ctDNA与克隆进化

ctDNA与克隆进化
ctDNA与克隆进化

Multifocal clonal evolution characterized using circulating tumor DNA in a case of metastatic breast cancer

Nat Commun Nov 2015

文章概述

(1)对1位乳腺癌患者(ER+, HER2+)进行了长达3年的治疗和随访(2)对8处肿瘤组织和9份血浆突变进行了突变检测、分析和比较

(3)利用肿瘤组织和血浆ctDNA突变基因描绘了肿瘤的克隆进化

(4)追踪ctDNA基因突变的动态变化实时监测治疗效果

文章亮点

(1)对多组织和多时间节点的血浆突变进行全面分析比较

(2)利用多组织特有的突变基因绘制进化树,反映肿瘤克隆进化顺序

(3)追踪ctDNA主干、枝干突变和肿瘤组织特有基因动态变化,监测治疗效果

研究意义

组织活检和液态活检比较发现,ctDNA能够反映肿瘤治疗过程中的克隆进化,用于实时监测用药效果,进而辅助制定和调整临床治疗策略,使患者受益主要内容

1. 研究背景

2. 临床案例情况

3. 基于多处肿瘤组织基因突变的克隆结构(clonal structure)推断

4. 基于ctDNA连续监测的克隆结构分析与肿瘤组织中的比较

5. 讨论

1. 研究背景

※肿瘤异质性限制靶向治疗在转移性肿瘤中的应用

※外周血ctDNA检测能够反映转移性肿瘤的空间异质性

※外周血ctDNA连续性监测能够追踪肿瘤负荷并反映治疗过程中的克隆进化(clonal evolution)

甲基化检测原理及步骤 DNA实验技术方法汇总

DNA亚硫酸氢盐修饰和纯化操作步骤修饰设计:使用CpGenome TM kit使胞嘧啶转化为尿嘧啶的步骤如下。中等温度碱性pH下使DNA变性成为单链形式暴露出碱基。试剂一,一种包含亚硫酸氢根的钠盐,可使未甲基化的胞嘧啶磺化和水解脱氨,产生一种尿嘧啶磺酸盐中间产物。然后DNA在另一种盐﹙试剂二﹚存在的条件下与一种微粒载体﹙试剂三﹚结合,并通过重复离心和在70%的乙醇中重悬浮脱盐。向尿嘧啶的转化是通过在90%的乙醇中反复碱性脱磺酸基作用和脱盐完成的。DNA最终在TE缓冲液中通过加热从载体上洗脱下来。 第一步:试剂准备 (1)3 M NaOH原料(用前现配) 把1g干NaOH片剂溶解在8.3mL水中。使用此类腐蚀性碱,注意小心谨慎和实验操作。 (2)20 mM NaOH/90% EtOH(用前现配) 配制1mL该溶液需:900μl 100%的乙醇,93.4μl水,6.6μl 3M的氢氧化钠。 (3)溶解试剂Ⅰ(用前现配) 打开前将试剂瓶加温至室温。对每份待修饰的样本,称取0.227g DNA修饰试剂Ⅰ加入0.571mL水中。充分涡旋振荡混合。使用该试剂时要小心谨慎,因为它对呼吸系统和皮肤有刺激性。用大约20μl 3M NaOH调整pH至5.0,用pH试纸检测pH值。试剂Ⅰ避光保存以免分解。为了最佳效果,试剂应在配置后立即使用。 (4)溶解试剂Ⅱ 打开前将试剂瓶加温至室温。将1μl β-巯基乙醇加入20mL去离子水中。每份待修饰的DNA样本需将750μl该溶液加入到1.35g DNA修饰Ⅱ。充分混合确保完全溶解。过量的试剂可用箔纸包裹的容器、2℃-8℃、避光保存长达6周。 第二步:DNA修饰程序 1、在带有螺旋形瓶盖的1.5-2.0mL的微量离心管中:将7.0μl 3M NaOH加入到含有1.0 μg DNA的100μl水中(10ng/μl),混匀。 注意:如果样本含有的DNA量不到1.0μg,就向样本DNA中加入2 μl DNA修饰试剂Ⅳ并加水至总体积100μl。再加入7.0μl 3M NaOH并混匀。 2、50℃ DNA孵育10分钟(加热块或水浴)

多目标进化算法总结

MOGA i x 是第t 代种群中个体,其rank 值定义为: () (,)1t i i rank x t p =+ ()t i p 为第t 代种群中所有支配i x 的个体数目 适应值(fitness value )分配算法: 1、 将所有个体依照rank 值大小排序分类; 2、 利用插值函数给所有个体分配适应值(从rank1到 rank * n N ≤),一般采用线性函数 3、 适应值共享:rank 值相同的个体拥有相同的适应值, 保证后期选择时同一rank 值的个体概率相同 最后采用共享适应值随机选取的方法选择个体进入下一代 一种改进的排序机制(ranking scheme ): 向量,1,(,,)a a a q y y y =???和,1,(,,)b b b q y y y =???比较 goal vector :() 1,,q g g g =??? 分为以下三种情况:

1、 ()() ,,1,,1; 1,,; 1,,; a i i a j j k q i k j k q y g y g ?=???-?=????=+???>∧≤ 2、() ,1,,; a i i i q y g ?=???> 当a y 支配b y 时,选择a y 3、() ,1,,; a j j j q y g ?=???≤ 当b y 支配a y 时,选择b y 优点:算法思想容易,效率优良 缺点:算法容易受到小生境的大小影响 理论上给出了参数share σ的计算方法

NPGA 基本思想: 1、初始化种群Pop 2、锦标赛选择机制:随机选取两个个体1x 和2x 和一个Pop 的 子集CS(Comparison Set)做参照系。若1x 被CS 中不少于一 个个体支配,而2x 没有被CS 中任一个体支配,则选择2x 。 3、其他情况一律称为死结(Tie ),采用适应度共享机制选择。 个体适应度:i f 小生境计数(Niche Count ):(),i j Pop m Sh d i j ∈= ????∑ 共享函数:1-,()0,share share share d d Sh d d σσσ? ≤?=??>? 共享适应度(the shared fitness ): i i f m 选择共享适应度较大的个体进入下一代 优点:能够快速找到一些好的非支配最优解域 能够维持一个较长的种群更新期 缺点:需要设置共享参数

量子克隆进化算法

量子克隆进化算法 刘 芳,李阳阳 (西安电子科技大学计算机学院,陕西西安710071) 摘 要: 本文在量子进化算法的基础上结合基于克隆选择学说的克隆算子,提出了改进的进化算法———量子克 隆进化策略算法(QCES ).它既借鉴了量子进化算法的高效并行性又利用克隆算子来代替其中的变异和选择操作,以增加种群的多样性,避免了早熟,且收敛速度快.本文不仅从理论上证明了该算法的收敛,而且通过仿真实验表明了此算法的优越性. 关键词: 克隆算子;进化算法;量子克隆进化策略中图分类号: T N957 文献标识码: A 文章编号: 037222112(2003)12A 22066205 Quantum Clonal Evolutionary Algorithms LI U Fang ,LI Y ang 2yang (Institute o f Computer ,Xidian University ,Xi ’an ,Shaanxi 710071,China ) Abstract : Based on the combining of the quantum ev olutionary alg orithms (QE A )with the main mechanisms of clone ,an im 2proved ev olutionary alg orithm —quantum clonal ev olutionary strategies (QCES )was proposed in this paper.By adopting the high 2effec 2tive parallelism of QE A and replacing clone operator by mutation and selection of the classical ev olutionary alg orithms (CE A ),it has better diversity and the converging speed than CE A and av oided prematurity.The convergence of the QCES is proved and its superiori 2ty is shown by experiments in this paper. K ey words : clone operator ;ev olutionary alg orithm ;quantum clonal ev olutionary strategies 1 引言 计算是人类思维能力的最重要的方面之一,计算能力的提高与人类文明进步息息相关.从古老的算盘到现代的超级计算机,人类的计算技术实现了革命性的突破.综观当今,计算机的广泛应用已经并且仍在继续改变着我们的世界.一方面,人们为计算机的神奇能力所倾倒.另一方面,人们也为它无力完全满足实际的需要而烦恼.因此,加速计算机的运算速度以提高计算机的运算能力成为计算机科学的中心任务之一. 如何加快计算机的运算能力呢?这一问题大体可以从两个方面着手解决.一是制造更为先进的计算机硬件,另一则是设计恰当的计算机运算流程,后者可以称之为“算法”.一类模拟生物进化过程与机制来求解问题的自组织、自适应人工智能技术即进化计算(包括用于机器学习问题的遗传算法,优化模型系统的进化规划和用于数值优化问题的进化策略)的出现为我们寻找快速算法提供了新思路.进化计算是一种仿生计算,依照达尔文的自然选择和孟德尔的遗传变异理论,生物的进化是通过繁殖、变异、竞争、选择来实现的,进化算法就是建立在上述生物模型基础上的随机搜索技术.我们所熟悉的 遗传算法(G enetic alg orithms )[1],它通过模拟达尔文的“优胜劣汰,适者生存”的原理鼓励好的个体,通过模拟孟德尔的遗传变异理论在进化过程中保持好的个体,同时寻找更好的个体,由此来模仿一切生命与智能的产生与进化过程.理论上已经证明:进化算法能从概率的意义上以随机的方式寻求到问题的最优解;但在实际应用当中随着问题的复杂和海量的数据量,也出现了一些不尽人意的情况,主要表现在:计算后期解的多样性差即易造成早熟,收敛速度慢等缺点.因此,为克服上述缺点关键是构造性能良好的进化算法. 在改进的进化算法中,有些是将传统寻优算法与遗传算法相结合提出了混合遗传算法[2,3],有些则另辟蹊径提出了新颖的学习算法———量子进化算法[4]和免疫进化算法[5],量子力学是20世纪物理学最惊心动魄的发现之一,量子计算是物理理论与计算机的成功结合,在量子体系中,一位的信息位不在是经典的1比特,而是由两个本征态的任意叠加态所构成即称之为量子比特位(qubit ),例如一个n 位二进制的串在量子体系中就可同时表示2n 个信息,而量子计算机对每个叠加分量(本征态)实现的变换相当于一种经典计算,所有这些经典计算同时完成,并按一定的概率振幅叠加起来,给出量子计算的结果,这种计算称之为量子并行计算[6].正是量子的 收稿日期:2003209210;修回日期:2003212210 基金项目:国家自然科学基金(N o.60133010);国家高技术研究发展计划(863计划)(N o.2002AA135080)   第12A 期2003年12月 电 子 学 报 ACT A E LECTRONICA SINICA V ol.31 N o.12A Dec. 2003

【高中生物】功能基因的克隆及生物信息学分析

(生物科技行业)功能基因的克隆及生物信息学分析

功能基因的克隆及其生物信息学分析 摘要:随着多种生物全基因组序列的获得,基因组研究正从结构基因组学(structuralgenomics)转向功能基因组学(functionalgenomics)的整体研究。功能基因组学利用结构基因组学研究获得的大量数据与信息评价基因功能(包括生化功能、细胞功能、发育功能、适应功能等),其主要手段结合了高通量的大规模的实验方法、统计和计算机分析技术[1],它代表了基因分析的新阶段,已成为21世纪国际生命科学研究的前沿。功能基因组学是利用基因组测序获得的信息和产物,发展和应用新的实验手段,通过在基因组或系统水平上全面分析基因的功能,使生物学研究从对单一基因或蛋白的研究转向多个基因或蛋白同时进行系统的研究,是在基因组静态的组成序列基础上转入对基因组动态的生物学功能学研究[2]。如何研究功能基因,也成为我们面临的一个课题,本文就克隆和生物信息学分析在研究功能基因方面的应用做一个简要的阐述。 关键词:功能基因、克隆、生物信息学分析。 1.功能基因的克隆 1.1图位克隆方法 图位克隆又称定位克隆,它是根据目标基因在染色体上确切位置,寻找与其紧密连锁的分子标记,筛选BCA克隆,通过染色体步移法逐步逼近目的基因区域,根据测序结果或用BAC、YAC克隆筛选cDNA表达文库寻找候选基因,得到候选基因后再确定目标基因。优点是无需掌握基因产物的任何信息,从突变体开始,逐步找到基因,最后证实该基因就是造成突变的原因。通过图位克隆许多

控制质量性状的单基因得以克隆,最近也有报道某些控制数量性状的主效基因(控制蕃茄果实大小的基因克隆[3]、控制水稻成熟后稻谷脱落基因克隆[4]以及小麦VRN2基因克隆[5]等)也通过图位克隆法获得。 1.2同源序列克隆目的基因 首先根据已知的基因序列设计PCR引物,在已知材料中扩增到该片段,并经克隆测序验证,利用放射性同位素标记或其他非同位素标记该PCR片段作为探针,与待研究材料的cDNA文库杂交,就可以获得该基因cDNA克隆,利用克隆进一步筛选基因组文库,挑选阳性克隆,亚克隆并测序,从中就可以筛选到该基因的完整序列。 1.3结合连锁和连锁不平衡的分析方法 结合连锁和连锁不平衡的分析方法是未知基因克隆研究领域发展的新方向[6]。(Linkagedisequilibrium,LD)。与连锁分析不同,连锁不平衡分析可以利用自然群体中历史发生的重组事件。历史上发生的重组使连锁的标记渐渐分布到不同的同源染色体上,这样就只有相隔很近的标记才能不被重组掉,从而形成大小不同的单倍型片段(Haplotypeblock)。这样经过很多世代的重组,只有相隔很近的基因,才能仍处在相同的原始单倍型片段上,基因间的连锁不平衡才能依然存在。所以基于连锁不平衡分析,可以实现目的基因的精细定位。林木大多为自由授粉的异交物种,所以连锁不平衡程度很低,林木基因组中的LD可能会仅局限于非常小的区域,这就为目的基因的精细定位提供了可能,结合SNP检测技术,科学家甚至可以将效应位点直接与单个的核苷酸突变关联起来,进行数量性状寡核苷酸

甲基化检测方法

甲基化检测方法(亚硫酸氢盐修饰后测序法) 第一部分基因组DNA的提取。 这一步没有悬念,完全可以购买供细胞或组织使用的DNA提取试剂盒,如果实验室条件成熟,自己配试剂提取完全可以。DNA比较稳定,只要在操作中不要使用暴力,提出的基因组DNA 应该是完整的。 此步重点在于DNA的纯度,即减少或避免RNA、蛋白的污染很重要。因此在提取过程中需使用蛋白酶K及RNA酶以去除两者。 使用两者的细节: 1:蛋白酶K可以使用灭菌双蒸水配制成20mg/ml; 2:RNA酶必须要配制成不含DNA酶的RNA酶,即在购买市售RNA酶后进行再处理,配制成10mg/ml。否则可能的后果是不仅没有RNA,连DNA也被消化了。两者均于-20度保存。验证提取DNA的纯度的方法有二: 1:紫外分光光度计计算OD比值; 2:1%-1.5%的琼脂糖凝胶电泳。 我倾向于第二种方法,这种方法完全可以明确所提基因组DNA的纯度,并根据Marker的上样量估计其浓度,以用于下一步的修饰。 第二部分亚硫酸氢钠修饰基因组DNA 如不特别指出,所用双蒸水(DDW)均经高压蒸汽灭菌。 1:将约2ugDNA于1.5mlEP管中使用DDW稀释至50ul; 2:加5.5ul新鲜配制的3M NaOH; 3:42℃水浴30min; 水浴期间配制: 4:10mM对苯二酚(氢醌),加30ul至上述水浴后混合液中;(溶液变成淡黄色) 5:3.6M亚硫酸氢钠(Sigma,S9000),配制方法:1.88g亚硫酸氢钠使用DDW稀释,并以3M NaOH滴定溶液至PH 5.0,最终体积为5ml。这么大浓度的亚硫酸氢钠很难溶,但加入NaOH后会慢慢溶解,需要有耐心。PH一定要准确为5.0。加520ul至上述水浴后溶液中。6:EP管外裹以铝箔纸,避光,轻柔颠倒混匀溶液。 7:加200 ul 石蜡油,防止水分蒸发,限制氧化。 8:50℃避光水浴16h。 一般此步在4pm开始做,熟练的话不到5pm即可完成,水浴16h正好至次日8am以后收,时间上很合适。 这一步细节: 1:基因组DNA的量不需十分精确,宁多勿少,因为在以后纯化回收步骤中会有丢失,且此方法修饰最多可至4ug。 2:所有试剂均须新鲜配制,所以配液的技术要过关,既要快,又要精确。 3:亚硫酸氢钠溶液呈强酸性,一定用碱将PH调制5.0,否则PH不合适会影响后续纯化吸收。

量子免疫算法1

报告正文 (一)立项依据与研究内容 1。项目的立项依据(研究意义、国内外研究现状及分析、附主要参考文献目录) (1)研究意义 随着石化能源危机的来临以及人们环保意识的加强,世界各国争相发展可再生新兴能源。风电装机容量每年以20%至30%的速度增长,其增长势头迅猛,据专家预测风力发电量在2020年将占全球发电总量的12%。风力发电已经成为解决世界能源问题的不可或缺的重要力量。 但随着投产的风力发电机数量和容量的不断增加,风力发电机组的运行维护、故障检测、诊断技术的优化和改进已成为风力发电亟待解决的新课题。长期以来,风力发电机一直采用计划维修与事后维修方式,计划维修即运行2500h和5000h 后的例行维护,如检查螺栓力矩,加注润滑脂等。该维修体制往往无法全面、及时地了解设备运行状况。而事后维修则因事前准备不足,从而造成维修工作旷日持久,损失重大。并且由于近年来大型风力发电机组研究的快速发展,其机械结构日趋复杂,不同部件之间的相互联系、耦合也更加紧密,一个部件出现故障,将可能导致整个发电过程中断。因此,有必要对风力发电机组的运行状态进行检测跟踪,对其故障征兆进行分析处理,预测分析风力发电机的故障趋势,减少事故发生造成的财产损失,也减少强迫停机的次数,降低发电机的维护费和提高发电机的可用性,指导风电机组的维护与维修。 目前的故障诊断方法虽然为诊断电机的故障起到了重要作用,但也存在如训练仿真模型耗时,需大量的先验知识,对故障样本的学习缺乏自主连续,实时性差等问题。为了提高故障诊断的准确性、实时性及鲁棒性,还需加强新方法的研究,特别是基于生物智能的新方法研究。近年来逐渐发展起来的基于生物免疫机理的人工免疫系统具有多样性、分布式、噪声忍耐、无教师学习、自组织、自适应等特点,不需要反面例子,结合了分类器、神经网络和机器推理等学习系统的一些优点,在复杂系统的故障检测与诊断中具有很大的潜力。通过研究人工免疫系统,可望产生更有效的风力发电机组故障诊断方法。 而传统的故障诊断技术主要依靠单一的故障特征来进行故障判定,且存在样本需求量大及诊断学习缺乏自主连续性等问题,远不能满足现代化生产的要求。受生物免疫系统启发而建立的人工免疫系统蕴含了噪声忍耐、自学习、自组织和自记忆等进化学习机理,为解决旋转机组故障诊断问题提供了一条新的思路,反面选择算法可以有效判断自我-非我状态,并成功地应用于振动信号异常检测,动态规模免疫算法能够通过学习进化保持记忆抗体的多样性,实现较好的故障分类效果,将以上思想应用于故障诊断之中,得到了风力发电机组状态监测与故障

最新高维多目标进化算法总结

高维多目标进化算法 二、文献选读内容分析及思考 (一)Borg算法 Borg算法是基于ε-MOEA算法(Deb,2003)的一种全新改进算法[32],下面将从创新点、原理、算法流程和启发思考四方面进行阐述。 1.创新点 1)在ε支配关系的基础上提出ε盒支配的概念,具有能同时保证算法收敛性与多样性的特点。 2)提出了ε归档进程,能提高算法计算效率和防止早熟。 3)种群大小的自适应调整。 4)交叉算子的自适应选择。由于处理实际问题时,是不知道目标函数具有什么特性,前沿面如何,在具有多个交叉算子的池子里,根据进程反馈,选择不同的交叉算子,使产生的后代具有更好的特性针对要研究的问题。 2. Borg算法原理 1)ε盒支配:通过对目标空间向量的每一维除以一个较小的ε,然后取整后进行pareto支配比较。这样的支配关系达到的效果是把目标空间划分成以ε为边长的网格(2目标时),当点处于不同的网格时,按pareto支配关系比较;当处于同一网格时,比较哪个点距离中心点(网格最左下角)最近。这样一来,网格内都只有一个点。 2)ε归档进程 如图1所示,黑点表示已经归档的,想要添加到档案集的新解用×表示,阴影表示归档解支配的区域。当新解的性能提升量超过阈值ε才属于ε归档进程。比如解1、解2加入归档集属于ε归档进程,解3加入归档集就不属于ε归档进程。 图1 ε支配网格 在这个过程中设置了一个参数c,表示每一代中加入归档集解得个数,每隔一定迭代次数检测c有没有增加,如果没有增加表明算法停滞,重启机制启动。 3)重启 自适应种群大小:重启后的种群大小是根据归档集的大小设置。γ表示种群大小与归档集大小的比值,这个值也用于第二步中,如果γ值没超过1.25,重启机制也启动。启动后,γ人为设定为固定值,种群被清空,填充归档集的所有个体,不足的个体是随机选取归档集中个体变异所得。与之相匹配的锦标赛比较集大小是归档集大小乘以固定比值τ。 4)交叉算子的自适应选择 摒弃以往采用单一的交叉算子,采用包含各类交叉算子的池子,比如有K

免疫算法的克隆选择过程

免疫算法的克隆选择过程 % 二维人工免疫优化算法 % m--抗体规模 % n--每个抗体二进制字符串长度 % mn--从抗体集合里选择n个具有较高亲和度的最佳个体进行克隆操作 % A--抗体集合(m×n),抗体的个数为m,每个抗体用n个二进制编码(代表参数) % T--临时存放克隆群体的集合,克隆规模是抗原亲和度度量的单调递增函数% FM--每代最大适应度值集合 % FMN--每代平均适应度值集合 % AAS--每个克隆的最终下标位置 % BBS--每代最优克隆的下标位置 % Fit--每代适应度值集合 % tnum--迭代代数 % xymin--自变量下限 % xymax--自变量上限 % pMutate--高频变异概率 % cfactor--克隆(复制)因子 % Affinity--亲和度值大小顺序 %% clear all clc tic; m=65; n=22; mn=60; xmin=0; xmax=8; tnum=100; pMutate=0.2; cfactor=0.1; A=InitializeFun(m,n); %生成抗体集合A,抗体数目为m,每个抗体基因长度为n F='X+10*sin(X.*5)+9*cos(X.*4)'; %目标函数 FM=[]; %存放各代最优值的集合 FMN=[]; %存放各代平均值的集合 t=0; %% while t

量子文献检索

《文献检索与科技论文写作》作业 学生姓名 年级专业 班级学号 指导教师职称

目录 第一部分文献查阅练习 (1) 第二部分文献总结练习 (7) 第三部分科技论文图表练习 (8) 第四部分心得体会 (11)

第一部分文献查阅练习 [1] 谭翠燕,梁汝强,阮康成.量子点在生命科学中的应用.生物化学与生物物理学报,2002 ,34(1):1-5. 摘要:近年来,量子点(半导体纳米微晶体)的研究引起国内外研究者的广泛兴趣 ,其研究内容涉及物理、化学、材料等多学科,已成为一门新兴的交叉学科。虽然量子点在生物学中的应用才刚刚起步,但是已经取得了有意义的进展,成为人们极为注意的一个热点。现就量子点的光学特性、制备方法以及在生物学中的研究进展和应用前景作一简要综述。 关键词:量子点;荧光光谱;蛋白质组学;生物大分子;生物芯片 [2] 张大鹏,黄丛林,王学臣,娄成后.葡萄叶片光合速率与量子效率日变化的研究及 利用.植物学报,1995,37(1):25—33. 摘要:在土壤供水充足的自然条件下,葡萄( VitisviniferaL.)光合子效率在上午最高、尔后下降 ,出现“中午降低”现象。上午光能截留高的叶片的光合量子效率较高 ,中午减叶片光能截留有利于缩小“中午降低”的幅度。一天中始终处于强光照射下的叶片的光合量子效率“中午降低”明显而持久 ,且在下午得不到恢复。光合速率与量子效率的日变化与叶肉对CO2阻力的变化密切相关 ,而与气孔下腔细胞间隙中CO2浓度变化关系不大。在人工气候室中土壤水分、空气湿度、叶温、CO2 浓度等环境因素稳定而适宜的条件下 ,饱和光强以上的光(1200μ mol · m- 2· s- 1)持续照射使葡萄叶片出现“光抑制”;用亚饱和光(1200μ mol · m- 2· s- 1) 和低光(200 μ mol · m- 2· s- 1)持续照射一定时间后,也使叶片光合量子效率比照射开始时随照射时间的持续而不断降低,出现类似于“光抑制”的现象。稍高于补偿光强的弱光(1 00 μ mol ·m- 2· s- 1) 持续照射下叶片光合量子效率稳定不变。讨论了“类似光抑制”现象。实验结果还认为葡萄叶片一天中叶肉阻力的变化与“光抑制”部分地相联。分析调控葡萄光合速率与量子效率日变化的内外因素,指出南北行向叶幕是改善葡萄群体光能利用最理想的受光面系统。 关键词:葡萄;光合量子效率;叶肉阻力;低光下光抑制;光合中午降低⒇ [3] 朱维良,蒋华良,陈凯先,嵇汝运.分子间相互作用的量子化学研究方法.化学进展,19 99年8月,第11卷第3期.

多目标进化算法总结

x 是第 t 代种群中个体,其 rank 值定义为: rank (x ,t ) =1+p (t ) p (t )为第t 代种群中所有支配x 的个体数目 适应值 (fitness value )分配算法: 1、 将所有个体依照 rank 值大小排序分类; 2、 利用插值函数给所有个体分配适应值(从 rank1 到 rank n * N ),一般采用线性函数 3、 适应值共享:rank 值相同的个体拥有相同的适应值, 保证后期选择时同一 rank 值的个体概率相同 最后采用共享适应值随机选取的方法选择个体进入下一代 一种改进的排序机制(ranking scheme ): 向量y a =(y a ,1,,y a ,q )和y b =(y b ,1,,y b ,q )比较 分为以下三种情况: k =1,,q -1; i =1,,k ; j =k +1,,q ; (y a ,i g i )(y a ,j g j ) i =1, ,q ; (y a ,i g i ) 当 y a 支配 y b 时,选择 y a 3、j =1, ,q ; (y a ,j g j ) 当 y b 支配 y a 时,选择 y b 优点:算法思想容易,效率优良 缺点:算法容易受到小生境的 大小影响 理论上给出了参数share 的计算方法 goal vector : g = (g 1, ,g q ) 1、 2、

基本思想: 1、初始化种群 Pop 2、锦标赛选择机制:随机选取两个个体 x 和 x 和一个 Pop 的 子集 CS(Comparison Set)做参照系。若 x 被 CS 中不少于一 个个体支配,而 x 没有被 CS 中任一个体支配,则选择 x 。 3、其他情况一律称为死结(Tie ),采用适应度共享机制选择。 个体适应度: f i 小生境计数(Niche Count ): m =j Pop Sh d (i , j ) 共享适应度(the shared fitness ): 选择共享适应度较大的个体进入下一代 优点:能够快速找到一 些好的非支配最优解域 能够维持一个较长的种群更新期 缺 点:需要设置共享参数 需要选择一个适当的锦标赛机制 限制 了该算法的实际应用效果 1- 共享函数: Sh (d ) = d share 0, d share d share

DNA甲基化检测技术全攻略

DNA甲基化检测技术全攻略 近年来涌现出不少DNA甲基化的检测技术,少说也有十几种。大致可以分为两类:特异位点的甲基化检测和全基因组的甲基化分析,后者也称为甲基化图谱分析(methylation profiling)。下面大家介绍一些常用的方法。 特异位点的甲基化检测 甲基化特异性PCR(MS-PCR) 这种方法经济实用,无需特殊仪器,因此是目前应用最为广泛的方法。在亚硫酸氢盐处理后,即可开展MS-PCR。在传统的MSP方法中,通常设计两对引物,一对MSP引物扩增经亚硫酸氢盐处理后的DNA模板,而另一对扩增未甲基化片段。若第一对引物能扩增出片段,则说明该检测位点存在甲基化,若第二对引物能扩增出片段,则说明该检测位点不存在甲基化。 这种方法灵敏度高,可用于石蜡包埋样本,且不受内切酶的限制。不过也存在一定的缺陷,你要预先知道待测片段的DNA序列,并设计出好的引物,这至关重要。另外,若存在亚硫酸氢盐处理不完全的情况,那可能导致假阳性。 亚硫酸氢盐处理+测序 这种方法一度被认为是DNA甲基化分析的金标准。它的过程如下:经过亚硫酸氢盐处理后,用PCR扩增目的片段,并对PCR产物进行测序,将序列与未经处理的序列进行比较,判断CpG位点是否发生甲基化。这种方法可靠,且精确度高,能明确目的片段中每一个CpG位点的甲基化状态,但需要大量的克隆测序,过程较为繁琐、昂贵。 联合亚硫酸氢钠的限制性内切酶分析法(COBRA) DNA样本经亚硫酸氢盐处理后,利用PCR扩增。扩增产物纯化后用限制性内切酶(BstUI)消化。若其识别序列中的C发生完全甲基化(5mCG5mCG),则PCR扩增后保留为CGCG,BstU I能够识别并进行切割;若待测序列中,C未发生甲基化,则PCR后转变为TGTG,BstUI识别位点丢失,不能进行切割。这样酶切产物再经电泳分离、探针杂交、扫描定量后即可得出原样本中甲基化的比例。 这种方法相对简单,可快速定量几个已知CpG位点的甲基化,且需要的样本量少。然而,它只能获得特殊酶切位点的甲基化情况,因此检测阴性不能排除样品DNA中存在甲基化的可能。 荧光定量法(Methylight) 此种方法利用TaqMan? 探针和PCR引物来区分甲基化和未甲基化的DNA。首先用亚硫酸氢盐处理DNA片段,并设计一个能与待测位点互补的探针,随后开展实时定量PCR。这种方法最大的优势在于其高通量和高敏感性,且无需在PCR后电泳、杂交等操作,减少了污染和操作误差。 Qiagen就提供了多种预制的MethyLight分析。EpiTect MethyLight PCR Kit包括了两条甲基化敏感的TaqMan探针和2条甲基化不敏感的PCR引物。随着目标序列甲基化状态的不同,只有FAM标记的亚硫酸氢盐转化的甲基化DNA特异的TaqMan探针,或只有VIC

量子克隆遗传算法

https://www.360docs.net/doc/577671016.html, 量子克隆遗传算法1 李阳阳1,焦李成1 1西安电子科技大学电子工程学院,西安(710071) E-mail: lyy_111@https://www.360docs.net/doc/577671016.html, 摘要:遗传算法是解决优化问题的一种有效方法。但在实际应用中也存在着收敛速度慢,早熟等问题,使得其结果极不稳定。本文将遗传算法和量子理论相结合并利用免疫系统中所特有的克隆算子,针对0/1背包问题,提出了一种改进的进化算法——量子克隆遗传算法(QCA)。它能有效的避免早熟,且具有收敛速度快的特点。 关键词:遗传算法量子克隆遗传算法 0/1背包 中图分类号:TN957 1.引言 进化计算是一种仿生计算,依照达尔文的自然选择和孟德尔的遗传变异理论,生物的进化是通过繁殖、变异、竞争、选择来实现的,进化算法就是建立在上述生物模型基础上的随机搜索技术。我们所熟悉的遗传算法(Genetic Algorithms)[1],它通过模拟达尔文的“优胜劣汰,适者生存”的原理鼓励好的个体,通过模拟孟德尔的遗传变异理论在进化过程中保持好的个体,同时寻找更好的个体,由此来模仿一切生命与智能的产生与进化过程[2][3]。理论上已经证明:进化算法能从概率的意义上以随机的方式寻求到问题的最优解;但在实际应用当中随着问题的复杂和海量的数据量,也出现了一些不尽人意的情况,主要表现在:计算后期解的多样性差即易造成早熟,收敛速度慢等缺点。因此,为克服上述缺点关键是构造性能良好的进化算法。 量子力学是20世纪物理学最惊心动魄的发现之一,量子计算是物理理论与计算机的成功结合,在量子体系中,一位的信息位不在是经典的1比特,而是由两个本征态的任意叠加态所构成即称之为量子比特位(qubit),例如一个n位二进制的串在量子体系中就可同时表示n 2个信息,而量子计算机对每个叠加分量(本征态)实现的变换相当于一种经典计算,所有这些经典计算同时完成,并按一定的概率振幅叠加起来,给出量子计算的结果,这种计算称之为量子并行计算[4]。正是量子的并行性使得原来传统计算机无法解决的复杂问题以惊人的速度得以解决,但在量子计算机尚未构成的情况下,为了充分利用量子计算的高效并行性,本文借用了量子计算中的量子编码,继承了免疫克隆策略[5]中的克隆算子将二者相结合,提出了量子克隆遗传算法,并将其应用于0/1被包问题上,与传统进化算法相比较,它具有收敛速度快、寻优能力强的特点。 1本课题得到高等学校博士学科点专项科研基金(项目编号:20030701013)资助。 - 1 -

实数编码量子进化算法

第23卷第1期 Vol.23No.1 控 制 与 决 策 Cont rol and Decision 2008年1月 J an.2008 收稿日期:2006210211;修回日期:2007201224. 基金项目:交通部西部交通建设科技项目(200431882053). 作者简介:高辉(1969—),男,吉林松源人,博士生,从事智能控制、智能交通系统等研究;徐光辉(1964— ),男,辽宁锦州人,副教授,博士,从事城市轨道交通和交通系统动力学的研究. 文章编号:100120920(2008)0120087204 实数编码量子进化算法 高 辉1,徐光辉1,张 锐2,王哲人1 (1.哈尔滨工业大学交通科学与工程学院,哈尔滨150090;2.哈尔滨理工大学自动化学院,哈尔滨150080) 摘 要:为求解复杂函数优化问题,基于量子计算的相关概念和原理,提出一种实数编码量子进化算法.首先构造了由自变量向量的一个分量和量子比特的一对概率幅为等位基因的三倍体染色体,增加了解的多样性;然后利用量子旋转门和依据量子比特概率幅满足归一化条件设计的互补双变异算子进化染色体,实现局部搜索和全局搜索的平衡.标准函数仿真表明,该算法适合求解复杂函数优化问题,具有收敛速度快、全局搜索能力强和稳定性好的优点.关键词:量子计算;量子进化算法;实数编码量子进化算法;函数优化中图分类号:TP18 文献标识码:A R eal 2coded qu antum evolutionary algorithm GA O H ui 1 ,X U Guan g 2hui 1 ,Z H A N G R ui 2 ,W A N G Zhe 2ren 1 (1.School of Communication Science and Engineering ,Harbin Institute of Technology ,Harbin 150090,China ;2.School of Automation ,Harbin University of Science and Technology ,Harbin 150080,China.Correspondent :GAO Hui ,E 2mail :zr_gh @https://www.360docs.net/doc/577671016.html, ) Abstract :In order to optimize the complex f unctions ,a real 2coded quantum evolutionary algorithm is proposed based on the relational concepts and principles of quantum computing.Real 2coded triploid chromosomes ,whose alleles are composed of a component of the independent variable vector and a pair of probability amplitudes of the corresponding states of a qubit ,are constructed to keep the population diversity.The complementary double mutation operator ,which is designed according to the probability amplitudes of a qubit f ulfilling the normalization conditions ,and the quantum rotation gate are used to update chromosomes and realize a good balance between exploration and exploitation.Simulation results on benchmark functions show that the algorithm is well suitable for the complex function optimization ,and has the characteristics of rapider convergence ,more powerf ul global search capability and better stability. K ey w ords :Quantum computing ;Quantum evolutionary algorithm ;Real 2coded quantum evolutionary algorithm ;Function optimization 1 引 言 进化算法在求解复杂函数优化和组合优化问题中得到广泛应用,但仍存在“早熟”和“停滞”现象.为解决这些问题,借鉴量子计算的概念和原理,人们提 出了量子进化算法(Q EA )[123].Q EA 采用基于量子比特概念构造的量子染色体,增加解的多样性,以克服“早熟”现象;并利用当前最优染色体信息,使用量子旋转门更新量子染色体,确保进化的方向性,以避免“停滞”现象.然而大量研究表明[426],尽管Q EA 在求解组合优化问题时比传统进化算法表现出更优良的性能,但不适合求解复杂函数优化问题.为此, 本文提出一种实数编码量子进化算法(RCQ EA ).RCQ EA 利用待求解复杂函数自变量向量的一个分 量和量子比特的一对概率幅组成染色体的等位基因,进而构造实数编码三倍体染色体,以增加解的多样性,并利用量子旋转门和依据量子比特概率幅满足归一化条件而设计的基于高斯变异的互补双变异算子一起进化染色体,实现算法局部搜索和全局搜索的平衡.标准函数仿真表明,RCQ EA 求解复杂函数优化问题具有很好的性能. 2 量子进化算法(QEA) 在Q EA 中[5],用一个具有n 个量子比特的量子

功能基因的克隆及生物信息学分析

功能基因的克隆及其生物信息学分析 摘要:随着多种生物全基因组序列的获得,基因组研究正从结构基因组学(structural genomics)转向功能基因组学(functional genomics)的整体研究。功能基因组学利用结构基因组学研究获得的大量数据与信息评价基因功能(包括生化功能、细胞功能、发育功能、适应功能等),其主要手段结合了高通量的大规模的实验方法、统计和计算机分析技术[1],它代表了基因分析的新阶段,已成为21世纪国际生命科学研究的前沿。功能基因组学是利用基因组测序获得的信息和产物,发展和应用新的实验手段,通过在基因组或系统水平上全面分析基因的功能,使生物学研究从对单一基因或蛋白的研究转向多个基因或蛋白同时进行系统的研究,是在基因组静态的组成序列基础上转入对基因组动态的生物学功能学研究[2]。如何研究功能基因,也成为我们面临的一个课题,本文就克隆和生物信息学分析在研究功能基因方面的应用做一个简要的阐述。 关键词:功能基因、克隆、生物信息学分析。 1.功能基因的克隆 1.1 图位克隆方法 图位克隆又称定位克隆,它是根据目标基因在染色体上确切位置,寻找与其紧密连锁的分子标记,筛选BCA克隆,通过染色体步移法逐步逼近目的基因区域,根据测序结果或用BAC、YAC克隆筛选cDNA表达文库寻找候选基因,得到候选基因后再确定目标基因。优点是无需掌握基因产物的任何信息,从突变体开始,逐步找到基因,最后证实该基因就是造成突变的原因。通过图位克隆许多控制质量性状的单基因得以克隆,最近也有报道某些控制数量性状的主效基因(控制蕃茄果实大小的基因克隆[3]、控制水稻成熟后稻谷脱落基因克隆[4]以及小麦VRN2 基因克隆[5]等)也通过图位克隆法获得。

移动无线信道中Hata模型的仿真分析

移动无线信道中Hata 模型的仿真分析 宋卫星 潘 和 过宝宝 胡仲羽 (陕西理工学院,陕西 汉中 723001) 【摘 要】移动无线信道模型的建立及仿真实验对移动通信的研究具有重要意义,文章详细分析了移动无线信道中的Hata 模型,并对路径损耗进行了仿真,为进行无线通信工程的设计、仿真和规划提供参考。 【关键词】无线信道;Hata 模型;仿真 【中图分类号】TN911 【文献标识码】A 【文章编号】1008-1151(2011)01-0021-01 (一)引言 无线信道建模是其他无线通信技术设计的基础,无线信道是任何一个无线通信系统中电波传播过程中必不可少的组成部分,它是连接发射机和接收机的媒介,其特性决定了信息论的容量,即无线通信系统的最终性能限制。由于电磁波在无线信道中受到反射、绕射、散射、多径传播等多种因素的影响,导致无线信道不像有线信道那样固定且容易预测,也给无线信道中电磁信号的传播特性分析过程带来了很大的不确定性。因此无线信道的建模是无线通信系统研究中的难点和重点,而无线信道的传播特性对于无线系统的设计、仿 真和规划却有着十分重要的作用。 在无线通信系统中,电波传播经常在不规则地区。在估 计预测路径损耗时,要考虑特定地区的地形地貌,包括简单 的曲线形状和多山地区以及障碍物等因素的影响。在无线通 信系统的工程设计中,常采用电波传播损耗模型来计算无线路径的传播损耗,建立这些模型的目的是为了预测特定点或 特定区域的信号场强。本文对移动无线信道中的Hata 模型进行了详细的分析,并对其路径损耗进行了仿真模拟。 (二)Hata 模型的基本原理 1.Okumura 模型 Okumura 模型是预测城区信号是使用最广泛的模型之一,它使适用的频率范围为150~1925MHz,适用的距离是1~100km,模型要求的基站高度为30~1000m。模型的路径损耗可表示为: 50)(,)()(f m u te re A R E A L L A f d G h G h G =+???, (1) 其中50L 为传播路径损耗值的50%, f L 为自由空间传播损耗, mu A 为自由空间中值损耗,()te G h 为基站天线高度增益因子,()re G h 为移动台天线高度增益因子,AREA G 为环境类型的增益。mu A 和AREA G 是频率的函数,Okumura 给出了相应的曲线,可直 接使用。()te G h ,()re G h 根据下面的公式计算 ()20lg(/200), 301000()10lg(/3) 3()20lg(/3) 310te te re re re re G h h m h m te G h h h m re G h h m h m re =<<=<=<< (2) Okumura完全基于测试数据,在许多情况下,通过外推曲线来获得测试范围以外的值。通常预测和测试路径损耗的偏差为10dB到14dB。 2.Hata 模型 Hata 模型是广泛使用的一种中值路径损耗预测的传播模型,适用于宏蜂窝的路径损耗预测,根据应用频率的不同,Hata 模型分为Okumura-Hata 模型和COST-231Hata 模型,Okumura-Hata 模型适用的频率范围为150MHz~1500MHz,主要用于900MHz;COST-231Hata 模型,是COST-231工作委员会提出的将频率扩展到2GHz 的Hata 模型扩展版本。 Okumura-Hata 模型是根据测试数据统计分析(Okumura 曲线图)得出所作的经验公式。以市区传播损耗为标准,其他地区在此基础上进行修正。Okumura-Hata 模型路径损耗 50()L dB 计算的经验公式为: 5069.5526.16lg 13.82lg 44.9 6.55lg lg ()()()c te re te cell terrain L dB f h h h d C C α=+??+?++, (3) 其中c f 为传输频率(MHz);te h 为发射有效天线高度;re h 为接收有效天线高度;d 为收发之间的水平距离,单位为km;()re h α为有效天线修正因子,是覆盖区大小的函数。 对于中、小城市,有效天线修正因子为: ()(1.11lg 0.7)(1.56lg 0.8)re c re c h f h f dB α=???,(4) 对于大城市、郊区、乡村,有效天线修正因子为: ()8.29(lg1.54) 1.1() 3.2(lg11.75) 4.97300300re re c h h dB h h dB f MHz re re f MHz c αα=?<=?≥,,, (5) cell C 为小区类型校正因子,不同环境下其取值不同。 城市:0cell C =;郊区:()22lg /28 5.4cell C f =??; 乡村:24.78(lg f )18.33lg 40.98cell c c C f =???。 terrain C 为地形校正因子,它反映一些重要的地形环境因素 对路径损耗的影响,合理的地形校正因子取值可以通过传播模型的测试和校正得到,也可以人为的设定。 在d 超过1km 时Hata 模型的预测结果与Okumura 模型非常接近,该模型适用于大区制移动通信系统,但不适合小区半径为lkm 左右的个人通信系统。 科学和技术研究欧洲协会将hata 模型扩展到2GHz,COST-231 Hata 模型路径损耗50()L dB 计算的经验模型公式为: 5046.333.9lg 13.82lg ()(44.9 6.55lg )lg c te re te cell terrain M L f h h h d C C C α=+??+?+++,(6) 式(6)中M C 为大城市中心校正因子,对于中(下转第31页) 【收稿日期】2010-11-12 【作者简介】宋卫星(1958-),男,河南孟州人,陕西理工学院物理系高级实验师,从事电子技术研究。

相关文档
最新文档