 点瞬时,依据向心力公式有:解得:弹簧对物块的弹力做的功等于物块获取的动能,因此有(2)物块恰能抵达 C 点,重力供给向心力,依据向心力公式有:因此:物块从 B 运动到 C,依据动能定理有:解得:(3)从 C点落回水平面,机械能守恒,则:考点:此题考察向心力,动能定理,机械能守恒定律评论:此题学生会剖析物块在 B 点的向心力,能娴熟运用动能定理,机械能守恒定律解有关问题.6.如图为某种鱼饵自动投放器中的投饵管装置表示图,其下半部AB 是一长为2R 的竖直细管,上半部BC 是半径为R 的四分之一圆弧弯管,管口沿水平方向,AB 管内有一原长为R、下端固定的轻质弹簧.投饵时,每次总将弹簧长度压缩到0.5R后锁定,在弹簧上段放置一粒鱼饵,排除锁定,弹簧可将鱼饵弹射出去.设质量为m 的鱼饵抵达管口 C 时,对管壁的作使劲恰巧为零.不计鱼饵在运动过程中的机械能损失,且锁定和排除锁准时,均不改变弹簧的弹性势能.已知重力加快度为g.求:(1)质量为 m 的鱼饵抵达管口 C 时的速度大小v1;(2)弹簧压缩到0.5R 时的弹性势能E p;(3)已知地面欲睡面相距 1.5R,若使该投饵管绕AB 管的中轴线OO 。
圆周运动经典练习(有答案详解)

《圆周运动》练习题(一)1. A. 线速度不变2. A 和B A. 球A B. 球A C. 球A D. 球A3. 演,如图5A. B. C. D.4.A. B. C. D.5.如图1个质量为应为( )6.(M>m 连在一起。
A.mLgm M )(-μC.MLgm M )(+μ7. 如图3A. A 、B C. 若︒=30θ,则8. A. 木块A B. 木块A C. 木块A D. 木块A9. 如图5所示,质量为m 的小球在竖直平面内的光滑圆轨道上做圆周运动。
圆半径为R ,小球经过A. B.C. D.10. 一辆质量为4t 车对桥面压力的0.0511.和60°,则A 、B12.如图所示,a 、b B r OC =(1)B C ωω:13. 转动时求杆OA 和AB14. 司机开着汽车在一宽阔的马路上匀速行驶突然发现前方有一堵墙,他是刹车好还是转弯好?(设转弯时汽车做匀速圆周运动,最大静摩擦力与滑动摩擦力相等。
)(1(21.解析:2. 解析:图4B A 比较线速度时,选用rv m F 2=分析得r 大,v 一定大,A 答案正确。
比较角速度时,选用r m F 2ω=分析得r 大,ω一定小,B 答案正确。
比较周期时,选用r Tm F 2)2(π=分析得r 大,T 一定大,C 答案不正确。
小球A 和B 受到的支持力N F 都等于αsin mg,D 答案不正确。
点评:①“向心力始终指向圆心”可以帮助我们合理处理物体的受力;② 根据问题讨论需要,解题时要合理选择向心力公式。
3. 解析:甲、乙两人做圆周运动的角速度相同,向心力大小都是弹簧的弹力,则有乙乙甲甲r M r M 22ωω=即乙乙甲甲r M r M =且m r r 9.0=+乙甲,kg M 80=甲,kg M 40=乙解得m r 3.0=甲,m r 6.0=乙由于甲甲r M F 2ω=所以)/(62.03.0802.9s rad r M F =⨯==甲甲ω而r v ω=,r 不同,v 不同。
高中物理生活中的圆周运动常见题型及答题技巧及练习题(含答案)

高中物理生活中的圆周运动常见题型及答题技巧及练习题(含答案)一、高中物理精讲专题测试生活中的圆周运动1.如图,光滑轨道abcd 固定在竖直平面内,ab 水平,bcd 为半圆,在b 处与ab 相切.在直轨道ab 上放着质量分别为m A =2kg 、m B =1kg 的物块A 、B (均可视为质点),用轻质细绳将A 、B 连接在一起,且A 、B 间夹着一根被压缩的轻质弹簧(未被拴接),其弹性势能E p =12J .轨道左侧的光滑水平地面上停着一质量M =2kg 、长L =0.5m 的小车,小车上表面与ab 等高.现将细绳剪断,之后A 向左滑上小车,B 向右滑动且恰好能冲到圆弧轨道的最高点d 处.已知A 与小车之间的动摩擦因数µ满足0.1≤µ≤0.3,g 取10m /s 2,求(1)A 、B 离开弹簧瞬间的速率v A 、v B ;(2)圆弧轨道的半径R ;(3)A 在小车上滑动过程中产生的热量Q (计算结果可含有µ).【答案】(1)4m/s (2)0.32m(3) 当满足0.1≤μ<0.2时,Q 1=10μ ;当满足0.2≤μ≤0.3时,22111()22A A m v m M v -+ 【解析】【分析】 (1)弹簧恢复到自然长度时,根据动量守恒定律和能量守恒定律求解两物体的速度; (2)根据能量守恒定律和牛顿第二定律结合求解圆弧轨道的半径R ;(3)根据动量守恒定律和能量关系求解恰好能共速的临界摩擦力因数的值,然后讨论求解热量Q.【详解】(1)设弹簧恢复到自然长度时A 、B 的速度分别为v A 、v B , 由动量守恒定律:0=A A B B m v m v - 由能量关系:2211=22P A A B B E m v m v - 解得v A =2m/s ;v B =4m/s(2)设B 经过d 点时速度为v d ,在d 点:2d B B v m g m R= 由机械能守恒定律:22d 11=222B B B B m v m v m g R +⋅ 解得R=0.32m (3)设μ=μ1时A 恰好能滑到小车左端,其共同速度为v,由动量守恒定律:=()A A A m v m M v +由能量关系:()2211122A A A A m gL m v m M v μ=-+ 解得μ1=0.2讨论:(ⅰ)当满足0.1≤μ<0.2时,A 和小车不共速,A 将从小车左端滑落,产生的热量为110A Q m gL μμ== (J )(ⅱ)当满足0.2≤μ≤0.3时,A 和小车能共速,产生的热量为()22111122A A Q m v m M v =-+,解得Q 2=2J2.如图所示,ABCD 是一个地面和轨道均光滑的过山车轨道模型,现对静止在A 处的滑块施加一个水平向右的推力F ,使它从A 点开始做匀加速直线运动,当它水平滑行2.5 m 时到达B 点,此时撤去推力F 、滑块滑入半径为0.5 m 且内壁光滑的竖直固定圆轨道,并恰好通过最高点C ,当滑块滑过水平BD 部分后,又滑上静止在D 处,且与ABD 等高的长木板上,已知滑块与长木板的质量分别为0.2 kg 、0.1 kg ,滑块与长木板、长木板与水平地面间的动摩擦因数分别为0.3、,它们之间的最大静摩擦力均等于各自滑动摩擦力,取g =10 m/s 2,求:(1)水平推力F 的大小;(2)滑块到达D 点的速度大小;(3)木板至少为多长时,滑块才能不从木板上掉下来?在该情况下,木板在水平地面上最终滑行的总位移为多少?【答案】(1)1N (2)(3)t =1 s ; 【解析】【分析】【详解】(1)由于滑块恰好过C 点,则有:m 1g =m 1从A 到C 由动能定理得:Fx -m 1g ·2R =m 1v C 2-0代入数据联立解得:F =1 N(2)从A 到D 由动能定理得:Fx =m 1v D 2代入数据解得:v D =5 m/s(3)滑块滑到木板上时,对滑块:μ1m1g=m1a1,解得:a1=μ1g=3 m/s2对木板有:μ1m1g-μ2(m1+m2)g=m2a2,代入数据解得:a2=2 m/s2滑块恰好不从木板上滑下,此时滑块滑到木板的右端时恰好与木板速度相同,有:v共=v D-a1tv共=a2t,代入数据解得:t=1 s此时滑块的位移为:x1=v D t-a1t2,木板的位移为:x2=a2t2,L=x1-x2,代入数据解得:L=2.5 mv共=2 m/sx2=1 m达到共同速度后木板又滑行x′,则有:v共2=2μ2gx′,代入数据解得:x′=1.5 m木板在水平地面上最终滑行的总位移为:x木=x2+x′=2.5 m点睛:本题考查了动能定理和牛顿第二定律、运动学公式的综合运用,解决本题的关键理清滑块和木板在整个过程中的运动规律,选择合适的规律进行求解.3.如图所示,P为弹射器,PA、BC为光滑水平面分别与传送带AB水平相连,CD为光滑半圆轨道,其半径R=2m,传送带AB长为L=6m,并沿逆时针方向匀速转动.现有一质量m=1kg的物体(可视为质点)由弹射器P弹出后滑向传送带经BC紧贴圆弧面到达D点,已知弹射器的弹性势能全部转化为物体的动能,物体与传送带的动摩擦因数为 =0.2.取g=10m/s2,现要使物体刚好能经过D点,求:(1)物体到达D点速度大小;(2)则弹射器初始时具有的弹性势能至少为多少.【答案】(1)25m/s ;(2)62J【解析】【分析】【详解】(1)由题知,物体刚好能经过D 点,则有:2D v mg m R= 解得:25D v gR ==m/s(2)物体从弹射到D 点,由动能定理得:21202D W mgL mgR mv μ--=- p WE =解得:p E =62J4.如图所示,一滑板放置在光滑的水平地面上,右侧紧贴竖直墙壁,滑板由圆心为O 、半径为R 的四分之一光滑圆弧轨道和水平轨道两部分组成,且两轨道在B 点平滑连接,整个系统处于同一竖直平面内.现有一可视为质点的小物块从A 点正上方P 点处由静止释放,落到A 点的瞬间垂直于轨道方向的分速度立即变为零,之后沿圆弧轨道AB 继续下滑,最终小物块恰好滑至轨道末端C 点处.已知滑板的质量是小物块质量的3倍,小物块滑至B 点时对轨道的压力为其重力的3倍,OA 与竖直方向的夹角为θ=60°,小物块与水平轨道间的动摩擦因数为μ=0.3,重力加速度g 取102/m s ,不考虑空气阻力作用,求:(1)水平轨道BC 的长度L ;(2)P 点到A 点的距离h .【答案】(1)2.5R (2)23R 【解析】【分析】(1)物块从A 到B 的过程中滑板静止不动,先根据物块在B 点的受力情况求解B 点的速度;滑块向左滑动时,滑板向左也滑动,根据动量守恒和能量关系列式可求解水平部分的长度;(2)从P 到A 列出能量关系;在A 点沿轨道切向方向和垂直轨道方向分解速度;根据机械能守恒列出从A 到B 的方程;联立求解h .【详解】(1)在B 点时,由牛顿第二定律:2B B v N mg m R -=,其中N B =3mg ; 解得2B v gR =;从B 点向C 点滑动的过程中,系统的动量守恒,则(3)B mv m m v =+;由能量关系可知:2211(3)22B mgL mv m m v μ=-+ 联立解得:L=2.5R ;(2)从P 到A 点,由机械能守恒:mgh=12mv A 2; 在A 点:01sin 60A A v v =, 从A 点到B 点:202111(1cos60)22A B mv mgR mv +-= 联立解得h=23R5.如图所示,A 、B 两球质量均为m ,用一长为l 的轻绳相连,A 球中间有孔套在光滑的足够长的水平横杆上,两球处于静止状态.现给B 球水平向右的初速度v 0,经一段时间后B 球第一次到达最高点,此时小球位于水平横杆下方l /2处.(忽略轻绳形变)求:(1)B 球刚开始运动时,绳子对小球B 的拉力大小T ;(2)B 球第一次到达最高点时,A 球的速度大小v 1;(3)从开始到B 球第一次到达最高点的过程中,轻绳对B 球做的功W .【答案】(1)mg+m 20v l (2)2012v gl v -=3)204mgl mv - 【解析】【详解】(1)B 球刚开始运动时,A 球静止,所以B 球做圆周运动对B 球:T-mg =m 20v l得:T =mg +m 20v l (2)B 球第一次到达最高点时,A 、B 速度大小、方向均相同,均为v 1以A 、B 系统为研究对象,以水平横杆为零势能参考平面,从开始到B 球第一次到达最高点,根据机械能守恒定律,2220111112222l mv mgl mv mv mg -=+- 得:2012v gl v -= (3)从开始到B 球第一次到达最高点的过程,对B 球应用动能定理W -mg 221011222l mv mv =- 得:W =204mgl mv -6.如图所示,竖直平面内固定有一半径R =1m 的14光滑圆轨道AB 和一倾角为45°且高为H =5m 的斜面CD ,二者间通过一水平光滑平台BC 相连,B 点为圆轨道最低点与平台的切点.现将质量为m 的一小球从圆轨道A 点正上方h 处(h 大小可调)由静止释放,巳知重力加速度g =10m/s 2,且小球在点A 时对圆轨道的压力总比在最低点B 时对圆轨道的压力小3mg .(1)若h =0,求小球在B 点的速度大小;(2)若h =0.8m ,求小球落点到C 点的距离;(结果可用根式表示)(3)若在斜面中点竖直立一挡板,使得无论h 为多大,小球不是越不过挡板,就是落在水平地面上,则挡板的最小长度l 为多少?【答案】(1)25/m s (261m (3)1.25m【解析】【分析】【详解】(1)从释放小球至A 点根据速度与位移关系有22A v gh =在A 点,根据牛顿第二定律21A N v F m R= 在B 点,根据牛顿第二定律22B N v F mg m R-= 根据题意有213N N F F mg -=故B v =若0h =,则小球在B 点的速度1v ==;(2)小球从B 至C 做匀速直线运动,从C 点滑出后做平抛运动,若恰能落在D 点则 水平方向0x t v =竖直方向212y H gt ==又因为斜面倾角为45°,则 x y =解得05m/s v =对应的高度00.25m h =若0.80.25h m m =>,小球将落在水平地面上,而小球在B 点的速度26m/s v =小球做平抛运动竖直方向212H gt =得 1t s =则水平方向126m x v t ==故小球落地点距C 点的距离22161m s x H =+=;(3)若要求无论h 为多大,小球不是打到挡板上,就是落在水平地面上,临界情况是小球擦着挡板落在D 点,经前面分析可知,此时在B 点的临界速度:35m/s v =则从C 点至挡板最高点过程中水平方向3''x v t =竖直方向'2122H y l gt =-=' 又 2H x '=解得 1.25m l =. 点睛:本题研究平抛运动与圆周运动想结合的问题,注意分析题意,找出相应的运动过程,注意方程式与数学知识向结合即可求解.7.如图所示的水平地面上有a 、b 、O 三点.将一条轨道固定在竖直平面内,粗糙的ab 段水平,bcde 段光滑,cde 是以O 为圆心,R 为半径的一段圆弧,可视为质点的物块A 和B 紧靠在一起,中间夹有少量炸药,静止于b 处,A 的质量是B 的2倍.某时刻炸药爆炸,两物块突然分离,分别向左、右沿轨道运动.B 到最高点d 时速度沿水平方向,此时轨道对B 的支持力大小等于B 所受重力的3/4,A 与ab 段的动摩擦因数为μ,重力加速度g ,求:(1)物块B 在d 点的速度大小;(2)物块A 滑行的距离s ;(3)试确定物块B 脱离轨道时离地面的高度;(4)从脱离轨道后到落到水平地面所用的时间.【答案】(12Rg 2)516R μ(3)56R (415(8311)66R g 【解析】(1)设物块A 和B 的质量分别为m A 和m B 234d B B B v m g m g m R-= 解得2d Rg v = (2)设A 、B 分开时的速度分别为v 1、v 2,系统动量守恒 120A B m v m v -=B 由位置b 运动到d 的过程中, 机械能守恒2221122B B B d m v m gR m v =+ 2252v gR = A 在滑行过程中,由动能定理21102A A m v m gs μ-=- 联立得516R s μ= (3)设物块脱离轨道时速度为v ,F N =0向心力公式 2cos v mg m Rθ= 而 ()22111cos 22d mv mgR mv θ+-= 解得 5cos 6θ= , 56v gR = 脱离轨道时离地面的高度5cos 6h R R θ==(4)离轨道时后做向下斜抛运动竖直方向:21cos sin 2h R v t gt θθ==⋅+解得:15831166Rt g = 点睛:本题考查牛顿第二定律、动能定理以及动量守恒定律的应用,解题时关键是认真分析物理过程,挖掘问题的隐含条件,例如物体脱离轨道时F N =0;能选择合适的物理规律列出方程即可解答.8.如图所示,半径为r 的圆筒绕竖直中心轴转动,小橡皮块紧贴在圆筒内壁上,它与圆筒的摩擦因数为μ,现要使小橡皮不落下,则圆筒的角速度至少多大?(设最大静摩擦力等于滑动摩擦力)【答案】g r μ 【解析】 要使A 不下落,则小物块在竖直方向上受力平衡,有f =mg当摩擦力正好等于最大静摩擦力时,圆筒转动的角速度ω取最小值,筒壁对物体的支持力提供向心力,根据向心力公式,得2N m r ω=而f =μN解得圆筒转动的角速度最小值为g rωμ= 综上所述本题答案是:g rμ 点睛:解本题要明确物块刚好不下滑的条件是什么,然后结合受力求解角速度的大小.9.如图所示,A 、B 是水平传送带的两个端点,起初以的速度顺时针运转.今将一质量为1kg 的小物块(可视为质点)无初速度地轻放在A 处,同时传送带以的加速度加速运转,物体和传送带间的动摩擦因素为0.2,水平桌面右侧有一竖直放置的光滑轨道CPN ,其形状为半径R=0.8m 的圆环剪去了左上角1350的圆弧,PN 为其竖直直径,C 点与B 点的竖直距离为R ,物体在B 点水平离开传送带后由C 点恰好无碰撞落入轨道.取g=10m/s 2,求:(1)物块由A 端运动到B 端所经历的时间.(2)AC 间的水平距离(3)小物块在P 点对轨道的压力.【答案】(1)3s (2)8.6m (3)70-10N 【解析】试题分析:(1)物体离开传送带后由C 点无碰撞落入轨道,则得在C 点物体的速度方向与C 点相切,与竖直方向成45º,有,物体从B点到C作平抛运动,竖直方向:水平方向:得出物体刚放上传送带时,由牛顿第二定律得a=2m/s2物体历时t1后与传送带共速,则a t1=v0+ a0t1,t1=1s得v1="2" m/s<4 m/s故物体此时速度还没有达到v B,且此后的过程中由于<,物体将和传送带以共同的加速度运动,设又历时t2到达B点 v B= v1+ a0t2得t2=2s所以从A运动倒B的时间t= t1+t2=3sAB间的距离s==7m(2)从B到C的水平距离s BC=v B t3=2R=1.6m所以A到C的水平距离s AC=s+s BC=8.6m(3) 对CP段由动能定理对P点应牛顿第二定律:解得:N=70-10N考点:牛顿第二定律的综合应用;平抛运动【名师点睛】此题主要是牛顿第二定律的综合应用问题;解决此题的关键是抓住过程分析及各过程之间的联系,分过程依次解决,对于在传送到上的运动又要讨论各种情况,比较复杂;对于圆周运动问题逐一分析向心力来源.有一定难度.10.如图所示,内壁粗糙、半径R=0.4 m的四分之一圆弧轨道AB在最低点B与光滑水平轨道BC相切。
高中物理第六章圆周运动题型总结及解题方法(带答案)

高中物理第六章圆周运动题型总结及解题方法单选题1、下列现象或措施中,与离心运动有关的是()A.汽车行驶过程中,乘客要系好安全带B.厢式电梯张贴超载标识C.火车拐弯处设置限速标志D.喝酒莫开车,开车不喝酒答案:CA.汽车行驶过程中,乘客要系好安全带是为了防止车辆急停急转身体脱离座椅而发生伤害,A不符合题意;B.厢式电梯张贴超载标识是为了防止超载引起电梯不能正常运行而发生以外,B不符合题意;C.火车拐弯处设置限速标志,是防止火车转弯时速度过大出现离心现象而出现脱轨,C符合题意;D.酒后人的反应变慢,开车容易导致交通事故,D不符合题意;故选C。
2、某玩具可简化为如图所示的模型,竖直杆上同一点O系有两根长度均为l的轻绳,两轻绳下端各系一质量为m的小球,两小球间用长为l的轻绳相连,轻绳不可伸长。
当球绳系统绕竖直杆以不同的角速度匀速转动时,小球A、B关于杆对称,关于OA绳上的弹力F OA与AB绳上的弹力F AB大小与角速度平方的关系图像,正确的是()A.B.C.D.答案:B在AB绳绷直前AB绳上弹力为零,OA绳上拉力大小为F OA,设OA绳与竖直杆间的夹角为θ,有F OA sinθ=mω2lsinθ得F OA=mω2l当AB绳恰好绷直时,OA绳与竖直杆间的夹角为30°,有mgtan30∘=mω2lsin30∘得ω2=2√3g 3l当ω2>2√3g3l时,竖直方向有F OA cos30∘=mg 得F OA=2√33mg水平方向有F OA sin30∘+F AB=mω2lsin30∘解得F AB=12mω2l−√33mg综上可知:F OA先与角速度平方成正比,后保持不变;F AB开始为零,当角速度平方增大到一定值后与角速度平方成一次增函数关系。
故选B。
3、火车以某一速度v通过某弯道时,内、外轨道均不受侧压力作用,下面分析正确的是()A.轨道半径R=v 2gB.若火车速度大于v时,外轨将受到侧压力作用,其方向平行轨道平面向外C.若火车速度小于v时,外轨将受到侧压力作用,其方向平行轨道平面向内D.当火车质量变大时,安全速率应适当减小答案:BAD.火车以某一速度v通过某弯道时,内、外轨道均不受侧压力作用,其所受的重力和支持力的合力提供向心力由图可以得出(θ为轨道平面与水平面的夹角)F合=mgtanθ合力等于向心力,故mgtanθ=m v2 R解得R=v2 gtanθv=√gRtanθ安全速率与火车质量无关,故AD错误;B.当转弯的实际速度大于规定速度时,火车所受的重力和支持力的合力不足以提供所需的向心力,火车有离心趋势,故其外侧车轮轮缘会与铁轨相互挤压,外轨受到侧压力作用方向平行轨道平面向外,故B正确;C.当转弯的实际速度小于规定速度时,火车所受的重力和支持力的合力大于所需的向心力,火车有向心趋势,故其内侧车轮轮缘会与铁轨相互挤压,内轨受到侧压力作用方向平行轨道平面向内,故C错误。
高中物理高考物理生活中圆周运动解题技巧及经典题型及练习题(含)

高中物理高考物理生活中的圆周运动解题技巧及经典题型及练习题( 含答案 )一、高中物理精讲专题测试生活中的圆周运动1.如下图,半径R=2.5m 的竖直半圆圆滑轨道在 B 点与水平面光滑连结,一个质量m=0.50kg 的小滑块 (可视为质点 )静止在 A 点 .一刹时冲量使滑块以必定的初速度从 A 点开始运动 ,经 B 点进入圆轨道,沿圆轨道运动到最高点C,并从 C 点水平飞出 ,落在水平面上的 D 点 .经丈量 ,D、B 间的距离s1=10m,A、B 间的距离s2=15m,滑块与水平面的动摩擦因数重力加快度.求 :,(1)滑块经过 C 点时的速度大小 ;(2)滑块刚进入圆轨道时 ,在 B 点轨道对滑块的弹力 ;(3)滑块在 A 点遇到的刹时冲量的大小 .【答案】( 1)(2) 45N(3)【分析】【详解】(1)设滑块从 C 点飞出时的速度为v c,从 C 点运动到 D 点时间为t滑块从 C 点飞出后,做平抛运动,竖直方向:2R= gt2水平方向: s1=v c t解得: v c=10m/s(2)设滑块经过 B 点时的速度为v B,依据机械能守恒定律mv B2= mv c2+2mgR解得: v B=10m/s设在 B 点滑块受轨道的压力为解得: N=45NN,依据牛顿第二定律: N-mg=m(3)设滑块从 A 点开始运动时的速度为A2B2- mvA2v,依据动能定理; -μ mgs= mv解得: v A设滑块在 A 点遇到的冲量大小为I,依据动量定理I=mv A解得: I=8.1kg?m/s ;【点睛】此题综合考察动能定理、机械能守恒及牛顿第二定律,在解决此类问题时,要注意剖析物体运动的过程,选择正确的物理规律求解.2. 如下图,一轨道由半径 R 2m 的四分之一竖直圆弧轨道AB 和水平直轨道 BC 在 B 点光滑连结而成.现有一质量为m 1Kg 的小球从 A 点正上方 R处的 O 点由静止开释,小2球经过圆弧上的 B 点时,轨道对小球的支持力大小F N18N ,最后从 C 点水平飞离轨 道,落到水平川面上的 P . B 点与地面间的高度 h3.2m ,小球与 BC段轨道间的动 点 已知 摩擦因数 0.2 ,小球运动过程中可视为质点 . (不计空气阻力,g 取 10 m/s 2). 求:(1)小球运动至 B 点时的速度大小 v B(2)小球在圆弧轨道 AB 上运动过程中战胜摩擦力所做的功 W f(3)水平轨道 BC 的长度 L 多大时,小球落点P 与 B 点的水平距最大.【答案】( 1) v B =4?m / s ( 2) W f =22?J (3) L【分析】试题剖析: ( 1)小球在 B 点遇到的重力与支持力的协力供给向心力,由此即可求出 B 点的速度;( 2)依据动能定理即可求出小球在圆弧轨道上战胜摩擦力所做的功;( 3)联合平抛运动的公式,即可求出为使小球落点P 与 B 点的水平距离最大时BC 段的长度 .(1)小球在 B 点遇到的重力与支持力的协力供给向心力,则有: F Nmg m v B 2R解得: v B 4m / s(2)从 O 到 B 的过程中重力和阻力做功,由动能定理可得:mg RRW f 1 mv B 2 022解得: W f22J(3)由 B 到 C 的过程中,由动能定理得:mgL BC1mv C21mv B 222解得: L BCv B 2v C 22g从 C 点到落地的时间:t 02hgB 到 P 的水平距离:Lv B2v C22v C t0g代入数据,联立并整理可得:L 41v C24v C45由数学知识可知,当 v C 1.6m / s时, P 到 B 的水平距离最大,为:【点睛】该题联合机械能守恒考察平抛运动以及竖直平面内的圆周运动,解题的重点就是对每一个过程进行受力剖析,依据运动性质确立运动的方程,再依据几何关系求出最大值.3.如下图,物体 A 置于静止在圆滑水平面上的平板小车 B 的左端,物体在 A 的上方 O 点用细线悬挂一小球C(可视为质点 ),线长 L= 0.8m .现将小球 C 拉至水平无初速度开释,并在最低点与物体 A 发生水公正碰,碰撞后小球 C 反弹的速度为2m/s.已知 A、 B、 C的质量分别为 m A= 4kg、 m B= 8kg 和 m C=1kg, A、 B 间的动摩擦因数μ=, A、 C碰撞时间极短,且只碰一次,取重力加快度g= 10m/s 2.(1)求小球 C 与物体 A 碰撞前瞬时遇到细线的拉力大小;(2)求 A、 C 碰撞后瞬时 A 的速度大小;(3)若物体 A 未从小车 B 上掉落,小车 B 的最小长度为多少?【答案】 (1)30 N(2)1.5 m/s(3)0.375 m【分析】【详解】(1)小球下摆过程机械能守恒,由机械能守恒定律得:m0gl 1002 2m v代入数据解得: v0= 4m/s ,对小球,由牛顿第二定律得:v02 F﹣m0g=m0l代入数据解得: F=30N(2)小球 C 与 A 碰撞后向左摇动的过程中机械能守恒,得:1mv C2mgh 2因此: v C2gh 2 100.2 2m/s小球与 A 碰撞过程系统动量守恒,以小球的初速度方向为正方向,由动量守恒定律得:m0v0=﹣ m0v c+mv A代入数据解得: v A=(3)物块 A 与木板 B 互相作用过程,系统动量守恒,以A 的速度方向为正方向,由动量守恒定律得: mv A =( m+M )v代入数据解得: v =1 2 1 2由能量守恒定律得: μmgxmv A2(m+M ) v2代入数据解得: x =;4. 如下图,一质量 M =4kg 的小车静置于圆滑水平川面上,左边用固定在地面上的销钉挡住。
圆周运动经典题型分类练习题
圆周运动经典题型分类练习题1.关于匀速圆周运动,正确的说法是:B.由于速度大小不变,故它属于匀速运动。
在匀速圆周运动中,速度大小不变,但方向不断改变,因此是一种加速运动。
2.质点做匀速圆周运动时,正确的说法是:B.角速度越大,周期一定越小。
角速度是描述角度变化率的物理量,周期是指运动一周所需的时间,二者成正比关系。
3.关于匀速圆周运动的角速度与线速度,正确的说法是:C.线速度一定,角速度与半径成反比。
线速度是指质点在圆周上运动的速度,与半径成正比,而角速度是指质点在圆周上运动的角度变化率,与半径成反比。
4.关于圆周运动,正确的说法是:B.做匀速圆周运动的物体,其加速度可能不指向圆心。
加速度是速度变化率,而匀速圆周运动中速度大小不变,加速度只改变速度方向,不一定指向圆心。
5.关于匀速圆周运动,正确的说法是:A.匀速圆周运动就是匀速运动。
匀速圆周运动中,速度大小不变,因此也属于匀速运动。
6.关于向心力,正确的说法是:A.物体受到向心力的作用才可能做圆周运动。
向心力是指指向圆心的合力,是使物体做圆周运动的关键。
7.关于向心力,正确的说法是:A、物体受到向心力的作用才可能做匀速圆周运动。
向心力是指向圆心的力,是根据作用效果命名的。
8.正确的说法是:B.因为物体有向心力存在,所以才迫使物体不断改变运动速度方向而做圆周运动。
向心力是使物体做圆周运动的原因,而不是结果。
9.物体在水平面内做匀速圆周运动,半径为R,线速度为V,向心力为F。
如果增大垂直于线速度的力F的量值,那么物体的轨道会发生以下哪种变化?A。
向圆周内偏移 B。
向圆周外偏移 C。
线速度增大,保持原来的运动轨道 D。
线速度减小,保持原来的运动轨道。
10.下列关于向心加速度的说法中,正确的是()A。
向心加速度的方向始终与速度的方向垂直 B。
向心加速度的方向保持不变 C。
在匀速圆周运动中,向心加速度是恒定的 D。
在匀速圆周运动中,向心加速度的大小不断变化。
圆周运动大全(附答案)
圆周运动练习题1班别姓名学号一.单项选择题1.关于作匀速圆周运动的物体的向心加速度,下列说法正确的是:()A.向心加速度的大小和方向都不变B.向心加速度的大小和方向都不断变化C.向心加速度的大小不变,方向不断变化D.向心加速度的大小不断变化,方向不变2.对于做匀速圆周运动的质点,下列说法正确的是:()A.根据公式a=v2/r,可知其向心加速度a与半径r成反比B.根据公式a=ω2r,可知其向心加速度a与半径r成正比C.根据公式ω=v/r,可知其角速度ω与半径r成反比D.根据公式ω=2πn,可知其角速度ω与转数n成正比3.机械手表的时针、分针、秒针的角速度之比为()A.1:60:360B.1:12:360C.1:12:720D.1:60:72004.甲、乙两个物体分别放在广州和北京,它们随地球一起转动时,下面说法正确的是()A.甲的线速度大,乙的角速度小B.甲的线速度大,乙的角速度大C.甲和乙的线速度相等D.甲和乙的角速度相等5.一个做匀速圆周运动的物体,如果半径不变,而速率增加到原来速率的三倍,其向心力增加了64牛顿,那么物体原来受到的向心力的大小是()A.16NB.12NC.8ND.6N6.同一辆汽车以同样大小的速度先后开上平直的桥和凸形桥,在桥的中央处有()A.车对两种桥面的压力一样大B.车对平直桥面的压力大C.车对凸形桥面的压力大D.无法判断7.火车在水平轨道上转弯时,若转弯处内外轨道一样高,则火车转弯时:()A.对外轨产生向外的挤压作用B.对内轨产生向外的挤压作用C.对外轨产生向内的挤压作用D.对内轨产生向内的挤压作用8.如图所示,用细绳系着一个小球,使小球在水平面内做匀速圆周运动,不计空气阻力,关于小球受力说法正确的是()A.只受重力B.只受拉力C.受重力、拉力和向心力D.受重力和拉力.钟表上时针、分针都在做圆周运动 A .分针角速度是时针的12倍 B .时针转速是分针的1/60 C .若分针长度是时针的1.5倍,则端点线速度是时针的1.5倍 D .分针角速度是时针的60倍10.如图,一物块以1m/s 的初速度沿曲面由A 处下滑,到达较低的B 点时速度恰好也是1m/s ,如果此物块以2m/s 的初速度仍由A 处下滑,则它达到B 点时的速度A .等于2m/sB .小于2m/sC .大于2m/sD .以上三种情况都有可能11.如图所示,一水平平台可绕竖直轴转动,平台上有a 、b 、c 三个物体,其质量之比m a ︰m b ︰m c =2︰1︰1,它们到转轴的距离之比r a ︰r b ︰r c =1︰1︰2,三物块与平台间的动摩擦因数相同,且最大静摩擦力均与其压力成正比,当平台转动的角速度逐渐增大时,物块将会产生滑动,以下判断正确的是 A .a 先滑B .b 先滑C .c 先滑D .a 、c 同时滑12.一个小球在竖直环内至少做N 次圆周运动,当它第(N -2)次经过环的最低点时,速度是7m/s ;第(N -1)次经过环的最低点时,速度是5m/s ,则小球在第N 次经过环的最低点时的速度一定满足 ( ) A .v >1m/s B .v =1m/s C .v <1m/s D .v =3m/s13.甲、乙两球分别以半径R 1、R 2做匀速圆周运动,M 甲=2M 乙,圆半径R 甲=R 乙/3,甲球每分钟转30周,乙球每分钟转20周,则甲、乙两球所需向心力大小之比为 A .2:3 B .3:2 C .3:1 D .3:414.在质量为M 的电动机的飞轮上,固定着一个质量为m 的重物,重物到转轴的距离为r ,如图所示,为了使放在地面上的电动机不会跳起,电动机飞轮的角速度不能超过A .g mr m M +B .g mr m M +C .g mr m M -D .mrMg二.多项选择题15.一质点做圆周运动,速度处处不为零,则 ( ) A.任何时刻质点所受的合力一定不为零 C.质点速度的大小一定不断地变化 B.任何时刻质点的加速度一定不为零D.质点速度地方向一定不断地变化ωm16.如图,小物体m 与圆盘保持相对静止,随盘一起做匀速圆周运动,则物体的受力情况是:( )A .受重力、支持力、静摩擦力和向心力的作用B .摩擦力的方向始终指向圆心OC .重力和支持力是一对平衡力D .摩擦力是使物体做匀速圆周运动的向心力17.图中所示为一皮带传动装置,右轮的半径为r ,a 是它边缘 上的一点。
(完整版)圆周运动题型总结
一.角速度 线速度 周期之间的关系1.做匀速圆周运动的物体,10s 内沿半径是20m 的圆周运动了100m ,试求物体做匀速圆周运动时:(1)线速度的大小; (2)角速度的大小; (3)周期的大小.【答案】(1);(2);(3)10/m s 0.5/rad s 12.56s2.如图所示,两个小球固定在一根长为l 的杆的两端,绕杆上的O 点做圆周运动,当小球A 的速度为v A 时,小球B 的速度为v B .则轴心O 到小球B 的距离是( )A .B A B v l v v + B .A A Bv l v v + C . D .A B A v v L v +A BB v v Lv +【答案】A 3.转笔(Pen Spinning )是一项用不同的方法与技巧、以手指来转动笔的休闲活动,如图所示.转笔深受广大中学生的喜爱,其中也包含了许多的物理知识,假设某转笔高手能让笔绕其上的某一点O 做匀速圆周运动,下列有关该同学转笔中涉及到的物理知识的叙述正确的是( )A .笔杆上的点离O 点越近的,角速度越大B .笔杆上的点离O 点越近的,做圆周运动的向心加速度越大C .笔杆上的各点做圆周运动的向心力是由万有引力提供的D .若该同学使用中性笔,笔尖上的小钢珠有可能因快速的转动做离心运动被甩走【答案】D 二.传动装置4.如图所示,A 、B 是两个靠摩擦传动且接触面没有相对滑动的靠背轮,A 是主动轮,B 是从动轮,它们的半径RA =2R B , a 和b 两点在轮的边缘,c 和d 分别是A 、B 两轮半径的中点,下列判断正确的有 A .v a = 2 v b B .ωb = 2ωaC .v c = v aD .a c =a d【答案】B5.某变速箱中有甲、乙、丙三个齿轮,如图所示,其半径分别为r 1、r 2、r 3,若甲轮的角速度为ω,则丙轮边缘上某点的向心加速度为A .B.C.D.3221r r ω12223r r ω22223r r ω3221r r r ω【答案】A6.如图所示的皮带传动装置中,轮A 和B 同轴,A 、B 、C 分别是三个轮边缘的质点,且RA=RC=2RB ,若传动过程中皮带不打滑,则下列说法正确的是( )A .A 点与C 点的线速度大小相同B .B 点与C 点的角速度相同C .A 点的向心加速度大小是B 点的2倍D .B 点的运行周期大于C 点的运行周期【答案】C7.一部机器由电动机带动,机器皮带轮的半径是电动机皮带轮半径的3倍(如图),皮带与两轮之间不发生滑动。
圆周运动考试真题和答案
圆周运动考试真题和答案一、单项选择题(每题2分,共20分)1. 一个物体做匀速圆周运动时,下列哪个物理量保持不变?A. 线速度B. 角速度C. 向心加速度D. 向心力答案:B2. 一个物体在水平面上做匀速圆周运动,下列哪个力是向心力?A. 重力B. 支持力C. 摩擦力D. 拉力答案:D3. 一个物体做匀速圆周运动时,下列哪个物理量是矢量?A. 线速度B. 角速度C. 向心加速度D. 线加速度答案:A4. 一个物体做匀速圆周运动时,下列哪个物理量与半径无关?A. 线速度B. 角速度C. 向心加速度D. 向心力答案:B5. 一个物体做匀速圆周运动时,下列哪个物理量与角速度无关?A. 线速度B. 向心加速度C. 向心力D. 线加速度答案:D6. 一个物体做匀速圆周运动时,下列哪个物理量与线速度无关?A. 角速度B. 向心加速度C. 向心力D. 线加速度答案:A7. 一个物体做匀速圆周运动时,下列哪个物理量与向心加速度无关?B. 角速度C. 向心力D. 线加速度答案:A8. 一个物体做匀速圆周运动时,下列哪个物理量与向心力无关?A. 线速度B. 角速度C. 向心加速度D. 线加速度答案:A9. 一个物体做匀速圆周运动时,下列哪个物理量与线加速度无关?A. 线速度C. 向心加速度D. 向心力答案:D10. 一个物体做匀速圆周运动时,下列哪个物理量与向心力无关?A. 线速度B. 角速度C. 向心加速度D. 线加速度答案:A二、多项选择题(每题3分,共15分)11. 一个物体做匀速圆周运动时,下列哪些物理量是标量?B. 角速度C. 向心加速度D. 向心力答案:AB12. 一个物体做匀速圆周运动时,下列哪些力是向心力?A. 重力B. 支持力C. 摩擦力D. 拉力答案:D13. 一个物体做匀速圆周运动时,下列哪些物理量与半径有关?A. 线速度B. 角速度C. 向心加速度D. 向心力答案:ACD14. 一个物体做匀速圆周运动时,下列哪些物理量与角速度有关?A. 线速度B. 向心加速度C. 向心力D. 线加速度答案:ABC15. 一个物体做匀速圆周运动时,下列哪些物理量与线速度有关?A. 角速度B. 向心加速度C. 向心力D. 线加速度答案:ABC三、填空题(每题2分,共20分)16. 一个物体做匀速圆周运动时,线速度的大小为v,半径为r,角速度为________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
木块受到圆盘对它的摩擦力,方向与运动方向相反 木块受到圆盘对它的摩擦力,方向指向圆盘中心 C. D.当角速度超过.;时,物体开始相对圆盘滑动5.如图所示,物体 A 、B 随水平圆盘绕轴匀速转动,物 体B 在水A.周期 B .线速度的大小 C .向心力 D .绳高18级第二期期末复习(二)重点知识:圆周运动 1 .如图所示,两个皮带轮通过皮带传动(皮带与轮不 发生相对滑动)•大轮半径是小轮半径的 2倍,设A 、 分别是大小轮轮缘上的一点,现比较它们的线速度 角速度3、周期T 和频率f 之间的关系,正确的是( ① V A : V B =1 : 2 ② 3 A :3 B = 1 : 2 2. V 、 ) I9A. 圆盘对B 及A 对B 的摩擦力,两力都指向圆心B. 圆盘对B 的摩擦力指向圆心,A 对B 的摩擦力背离圆心C. 圆盘对B 及A 对B 的摩擦力和向心力D. 圆盘对B 的摩擦力和向心力5.两完全相同的物块 A 和B ,放在粗糙程度均匀的水平 转台上,A离轴的距离是 B 离轴距离的一半,如图所示, 当转台旋转时,A 、B 都无滑动,则下列说法正确的是()2 •如图所示为两级皮带传动装置,转动时皮带均不打 滑,中间两个轮子是固定在一起的,轮 1的半径和轮 的半径相同,轮 3的半径和轮4的半径相同,且为轮 和轮2半径的一半,则轮 1边缘的a 点和轮4边缘的 A. B. C. D. 3. 线速度之比为1: 角速度之比为4: 向心加速度之比为 向心加速度之比为 4 1 & 1: 如图所示,一个圆盘可绕通过圆盘中心0且垂直于 盘面的竖直轴转动。
在圆盘上放置一个小物块 A , A 距 离中心0点的距离为r ,动摩擦因数为 ,最大静摩擦 力等于滑动摩擦力。
若它随圆盘一起做匀速圆周运动, 则( ) a. 因为a —,而r B r A ,所以A 的向心加速度比B 大rb. 因为a2r ,而r B r A ,所以B 的向心加速度比A 大c. 因为质量相等,所以它们受到的台面摩擦力大小相等D.若继续增加转速,则 B 最容易被甩出去6 .如图所示,一个内壁光滑的圆锥形筒的轴线垂直于水平面,圆锥筒固定不动,两个质量相同的小球 A 和B紧贴着内壁分别在图中所示的水平面内做匀速圆周运 动,则下列说法正确的是()A. 球A 的线速度一定大于球 B 的线速度B. 球A 的角速度一定小于球 B 的角速度C. 球A 的运动周期一定小于球 B 的运动周期D. 球A 对筒壁的压力一定大于球 B 对筒壁的压力 7 .长度不同的两根细绳悬于同一点,另一端各系一个 质量相同的小球,使它们在同一水平面内作圆锥摆运动, 如图所示,则两个圆锥摆相同的物理量是()A. B. 当角速度超过,物体开始相对圆盘滑动8 •如图所示,两根长度相同的细绳,连接着相同的两个小球,让它们在光滑水平面内做匀速圆周运动,其中O为圆心,两段绳子在同一直线上,此时,两段绳子受到的拉力之比T i:T2为()12.如图,长均为L的两根轻绳,一端共同系住质量为m的小球,另一端分别固定在等高的A B两点,A B两点间的距离也为L。
重力加速度大小为g。
今使小球在竖直平面内以AB为轴做圆周运9 •用长为R的细绳拴着质量为m的小球,在竖直平面内做圆周运动,则下列说法正确的是()/ R \:i }\ 0 /j丿A.小球过最高点时,绳子张力可以为零B.小球过最高点时的最小速度是0C.小球刚好过最高点时的速度是gRD.小球过最高点时,绳子对小球的作用力可以与球所受重力方向相反10•如图,小球m在竖直放置的光滑圆形管道内做圆周运动,下列说法中正确的有()A.小球通过最高点的最小速度为v RgB.小球通过最低点的速度为v Rg时,内侧管壁和外侧管壁对小球都没有作用力C.小球在水平线ab以下管道中运动时,外侧管壁对小球一定有作用力D.小球在水平线ab以上管道中运动时,内侧管壁对小球一定有作用力11 •长为L的轻杆一端固定一个小球,另一端固定在光滑水平轴上,使小球在竖直平面内做圆周运动,关于小球在过最高点的速度v,下列叙述中正确的是()A.v的极小值为.gLB.v由零逐渐增大,向心力也逐渐增大C.当v由gL值逐渐增大时,杆对小球的弹力也逐渐增大D.当v由gL值逐渐减小时,杆对小球的弹力也逐渐减小• 3:动,若小球在最高点速率为v时,两根绳的拉力恰好均为零,则小球运动到最低点速率及每根绳的拉力大小为A. 2v B . 、5vC. 3mg D . 2 . 3mg13.在一次汽车拉力赛中,汽车要经过某半径为R的圆弧形水平轨道,地面对汽车的最大静摩擦力为车重的0. 25倍,重力加速度为g,汽车要想通过该弯道时不发生侧滑,那么汽车的行驶速度不应大于g gR , g R.gRA. 4R B . 4 C . 2 D 214.公路急转弯处通常是交通事故多发地带.如图,某公路急转弯处是一圆弧,当汽车行驶的速率为v c 时,汽车恰好没有向公路内外两侧滑动的趋势.则在该弯道处A.路面外侧低内侧高B.当路面结冰时,与未结冰时相比,v c的值变小C.车速只要低于v c,车辆便会向内侧滑动D.车速虽然高于v c,但只要不超出某一最高限度,车辆便不会向外侧滑动15.铁路在弯道处的内外轨道高度是不同的,已知内外轨道平面对水平面倾角为B,如图所示,弯道处的圆弧半径为R,若质量为m的火车转弯时gRtan速度小于A.内轨对内侧车轮轮缘有挤压B .外轨对外侧车轮轮缘有挤压mgC.这时铁轨对火车的支持力等于cosmg参考答案1. C【解析】 试题分析:A 、B 两点靠传送带传动,线速度相等,所以有:V A : V B =1 : 1,根据 v= 3 r 知,3 A :3 B =1 : 2.3 =2开亡.知 T A : T B =2: 1 , f A : f B =1: 2 ;故②④正确.故选:C.2. D【解析】试题分析:A 由题意知2V a =2V 3=V 2=V c ,其中V 2、V 3为轮2和轮3边缘的线速度,则V a : V c =1 : 2,故A 错误.2 心)2 g V.0 J V 111C 、D 、设轮4的半径为r ,则a a = = 」= 」a c ,即卩a a : a c =1 : 8,故C 错误,D 正r2T8T 3确.NB 、——==二,故B 错误.故选:D.3. D【解析】试题分析:b 、c 共轴转动,角速度相等,a 、b 两点靠传送带传动,线速度大小相等 根据a n =r 32,B 、C 的向心加速度之比为:a b : a c =2: 12根据a n = ■ ,a 、b 的向心加速度之比为:ra a : ab =2: 1确定向心加速度之比为 4: 2: 1 故选:D 【答案】BC 【解析】试题分析:物体做匀速圆周运动,合力提供向心力,指向圆心,物体受重力、支持力、静摩 擦力,其中重力和支持力二力平衡,静摩擦力提供向心力,故 A 错误,B 正确;根据题意可始相对圆盘滑动,故选项 C 正确,选项D 错误。
考点:向心力、牛顿第二定律以知道:最大静摩擦力等于滑动摩擦力,则2mg m r ,则整理:时,物体开【名师点睛】向心力,是使质点(或物体)作曲线运动时所需的指向曲率中心(圆周运动时 即为圆心)的力•物体做圆周运动时,沿半径指向圆心方向的外力(或外力沿半径指向圆心 方向的分力)称为向心力,又称法向力.是由合外力提供或充当的向心力,物体绕圆盘中心 做匀速圆周运动,合力提供向心力,物体所受的向心力由静摩擦力提供。
5. B【解析】 试题分析:A 和B 一起随圆盘做匀速圆周运动, A 做圆周运动的向心力由 B 对A 的静摩擦力提供,所以B 对A 的摩擦力方向指向圆心,贝U A 对B 的摩擦力背离圆心;B 做圆周运动的向心力由 A 对 B 的摩擦力和圆盘对 B 的摩擦力提供,B 所受的向心力指向圆心,A 对B 的摩擦力背离圆心, 则圆盘对B 的摩擦力指向圆心.故 B 正确,A 、C D 错误. 故选B.6. BD【解析】 试题分析:、A B 都无滑动,所以A 、B 的角速度相等,根据 a 2r , r B r A ,所以B 的向心加速度比 A 大,A 错误;B 正确;向心力F m2r ,知B 的向心力比A 大,静摩擦力 提供向心力,所以B 所受的静摩擦力较大,C 错误;增加转速,需要的向心力增大,静摩擦 力增大,B 先达到最大静摩擦力, B最容易被甩出去,D 正确;故选 BD 考点:向心力;摩擦力。
【名师点睛】先对两个物体进行运动分析与受力分析, 找出向心力来源,根据向心力公式求出摩擦力,再求出物体受最大静摩擦力时的临界角速度。
7. AB【解析】试题分析:A 、D 两球所受的重力大小相等, 支持力方向相同,合力的方向都沿水平方向. 根Ul(F Q :T据力的合成,知两支持力大小、合力大小相等.根据F 合=口「,得v= ',合力、质量rV m相等,r 大线速度大,所以球 A 的线速度大于球 B 的线速度.故 A 正确,D 错误.I I 2B 、 根据F 合=mrw ,得3 B 正确.C 、 根据T 二1,由前面分析球 A 的角速度小于球 B 的角速度角,则A 的周期大于B 的周期.故 C 错误.故选:AB8. A【解析】试题分析:对其中一个小球受力分析,如图,受重力,绳子的拉力,由于小球做匀速圆周运 动,故合力提供向心力;'_, r 大则角速度小.所以球A 的角速度小于球B 的角速度.故T将重力与拉力合成,合力指向圆心,由几何关系得,合力:F=mgta nB①;由向心力公式得到,F=mo 2r②;设绳子与悬挂点间的高度差为h,由几何关系,得:r=htan 0③;由①②③三式得,3 = -•,与绳子的长度和转动半径无关;又由,故周期与绳子的长度和转动半径无关,故A正确;由v=wr,两球转动半径不等,故线速度不同,故B错误;绳子拉力:T= 一「,故绳子拉力不同,故C错误;COS 0由F=ma=3 2r,两球转动半径不等,故向心力不同,故D错误;故选A.9. C【解析】试题分析:两个球都做匀速圆周运动,合力等于向心力T] _ T 2 二!nr 3 2T2=ni <2r) (0 2解得:「竺丁盘T 2 2故选:C.10.AC【解析】试题分析:小球刚好能在竖直面内做圆周运动,则在最高点,恰好由重力提供向心力时,有:2 ______________mg m—, v=gR,此时绳子张力为零,故B错误,AC正确.小球在圆周最高点时,R绳子只能提供向下的拉力,所以不可能与重力的方向相反,故D错误.故选AC.考点:竖直面内的圆周运动【名师点睛】该题考查竖直平面内的圆周运动,对于圆周运动动力学问题,重在分析向心力的来源,利用牛顿第二定律列方程分析。