超声无损检测成像技术

合集下载

超声波无损检测技术的发展与应用

超声波无损检测技术的发展与应用

超声波无损检测技术的发展与应用目录一、内容概览 (1)1. 无损检测的重要性 (1)2. 超声波无损检测技术的定义及作用 (2)3. 本文目的与结构 (3)二、超声波无损检测技术概述 (4)1. 超声波无损检测技术的原理与特点 (5)2. 超声波无损检测技术的发展历程及现状 (6)3. 超声波无损检测技术的应用范围 (7)三、超声波无损检测技术的发展历程 (8)1. 初始阶段 (9)2. 发展阶段 (10)3. 现阶段 (11)四、超声波无损检测技术的分类与特点 (12)1. 脉冲反射法超声波检测技术及其特点 (13)2. 穿透法超声波检测技术及其特点等 (15)3. 各种技术的比较与分析等 (16)一、内容概览超声波无损检测技术概述:简要介绍超声波无损检测技术的定义、原理及特点,为后文的内容做铺垫。

技术发展历程:回顾超声波无损检测技术的发展过程,包括早期探索、技术成熟及广泛应用等阶段。

应用领域:详细介绍超声波无损检测技术在各个领域的具体应用案例,如石油化工、航空航天、建筑结构等。

技术优势与局限性:分析超声波无损检测技术的优势,如非破坏性检测、高灵敏度、实时监测等;同时探讨其局限性,如对某些材料或结构的检测能力有限等。

未来发展趋势:展望超声波无损检测技术在未来可能的发展方向,如智能化、集成化、环保型等。

1. 无损检测的重要性随着科学技术的不断发展,无损检测技术在各个领域的应用越来越广泛。

在众多无损检测技术中,超声波无损检测技术因其具有较高的灵敏度、穿透力和效率等优点而备受关注。

本文将重点介绍超声波无损检测技术的发展与应用,首先我们来探讨无损检测的重要性。

提高产品质量:通过无损检测技术,可以在不破坏产品的情况下,对其内部结构、性能和材质进行检测,从而确保产品质量符合要求。

这不仅提高了产品的可信度,还降低了因质量问题造成的经济损失。

保障安全生产:无损检测技术可以发现潜在的安全隐患,避免生产过程中发生事故。

超声层析成像理论与实现

超声层析成像理论与实现

面临的挑战与机遇
硬件限制
目前超声层析成像的硬件设备仍较大,便携性和可移动性有待提高。
图像质量
提高超声层析成像的图像质量是当前面临的重要挑战,尤其是在低 对比度和复杂背景下。
标准化和普及
推动超声层析成像技术的标准化和普及,使其成为临床诊断和研究的 常用工具。
对未来研究的建议与展望
加强跨学科合作
鼓励医学影像、工程学、物理学和计算机科学等领域的跨学科合作, 共同推动超声层析成像技术的发展。
创新算法和模型
深入研究新的算法和模型,以提高超声层析成像的图像质量和重建 速度。
临床应用研究
加强超声层析成像技术在临床应用方面的研究,验证其在各种疾病 诊断中的有效性。
THANKS
感谢观看
01
02
03
信号去噪
去除超声信号中的噪声干 扰,提高信号质量。
信号增强
通过特定算法对超声信号 进行增强处理,提高信号 的信噪比。
信号解调与提取
从接收到的超声信号中提 取有用的信息,如回声强 度、传播时间等。
图像重建算法
反演算法
利用接收到的超声信号反 演出物体的内部结构信息。
插值算法
对反演出的结构信息进行 插值处理,生成更精确的 图像。
05
超声层析成像的应用实例
在医学诊断中的应用
1
超声层析成像技术可用于医学诊断,通过无创、 无痛的方式获取人体内部结构信息,为医生提供 准确的诊断依据。
2
超声层析成像能够清晰地显示人体内脏器官、血 管、骨骼等结构,有助于发现病变、肿瘤等异常 情况,提高诊断准确率。
3
超声层析成像技术还可用于实时监测治疗效果, 如药物作用、手术效果等,为医生制定治疗方案 提供有力支持。

超声无损检测成像技术

超声无损检测成像技术

超声无损检测成像技术作者:李小娟,王黎,高晓蓉,王泽勇来源:《现代电子技术》2010年第21期摘要:超声无损检测成像技术在现代工业的很多领域中都有很重要的用途,具有非常广阔的发展前景。

对扫描超声成像、超声波显像、超声全息、ALOK法成像、相控阵法、超声显微镜、SAFT成像、TOFD成像、超声CT成像的发展、原理、特点和应用做了分析,可以更好地指导实际应用,并指出了超声无损检测成像技术的发展方向。

关键词:超声; 无损检测; 成像技术; SAFT成像中图分类号:TN919-34文献标识码:A文章编号:1004-373X(2010)21-0120-03Imaging Technology of Ultrasonic Non-destructive DetectionLI Xiao-juan, WANG Li, GAO Xiao-rong, WANG Ze-yong(Photoelectric Engineering Institute, Southwest Jiaotong University, Chengdu 610031, China)Abstract: The ultrasonic detection imaging technology plays a very important role in many fields of modern industry and has a bright prospect of development. The development, principles, characteristics and applications of scan ultrasonic imaging, ultrasonic image display, ALOK imaging, phased array method, ultrasonic microscope, SAFT imaging, TOFD imaging and ultrasonic CT imaging are analyzed. This article can better guide the practical application of ultrasonic detection imaging technology. The development trend of it is pointed out.Keywords: ultrasonic detection; non-destructive detection; imaging technology; SAFT imaging0 引言Sokolov于20世纪30年代提出了超声波检测的早期研究,在40年代出现的脉冲回波探伤仪器成为超声波检测技术的重要标识。

超声波测量技术在无损检测中的应用

超声波测量技术在无损检测中的应用

超声波测量技术在无损检测中的应用一、前言无损检测技术是指在不破坏被测物的前提下利用材料的表面反射、透射、穿透、散射和吸收等物理量,进行分析、判断、处理和诊断的一种检测技术。

超声波测量技术是无损检测中常用的一种技术手段,这篇文章将会介绍超声波测量技术在无损检测中的应用。

二、超声波测量技术概述超声波是指频率大于20kHz的机械波,通常使用声波发射器将声波向被测物发射,被测物会将其传递的超声波反射回来,接收器将反射回来的超声波接收并转化为电信号。

通过对电信号进行分析和处理,可以得到被测物的结构和损伤信息,例如材料的缺陷位置、大小、形状、材料硬度等。

三、超声波测量技术在无损检测中的应用1.材料缺陷检测超声波测量技术可以检测材料的缺陷。

通过测量材料内部的超声波传播时间、强度等参数,可以判断材料是否存在缺陷,例如裂纹、孔洞、错位等。

此外,通过超声波测量技术还可以判断缺陷的形状、大小、数量等信息,从而更加精确地判断缺陷的严重程度和影响范围。

2.材料性能评估超声波测量技术可以评估材料的硬度。

通过测量材料的超声波传播速度以及反射波强度大小等参数,可以评估材料的硬度和强度等性能。

此外,超声波测量技术还可以判断材料的韧性、脆性等性质,为材料的使用提供参数参考。

3.材料质量控制在制造过程中,超声波测量技术可以用于检测产品的制造质量。

例如在汽车制造中,超声波测量技术可以检测发动机零件的质量,确保零件的完整性和结构稳定性;在航空制造中,超声波测量技术可以检测飞机结构的质量,确保飞机的飞行安全。

4.材料故障诊断在使用过程中,超声波测量技术可以用于诊断材料的故障。

例如在航空维修中,超声波测量技术可以检测飞机结构的故障,例如腐蚀、疲劳、弯曲等。

通过超声波测量技术可以判断故障的性质和严重程度,从而更加准确地判断是否需要更换或修复。

四、超声波测量技术的优势超声波测量技术有以下优势:1.非侵入性超声波测量技术不需要对被测物进行破坏性测试,可以不需要切割或取样。

超声脉冲回波成像的基本原理

超声脉冲回波成像的基本原理

超声脉冲回波成像的基本原理
1 超声脉冲回波成像
超声脉冲回波成像(Ultrasound Pulse Echo Imaging)是一种基于声学的无损检测技术,它可以根据发射的探头发出的超声脉冲的反射,用声波回波的形式来测量一个物体的表面和内部结构,有效地解决一些不能使用其他形式检测技术无法检测的问题。

这种成像技术的重要性逐渐受到重视,现在广泛应用于医疗实践和电子制造行业。

超声脉冲回波成像的基本原理是利用高频超声脉冲在物体表面或内部传播,并根据声波回波的来源、强度和速度等特点,来获取物体内部结构和表面信息。

具体来说,在每一次超声脉冲检测中,探头会以特定的频率发出超声脉冲,然后接收这些脉冲通过物体表面或内部时的反射回波,并将这些信息处理成可读的图像数据,同时还能够获取物体的定位信息。

这样,超声脉冲回波成像就可以用来准确测量物体的表面和内部结构,并且还可以在很大程度上减少对检测的影响,从而为后续的检测提供更多的有效数据。

此外,超声脉冲回波成像还有个特别优点:它可以检测出普通可视光光学检测技术不能检测到的内部结构或形状。

例如,它能够检测出三维物体内部的深部位移,这对工业精密检测很有帮助。

另外,它还可以进行探伤检测,比如在飞机维修和形状研究中,它可以检测机翼的内部结构,有助于预防可能会发生的损坏。

总之,超声脉冲回波成像技术拥有非常强大的检测能力,可以帮
助我们更好地了解物体的内部结构,准确探测出形状和表面上的变化,从而实现对物体的完整可靠检测。

超声无损检测的工作原理

超声无损检测的工作原理

超声无损检测的工作原理
超声无损检测是利用超声波在材料中传播时受到材料内部缺陷的反射、散射和透射等现象,来检测材料内部缺陷的检测技术。

具体工作原理如下:
1. 发射超声波:将超声波发射器发送出来的超声波通过探头传入被检测物体内部。

2. 受反射:当超声波遇到对象边界或缺陷时,将会发生反射波,这时探头会接收到这个反射波信号。

超声波可以检测到物体内部的各种缺陷,如气孔、夹杂、裂纹等。

3. 接收信号:反射波信号通过探头传回电子仪器中,并将其转化成电信号。

4. 信号处理:通过信号处理器对接收到的信号进行调整和优化,使其更适合于人工或自动分析;
5. 分析结果:通过分析软件进行数据分析和处理,最后得出针对缺陷的定量定性分析结果。

通过上述过程,可以探测出被检测物体内部的缺陷,并获得相应的信号和数据,
从而进行分析评估。

压力容器检验中TOFD超声成像检测技术应用探讨

压力容器检验中TOFD超声成像检测技术应用探讨

压力容器检验中TOFD超声成像检测技术应用探讨我们要了解一下TOFD超声成像检测技术的基本原理。

TOFD技术是一种基于超声波的无损检测技术,它利用超声波在材料中传播的时间来探测缺陷的大小和位置。

TOFD技术利用两个超声探头,一个作为发射探头,另一个作为接收探头,同时对被检测材料进行扫描。

通过分析接收到的超声波信号的时间延迟和散射角度,TOFD技术可以精确地确定缺陷的位置和大小,从而实现对材料内部缺陷的高灵敏度检测。

在压力容器检验领域,TOFD技术有着独特的优势。

TOFD技术可以实现对厚度较大的材料进行全面和快速的检测,能够准确地检测到厚度不均匀和内部缺陷,包括裂纹、气孔、夹杂等。

TOFD技术能够在检测过程中实现实时成像和自动化分析,可以大大提高检测的效率和准确性。

TOFD技术对于复杂的几何形状和表面粗糙度不敏感,能够适应各种复杂工况下的检测需求。

在压力容器检验中,TOFD技术可以应用于多种检测场景。

TOFD技术可以用于对压力容器壁厚的全面检测。

通过对压力容器壁厚进行全面扫描和成像,可以及时发现厚度不均匀和腐蚀等问题,及早进行修复和维护,确保压力容器的安全运行。

TOFD技术可以用于对焊缝和接头的检测。

焊缝是压力容器中最容易产生缺陷的部位,TOFD技术可以实现对焊缝的全面扫描和成像,检测焊缝内部的裂纹、气孔等缺陷,提高了对焊接质量的监控和评估。

TOFD技术还可以应用于对压力容器内部的检测。

由于压力容器通常处于高温、高压的工作状态,内部的腐蚀、磨损等问题很难直接观察和检测。

TOFD技术可以通过壁厚衰减的方式,实现对内部腐蚀、磨损等问题的全面检测。

通过对内部缺陷的及时发现和修复,可以避免因压力容器内部问题导致的安全事故。

值得注意的是,TOFD技术在压力容器检验中也存在着一些技术挑战和局限性。

TOFD技术对操作人员的技术要求较高,需要具备一定的超声检测技术和数据分析能力。

TOFD技术在实际应用中对设备的要求比较高,需要高灵敏度的超声探头和精确的扫描系统,这也增加了检测成本和难度。

无损检测技术中的断层检测与成像方法详述

无损检测技术中的断层检测与成像方法详述

无损检测技术中的断层检测与成像方法详述在无损检测技术中,断层检测与成像方法起到了至关重要的作用。

这些方法通过对物体内部的断层进行检测和成像,能够帮助工程师和科学家提高对材料和结构的质量控制,以及解决检测和成像过程中所遇到的问题。

本文将详细介绍无损检测技术中的断层检测与成像方法。

断层检测是无损检测中的一项基础性工作。

它主要通过使用各种技术手段来检测和定位对象内部的断层缺陷,如裂纹、气孔、夹杂等。

常用的断层检测技术包括超声波检测、射线检测、磁粉检测等。

超声波检测是一种广泛应用于断层检测中的技术。

它利用超声波在物体内部的传播特性来检测断层缺陷。

超声波的频率通常在几十千兆赫范围内,能够穿透一定深度的材料,并通过检测反射波来判断是否存在断层。

超声波检测具有非破坏性和高灵敏度的特点,适用于各种材料和结构的缺陷检测。

射线检测是另一种常用的断层检测方法。

它利用射线的穿透能力来探测物体内部的缺陷。

射线检测可以分为X射线检测和γ射线检测两种。

X射线检测适用于对金属、陶瓷等材料的检测,而γ射线检测适用于对较厚的混凝土、土壤等材料的检测。

射线检测的优点是检测速度快、可视化程度高,但由于射线对人体有一定的辐射危害,需要采取一定的防护措施。

磁粉检测是一种适用于表面检测的方法。

它通过在被检测物体表面施加磁场,再将磁粉撒在表面上,通过观察磁粉在缺陷附近的聚集情况来检测断层。

磁粉检测适用于金属材料的检测,特别是表面裂纹和焊缝的检测。

磁粉检测具有操作简便、成本低等优点,但仅限于对表面缺陷的检测。

除了断层检测,成像方法在无损检测中也扮演着重要的角色。

成像方法主要通过对断层内部的信号进行处理和分析,生成图像以展示断层的形态和位置。

常见的成像方法包括X射线成像、红外成像、磁共振成像等。

X射线成像是一种广泛应用于医学和工业领域的成像方法。

它利用X射线的穿透能力和对物质的吸收特性,通过检测X射线通过物体后的衰减情况来生成图像。

X射线成像具有分辨率高、成像速度快的优点,适用于对密度差异较大的材料和结构的成像。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

超声无损检测成像技术
摘要: 超声无损检测成像技术在现代工业的很多领域中都有很重要的用途,具有非常广阔的发展前景。

对扫描超声成像、超声波显像、超声全息、ALOK 法成像、相控阵法、超声显微镜、SAFT 成像、TOFD 成像、超声CT 成像的发展、原理、特点和应用做了分析,可以更好地指导实际应用,并指出了超声无损检测成像技术的发展方向。

0 引言
So ko lov 于20 世纪30 年代提出了超声波检测的早期研究,在40 年代出现的脉冲回波探伤仪器成为超声波检测技术的重要标识。

20 世纪50 年代初,真正用于医学诊断的超声装置问世。

60 年代末,由于电子技术、计算机技术和信号处理技术的飞速发展,声成像研究恢复了生机。

70 年代形成了几种较成熟的方法,大量商品化设备上市,在医学诊断中得到极其广泛的应用,在工业材料超声检测中也逐渐得到应用。

现在,超声成像检测技术已经在很多领域发挥着重要的作用。

1 超声检测成像原理
超声成像就是用超声波获得物体可见图像的方法。

由于超声波可以穿透很多不透光的物体,所以利用超声波可以获得这些物体内部结构声学特性的信息,超声成像技术将这些信息变成人眼可见的图像。

由声波直接形成的图像称为声像,由于生理的限制,人眼是不能直接感知声像的,必须采用光学的或电子学的或其他方式转化为肉眼可见的图像或图形,这种肉眼可见的像被称为声学像,声学像反映了物体内部某个或几个声场参量的分布或差异。

反过来,对于同一物体,利用不同的声学参量,例如声阻抗率、声速或声衰减等,可以生成不同的声学像。

2 各种超声成像方法
2. 1 扫描超声成像
扫描超声成像是超声检测数据的视图显示,最基本的超声扫描方式有A扫描,B扫描,C扫描,D扫描,S 扫描,P扫描等,它们分别是超声脉冲回波在荧光屏上不同的显示方式。

表1 是以上扫描方式的显示方法和特点。

表1 扫描超声成像技术
2. 2 超声波显像
声波是力学波,它会改变传播介质中的一些力学参数,比如质点位置、质点运动速度、介质密度、介质中应变、应力等,液体中还引起辐射压力。

利用这些参数变化可以使声波成为可见。

1937 年,Pohlman 制成第一台声光图像转换器。

到目前,最有效而常用的声波显示方法是施利仑法和光弹法。

施利仑法的根据是声波导致介质密度变化,而后引起光折射率的改变。

光弹法成像原理是超声引起应力,在各向同性固体中,应力产生光的双折射效应,光通过应力区后,偏振将发生变化。

80 年代,我国着名声学专家应崇福和他领导的小组用动态光弹法系统研究了固体中的超声散射,把这个方法的价值提到了新的高度。

在他们的散射研究中,首次目睹了声波沿孔壁爬行,在材料棱边内部的散射和在带状裂缝的散射,还首次窥见了兰姆波和瑞利波,观察了前者在板端的散射,后者绕材料尖角的散射。

他们提高了动态光弹法的显示清晰度,80 年代前期的光弹照片质量之高在国际上已属罕见。

2. 3 超声全息
超声全息是利用干涉原理来记录被观察物体声场全部信息,并实现成像的一种声成像技术和信息处理手段。

扫描声全息大致分为两类,一类是激光重建声全息,它是用与入射波同频率的电信号与探测器的输出电信号相加,用叠加信号的幅度去调制荧光屏光点的亮度,在荧光屏上形成全息图。

将全息图拍摄下来,再用激光照射全息图,获得重建像。

另一类是计算机重建声全息,它是利用扫描记录到的全息函数与重建像函数之间是空间傅氏变换对的关系,直接由计算机计算而实现的重建。

2. 4 ALOK 法成像
ALOK ( Amplituen and Laufzeit Ort s Kurren) 法即幅度传播时间位置曲线法,原理如图1 所示。


个自发自收的超声换能器在试样表面按照一定规则进行移动扫描,如果A 点是试样内的缺陷,那么在位置1 处接收到的回波信号中,在的传播时间处有一个回波小峰。

同样,在位置2 接收的回波信号中,在传播时间处也会出现一个小峰。

由于这个缺陷是确定的,因此在以后的各检测位置上,在声时位置曲线对的传播时间上都会出现A 点的反射回波。

同样,由于检测位置与缺陷A之间的距离有规律变换,缺陷回波的幅度也会随位置的变换而有规律的变化。

而噪声则不会在出现的时间与幅度上随检测位置而有规律的变化。

利用传播时间位置及幅度位置曲线,就可以从回波信号中识别来自缺陷的回波信号,并用B 显示给出缺陷的像。

2. 5 相控阵法
超声相控阵技术来源于雷达电磁波相控阵技术,医用B 超是最先采用超声相控阵技术的。

20 世纪80 年代初,相控阵超声波技术从医疗领域跃入工业领域。

20 世纪80 年代中期,压电复合材料的研制成功,为复合型相控阵探头的制作开创新途径。

压电复合技术、微型机制、微电子技术、及计算机功率的最新发展,对相控阵技术的完善和精细化都有卓着贡献。

图1 ALOK 法原理。

超声相控阵系统由超声阵列换能器和相应的电子控制系统组成。

超声阵列换能器由许多小的压电晶片( 阵元) 按照一定形状排列而成的,其内部的各阵元可以独立进行超声发射或接收。

在相控阵超声发射状态下,阵列换能器中各个阵元按照一定延时规律顺序激发,产生的超声发射子波束在空间合成,形成聚焦点和指向性[ 6] ,如图2 所示。

改变各阵元激发的延时规律,可以改变焦点位置和波束指向,形成在一定空间范围内的扫描聚焦。

图2 相控阵成像检测关键技术。

2. 6 超声显微镜
超声显微镜是利用声波对物体内力学特性进行高分辨率成像研究的系统和技术,是20 世纪80 年代研制成功的重要的三维显微观察设备,它集现代微波声学、信号检测和计算机图像科学技术于一体,是一种典型的高科技产物。

它可以对不透明材料内部层层递进行显微观察,直至表面以下几毫米甚至几十毫米的深度,可以获得丰富的信息:其次是对生物组织可以进行活体检查,可实现生物学家们长期盼望的活检。

2. 7 合成孔径聚焦成像( SAFT )
合成孔径聚焦( Sy nthet ic Aperture Fo cusingTechnique,SAFT) 超声成像是20 世纪70 年代发展起来的一种比较有潜力的成像方法,它以点源探头在被测物体的表面上扫描,接收来自物体内部各点的散射声信
号并加以存储,然后对不同接收位置上探头接收的声信号引入适当的延迟并进行叠加,以获得被成像点的逐点聚焦声学像。

在超声检测中,常用聚焦探头来提高检测的分辨率。

在焦点上超声波的束径b 与声波波长、焦距F 及探头尺寸D 之间有: b = 1. 03F / D,频率越高,探头的孔径越大,检测的分辨率就越高。

合成孔径聚焦技术就是用信号处理的方法使小孔径的换能器阵列具有大孔径阵的指向特性的功能,实现高分辨率成像。

当一个超声收、发的探头沿直线移动,每隔距离d 发射一个声波,同时接收来自物体各点的散射信号并加以储存。

根据各成像点的空间位置,对接收到的信号作适当的声时延或相位延迟后再合成得到被成像物体的逐点聚焦成像,这就是合成孔径聚焦成像技术。

SA FT 成像的分辨率高,能在近场区工作,并能实现三维成像。

2. 8 衍射时差法( TOFD) 超声成像技术
TOFD( T ime Of Flig ht Diff ract iON) 检测技术通常采用一发一收并且角度相同的双探头模式,利用缺陷尖端的衍射波信号探测和测量缺陷尺寸。

检测过程中,激发探头产生的宽角度纵波基本可覆盖整个检测区域[ 7] 。

TOFD 对于焊缝中部缺陷检出率很高,容易检出方向性不好的缺陷,可以识别向表面延伸的缺陷,使用横向TOFD 模式时,特别是在信号处理的帮助下缺陷定量很准,线形模式下的定量精度也可以接受,和脉冲反射法相结合时效果更好。

2. 9 超声CT ( Computed T omog raphy) 成像
英国从事超声成像的专家P. N. T Wells 在2000 年的论文!超声成像技术的现状与未来?中指出: 在最近的十几年里,有关超声成像技术的研究在医学成像领域至少占25% 以上的份额,并且这种趋势还在继续增长。

超声CT 技术发展于医学并取得了成功,此外还用于工业材料的无损检测、航空航天、军事工业及钢铁企业等高科技领域或部门: CT 还在地球资源勘探、地震预测预报、地质构造等方面有广泛而深入的应用。

超声CT 总的发展趋势是向着高速、清晰、可靠方向发展,即数据采集、成像速度更为快捷,重建图像具有更高的空间分辨率、密度分辨率,图像更为清晰、可靠。

此外,如何在数据缺损时或根据很少的投影数据能够很好地重建图像,也是未来CT 必须解决的问题。

重建三维图像是CT 的又一发展趋势。

3 超声检测成像的发展方向
当今世界很多国家都越来越重视无损检测技术在国民经济各部门中的作用,超声无损检测成像技术大多有自动化和智能化的特点,超声成像是定量无损检测的重要工具,在各种探伤手段中,应用超声手段来检测缺陷是目前各国正在探索的一个重点。

目前,人们仍在致力于很多方面的研究,如声逆散射理论、新成像机制、神经网络、模式识别等信号处理理论、优质超声探头和其他超声成像元件等。

本文所阐述的几种成像技术只是众多进步的代表。

超声无损检测技术伴随材料与工业技术的发展而发展,并随着人们对产品质量与安全性的不断重视而得到进一步提高。

相关文档
最新文档