数学二次函数与三角形综合题型
二次函数与相似三角形综合1

二次函数与相似三角形综合1、P (-3,m )和Q (1,m )是二次函数y =2x 2+bx +1图象上的两点.(1)求b 的值;(2)将二次函数y =2x 2+bx +1的图象向上平移k (k 是正整数)个单位,使平移后的图象与x 轴无交点,求k 的最小值.2、如图,在矩形ABCD 中,4AB =,6AD =,点P 是射线DA 上的一个动点,将三角板的直角顶点重合于点P ,三角板两直角中的一边始终经过点C ,另一直角边交射线BA 于点E . (1)判断△EAP 与△PDC 一定相似吗?请证明你的结论;(2)设PD x =,AE y =,求y 与x 的函数关系式,并写出它的定义域;(3)是否存在这样的点P ,是△EAP 周长等于△PDC 周长的2倍?若存在,请求出PD 的长度;若不存在,请简要说明理由.3、如图,四边形ABCD 中,AD =CD ,∠DAB =∠ACB =90°,过点D 作DE ⊥AC ,垂足为F ,DE 与AB 相交于点E , AB =15 cm ,BC =9 cm ,(1)点E 是AB 的中点吗?为什么? (2)若P 是射线DE 上的动点.设DP =x cm (0x >),四边形BCDP 的面积为y cm 2.①求y 关于x 的函数关系式;②当x 为何值时,△PBC 的周长最小,并求出此时四边形BCDP 的面积.EPDCBA4、如图,点A 在x 正半轴上,点B 在y 正半轴上,OB :OA=2,抛物线22y x mx =++的顶点为D ,且经过A 、B 两点.(1)求抛物线解析式;(2)将OAB Δ绕点A 旋转90˚后,点B 落在点C 处,将上述抛物线沿y 轴上下平移后过C 点,写出点C 坐标及平移后的抛物线解析式;(3)设(2)中平移后抛物线交y 轴于1B ,顶点为1D ,点P 在平移后的图像上,且112PBB PDD S S =ΔΔ,求点P 坐标.5、如图,二次函数x x y 31322—=的图像经过△AOC 的三个顶点,其中A(-1,m),B(n,n). (1)求A 、B 的坐标;(2)在坐标平面上找点C ,使以A 、O 、B 、C 为顶点的四边形是平行四边形①这样的点C 有几个?②能否将抛物线x x y 31322—=平移后经过A 、C 两点,若能求出平移后经过A 、C 两点的一条抛物线的解析式;若不能,说明理由。
中考数学总复习《二次函数与三角形》综合题(含答案)

二次函数与三角形一 、填空题(本大题共2小题)1.已知二次函数交轴于,两点,交轴于点,且是等腰三角形,请写出一个符合要求的二次函数的解析式 .2.二次函数的图象的顶点为,与轴正方向从左至右依次交于,两点,与轴正方向交于点,若和均为等腰直角三角形(为坐标原点),则 .二 、解答题(本大题共9小题)3.如图,抛物线与轴交与,两点.(1)求该抛物线的解析式;(2)设(1)中的抛物线交轴与点,在该抛物线的对称轴上是否存在点,使得的周长最小?若存在,求出点的坐标;若不存在,请说明理由.(3)在(1)中的抛物线上的第二象限上是否存在一点,使的面积最大?,若存在,求出点的坐标及的面积最大值.若没有,请说明理由.4.如图,已知二次函数的图象经过点、和原点.为二次函数图象上的一个动点,过点作轴的垂线,垂足为,并与直线交于点.2y ax bx c =++x A B y C ABC △2y x bx c =++D x A B y C ABD △OBC △O 2b c +=2y x bx c =-++x ()10A ,()30B -,y C Q QAC △Q P PBC △P PBC△()33A ,()40B ,O P P x ()0D m ,OA C(1)求出二次函数的解析式;(2)当点在直线的上方时,求线段的最大值;(3)当时,探索是否存在点,使得为等腰三角形,如果存在,求出的坐标;如果不存在,请说明理由.5.已知二次函数22(2)4y m x mx n =--+的图象的对称轴是直线2x =,且它的最高点在直线 112y x =+上. ⑴ 求此二次函数的解析式;⑵ 若此二次函数的图象开口方向不变,定点在直线112y x =+上移动到M 点时,图象与x 轴恰好交于A 、B 两点,且8ABM S ∆=,求这时的二次函数的解析式.6.已知二次函数212y x bx c =++的图象经过点(36)A -,并且与x 轴相交于点(10)B -,和点C ,顶点为P(1)求二次函数的解析式;(2)设D 为线段OC 上一点,满足DPC BAC ∠=∠,求点D 的坐标P OA PC m >0P PCO △P7.如图,已知二次函数图象的顶点为原点,直线的图象与该二次函数的图象交于点,直线与轴的交点为,与轴的交点为. (1)求点的坐标与这个二次函数的解析式;(2)为线段上的一个动点(点与、不重合),过点作轴的垂线与这个二次函数的图象交于点,与轴交于点.设该线段的长为,点的横坐标为,求与之间的函数解析式,并写出自变量的取值范围; (3)在(2)的条件下,在线段上是否存在点,使得以点、、为顶点的三角形与相似?若存在,请求出点的坐标;若不存在,请说明理由.142y x =+A ()88,x C y B B P AB P A B P x D x E PD h P t h t t AB P P D B BOC △P8.如图,抛物线经过(40)(10)(02)A B C -,,,,,三点.(1)求出抛物线的解析式;(2)P 是抛物线上一动点,过P 作PM x ⊥轴,垂足为M ,是否存在P 点,使得以A ,P ,M 为顶点的三角形与OAC △相似?若存在,请求出符合条件的点P 的坐标;若不存在,请说明理由;(3)在直线AC 上方的抛物线上有一点D ,使得DCA △的面积最大,求出点D 的坐标.9.已知二次函数图象的对称轴是直线,且过点.(1)求、的值;(2)求出该二次函数图象与轴的交点、的坐标;(3)如果某个一次函数图象经过坐标原点和该二次函数图象的顶点.问在这个一次函数图象上是否存在点,使得是直角三角形?若存在,请求出点的坐标;若不存在,请说明理由.10.如图,抛物线2122y x bx =+-与x 轴交于A B ,两点,与y 轴交于C 点,且()10A -,. (1)求抛物线的解析式及顶点D 的坐标;) (2)判断ABC △的形状,证明你的结论;(3)点(0)M m ,是x 轴上的一个动点,当MC MD +的值最小时,求m 的值.2y x bx c =++2x =()03A ,b c x B C O M P PBC △P11.如图,在平面直角坐标系中,已知矩形的三个顶点、、.抛物线过、两点.(1) 直接写出点的坐标,并求出抛物线的解析式;(2) 动点从点出发.沿线段向终点运动,同时点从点出发,沿线段向终点运动.速度均为每秒1个单位长度,运动时间为秒.过点作交于点.① 过点作于点,交抛物线于点当为何值时,线段最长? ② 连接.在点、运动的过程中,判断有几个时刻使得是等腰三角形?请直接写出相应的值.ABCD ()40B ,()80C ,()88D ,2y ax bx =+A C A P A AB B Q C CD D t P PE AB ⊥AC E E EF PE ⊥F G t EG EQ P Q CEQ △t二次函数与三角形答案解析一 、填空题1.等(答案不唯一);∵二次函数交轴于,两点,交轴于点,且是等腰三角形∴当时,点坐标为只要不为即可.2.2;由已知,得、、、. 过作于点,则,即,得:. 又∵.又∵,即:,得:.故答案为:2.【解析】二次函数综合题.此题主要考查了二次函数与坐标轴交点的表示方法,以及等腰直角三角形的性质等知识,得出,是解决问题的关键.22y x =-2y ax bx c=++x A B y C ABC △AO BO =C 0C ()0c ,0A ⎫⎪⎪⎝⎭0B ⎫⎪⎪⎝⎭2424b b c D ⎛⎫--- ⎪⎝⎭,D DE AB ⊥E 2DE AB =2424b c-⨯=24b c -=02=240b c ->2OC OB =c =22b c +=2DE AB =二 、解答题3.(1)将,代中得,,∴∴抛物线解析式为:(2)存在理由如下:由题知、两点关于抛物线的对称轴对称. ∴直线与的交点即为点,此时周长最小∵ ∴C 的坐标为:∵直线解析式为:.∴点坐标即为的解,∴∴ (3)存在.理由如下:设点且 ∵,若有最大值,则就最大. ∴当时,.∴ 当时, ∴点坐标为【解析】二次函数与三角形综合,轴对称与线段和差最值问题,坐标与面积4.(1)设,把代入得:,函数的解析式为,()10A ,()30B -,2y x bx c =-++10930b c b c -++=⎧⎨--+=⎩23b c =-⎧⎨=⎩223y x x =--+A B 1x =-BC 1x =-Q QAC △223y x x =--+()03,BC 3y x =+Q 13x y x =-⎧⎨=+⎩12x y =-⎧⎨=⎩()12Q -,P ()223x x x --+,()30x -<<92BPC BOC BPCO BPCO S S S S =-=-△△四边形四边形BPCO S 四边形BPC S △=Rt BPE BPCO PEOC S S S +△四边形直角梯形()11=22BE PE OE PE OC ⋅++()()()()221132323322x x x x x x =+--++---++2339272228x ⎛⎫=-+++ ⎪⎝⎭32x =-927=+28BPCO S 四边形最大值927927=+2828BPC S -=△最大值32x =-215234x x --+=P 31524⎛⎫- ⎪⎝⎭,()4y ax x =-()33A ,1a =-24y x x =-+(2),,∵,开口向下,∴有最大值,当时,,当点在直线的上方时,线段的最大值是. (3)当时,仅有, 所以, 解得,∴; 当时,,, 由勾股定理得:,①当时,,解得:,∴; ②当时,,解得:,(舍去),∴;③当时,,解得:,∴,综上所述:存在,的坐标是或或或.5.(1)242y x x =-+-;(2)2(6)4y x =--+【解析】⑴ 由已知条件2222422(2)124(2)(4)1214(2)2mm m n m n m m ⎧=⎪-=-⎧⎪⇒⎨⎨=---⎩⎪=⋅+⎪⋅-⎩, ∴所求二次函数的解析式为242y x x =-+-. ⑵ 设定点1(1)2M a a +,,(0)A a t -,,(B a t +,0), 则所求二次函数形如2()12a y x a =--++, 又由已知8AMB S ∆=,∴182AB y ⋅=,03m <<2239324PC CD PD m m m ⎛⎫=-=-+=--+ ⎪⎝⎭-1<0302D ⎛⎫⎪⎝⎭,max 94PC =P OA PC 9403m <<OC PC=23m m -+=3m =(31P +3m ≥23PC CD PD m m =-=-+OC ()2222224OP OD DP m m m =+=+-OC PC=23m m -3m =(31P +-OC OP=)()22224m m m =+-15m =23m =()55P -,PC OP =()()2222234m m m m m -=+-4m =()40P ,P (31+(31-()55-,()40,∴2112(1)82226102t a t a a t ⎧⋅⋅+=⎪=⎧⎪⇒⎨⎨=⎩⎪-++=⎪⎩, ∴所求二次函数为2(6)4y x =--+.6.(1)21322y x x =--;(2)503⎛⎫⎪⎝⎭, 【解析】(1)函数图象经过点(36)(10)A B --,,,,∴2216(3)3210(1)2b cb c ⎧=⨯--+⎪⎪⎨⎪=⨯--+⎪⎩,解得312b c ⎧=-=-⎨⎩,。
二次函数与相似三角形综合题

二次函数与相似三角形二次函数与相似三角形例1 如图1,已知抛物线x x 41y 2+-=的顶点为A ,且经过原,与x 轴交于点O 、B 。
(1)若点C 在抛物线的对称轴上,点D 在抛物线上,且以O 、C 、D 、B 四点为顶点的四边形为平行四边形,求D 点的坐标;点的坐标;(2)连接OA 、AB ,如图2,在x 轴下方的抛物线上是否存在点P ,使得△OBP 与△OAB 相似?若存在,求出P 点的坐标;若不存在,说明理由。
点的坐标;若不存在,说明理由。
分析:1.当给出四边形的两个顶点时应以两个顶点的连线.......为四边形的边和对角线来考虑问题以O 、C 、D 、B 四点为顶点的四边形为平行四边形要分类讨论:按OB 为边和对角线两种情况2. . 函数中因动点产生的相似三角形问题一般有三个解题途径函数中因动点产生的相似三角形问题一般有三个解题途径函数中因动点产生的相似三角形问题一般有三个解题途径① 求相似三角形的第三个顶点时,先要分析已知三角形的边.和角.的特点,进而得出已知三角形是否为特殊三角形。
根据未知三角形中已知边与已知三角形的可能对应边分类讨论。
根据未知三角形中已知边与已知三角形的可能对应边分类讨论。
②或利用已知三角形中对应角,在未知三角形中利用勾股定理、在未知三角形中利用勾股定理、三角函数、三角函数、三角函数、对称、对称、旋转等知识来推导边的大小。
识来推导边的大小。
③若两个三角形的各边均未给出,则应先设所求点的坐标进而用函数解析式来表示各边的长度,之后利用相似来列方程求解。
度,之后利用相似来列方程求解。
解:⑴如图1,当OB 为边即四边形OCDB 是平行四边形时,CD ∥=OB, 由1)2x (4102+--=得4x ,0x 21==, ∴B(4,0),OB =4. ∴D 点的横坐标为6 将x =6代入1)2x (41y 2+--=,得y =-3, ∴D(6,-3); 例1题图题图 图1 OAByxOAByx图2 COABDyx图1 13E A'OAB Py x图2 (2)先根据A 、C 的坐标,用待定系数法求出直线AC 的解析式,进而根据抛物线和直线AC 的解析式分别表示出点P 、点M 的坐标,即可得到PM 的长;(3)由于∠PFC 和∠AEM 都是直角,F 和E 对应,则若以P 、C 、F 为顶点的三角形和△AEM 相似时,分两种情况进行讨论:①△PFC∽△AEM,②△CFP∽△AEM;可分别用含m 的代数式表示出AE 、EM 、CF 、PF 的长,根据相似三角形对应边的比相等列出比例式,求出m 的值,再根据相似三角形的性质,直角三角形、等腰三角形的判定判断出△PCM 的形状.解答:解:(1)∵抛物线y=ax 2﹣2ax+c (a≠0)经过点A (3,0),点C (0,4), ∴,解得,∴抛物线的解析式为y=﹣x 2+x+4; (2)设直线AC 的解析式为y=kx+b , ∵A(3,0),点C (0,4), ∴,解得,∴直线AC 的解析式为y=﹣43x+4.∵点M 的横坐标为m ,点M 在AC 上,∴M 点的坐标为(m ,﹣43m+4), ∵点P 的横坐标为m ,点P 在抛物线y=﹣x 2+x+4上,∴点P 的坐标为(m ,﹣ m 2+m+4), ∴PM=PE﹣ME=(﹣m 2+m+4)﹣(﹣43m+4)=﹣m 2+73m ,即PM=﹣m 2+73m (0<m <3); (3)在(2)的条件下,连结PC ,在CD 上方的抛物线部分存在这样的点P ,使得以P 、C 、F 为顶点的三角形和△AEM 相似.理由如下:由题意,可得AE=3﹣m ,EM=﹣m+4,CF=m ,PF=﹣m 2+m+4﹣4=﹣m 2+m . 若以P 、C 、F 为顶点的三角形和△AEM 相似,分两种情况:①若△PFC∽△AEM,则PF :AE=FC :EM ,即(﹣m 2+m ):(3﹣m )=m :(﹣ m+4), ∵m≠0且m≠3, ∴m=.∵△PFC∽△AEM,∴∠PCF=∠AME, ∵∠AME=∠CMF,∴∠PCF=∠CMF.在直角△CMF 中,∵∠CMF+∠MCF=90°, ∴∠PCF+∠MCF=90°,即∠PCM=90°, ∴△PCM 为直角三角形;②若△CFP∽△AEM,则CF :AE=PF :EM ,即m :(3﹣m )=(﹣m 2+m ):(﹣m+4), ∵m≠0且m≠3,yxEQP C B OA ∴m=1.∵△CFP∽△AEM,∴∠CPF=∠AME, ∵∠AME=∠CMF,∴∠CPF=∠CMF. ∴CP=CM,∴△PCM 为等腰三角形.综上所述,存在这样的点P 使△PFC 与△AEM 相似.此时m 的值为或1,△PCM 为直角三角形或等腰三角形.点评:此题是二次函数的综合题,其中涉及到运用待定系数法求二次函数、一次函数的解析式,矩形的性质,相似三角形的判定和性质,直角三角形、等腰三角形的判定,难度适中.要注意的是当相似三角形的对应边和对应角不明确时,要分类讨论,以免漏解. 练习1、已知抛物线225333y x x =-+经过53(33)02P E æöç÷ç÷èø,,,及原点(00)O ,. (1)过P 点作平行于x 轴的直线PC 交y 轴于C 点,在抛物线对称轴右侧且位于直线PC 下方的抛物线上,任取一点Q ,过点Q 作直线QA 平行于y 轴交x 轴于A 点,交直线PC 于B 点,直线QA 与直线PC 及两坐标轴围成矩形OABC .是否存在点Q ,使得OPC △与PQB △相似?若存在,求出Q 点的坐标;若不存在,说明理由.点的坐标;若不存在,说明理由.(2)如果符合(2)中的Q 点在x 轴的上方,连结OQ ,矩形OABC 内的四个三角形OPC PQB OQP OQA ,,,△△△△之间存在怎样的关系?为什么?之间存在怎样的关系?为什么?(1)存在.)存在.设Q 点的坐标为()m n ,,则225333n m m =-+, 要使,BQ PB OCP PBQ CP OC =△∽△,则有3333n m --=,即2253333333m m m +--=解之得,12232m m ==,.当123m =时,2n =,即为Q 点,所以得(232)Q ,要使,BQ PB OCP QBP OC CP =△∽△,则有3333n m --=,即2253333333m m m +--=解之得,12333m m ==,,当3m =时,即为P 点,点, 当133m =时,3n =-,所以得(333)Q -,. 故存在两个Q 点使得OCP △与PBQ △相似.相似.Q 点的坐标为(232)(333)-,,,.(2)在Rt OCP △中,因为3tan 3CP COP OC Ð==.所以30COP Ð=. 当Q 点的坐标为(232),时,30BPQ COP Ð=Ð=. 所以90OPQ OCP B QAO Ð=Ð=Ð=Ð=.因此,OPC PQB OPQ OAQ ,,,△△△△都是直角三角形.都是直角三角形.又在Rt OAQ △中,因为3tan 3QA QOA AO Ð==.所以30QOA Ð=. 即有30POQ QOA QPB COP Ð=Ð=Ð=Ð=. 所以OPC PQB OQP OQA △∽△∽△∽△, 又因为QP OP QA OA ,⊥⊥30POQ AOQ Ð=Ð=,所以OQA OQP △≌△.2.在平面直角坐标系xOy 中,已知二次函数223y x x =-++的图象与x 轴交于A B ,两点(点A 在点B 的左边),与y 轴交于点C .(1)若直线:(0)l y kx k =¹与线段BC 交于点D (不与点B C ,重合),则是否存在这样的直线l ,使得以B O D ,,为顶点的三角形与BAC △相似?若存在,求出该直线的函数表达式及点D 的坐标;若不存在,请说明理由;(10)(30),(03)A B C -,,,, (2)若点P 是位于该二次函数对称轴右边图象上不与顶点重合的任意一点,试比较锐角PCO Ð与ACO Ð的大小(不必证明),并写出此时点P 的横坐标p x 的取值范围.的取值范围.(1)假设存在直线:(0)l y kx k =¹与线段BC 交于点D (不与点B C ,重合),使得以B O D ,,为顶点的三角形与BAC △相似.相似.在223y x x =-++中,令0y =,则由2230x x -++=,解得1213x x =-=,(10)(30)A B \-,,,. 令0x =,得3y =.(03)C \,. 设过点O 的直线l 交BC 于点D ,过点D 作DE x ⊥轴于点E .yCl xB A 1x = 练习3图yx B E A OC D1x =l点B的坐标为(30),,点C的坐标为(03),,点A的坐标为(10)-,.4345.AB OB OC OBC\===Ð=,,223332BC\=+=.要使BOD BAC△∽△或BDO BAC△∽△,已有B BÐ=Ð,则只需BD BOBC BA=,①或.BO BDBC BA=②成立.成立.若是①,则有3329244BO BCBDBA´===.而45OBC BE DEÐ=\=,.\在Rt BDE△中,由勾股定理,得222229224BE DE BE BDæö+===ç÷ç÷èø.解得解得94BE DE==(负值舍去).93344OE OB BE\=-=-=.\点D的坐标为3944æöç÷èø,.将点D的坐标代入(0)y kx k=¹中,求得3k=.\满足条件的直线l的函数表达式为3y x=.[或求出直线AC的函数表达式为33y x=+,则与直线AC平行的直线l的函数表达式为3y x=.此时易知BOD BAC△∽△,再求出直线BC的函数表达式为3y x=-+.联立33y x y x==-+,求得点D的坐标为3944æöç÷èø,.]若是②,则有342232BO BABDBC´===.而45OBC BE DEÐ=\=,.\在Rt BDE △中,由勾股定理,得222222(22)BE DE BE BD +===.解得解得2BE DE ==(负值舍去).321OE OB BE \=-=-=.\点D 的坐标为(12),. 将点D 的坐标代入(0)y kx k =¹中,求得2k =.∴满足条件的直线l 的函数表达式为2y x =.\存在直线:3l y x =或2y x =与线段BC 交于点D (不与点B C ,重合),使得以B O D ,,为顶点的三角形与BAC △相似,且点D 的坐标分别为3944æöç÷èø,或(12),.(2)设过点(03)(10)C E ,,,的直线3(0)y kx k =+¹与该二次函数的图象交于点P . 将点(10)E ,的坐标代入3y kx =+中,求得3k =-. \此直线的函数表达式为33y x =-+.设点P 的坐标为(33)x x -+,,并代入223y x x =-++,得250x x -=. 解得1250x x ==,(不合题意,舍去).512x y \==-,.\点P 的坐标为(512)-,.此时,锐角PCO ACO Ð=Ð.又二次函数的对称轴为1x =,\点C 关于对称轴对称的点C ¢的坐标为(23),. \当5px>时,锐角PCO ACO Ð<Ð;当5p x =时,锐角PCO ACO Ð=Ð; 当25p x <<时,锐角PCO ACO Ð>Ð.OxBEA O C1x =PC ¢ ·3.如图所示,已知抛物线21y x =-与x 轴交于A 、B 两点,与y 轴交于点C ,过点A 作AP ∥CB 交抛物线于点P . 在x 轴上方的抛物线上是否存在一点M ,过M 作MG ^x 轴于点G ,使以A 、M 、G 三点为顶点的三角形与D PCA 相似.若存在,请求出M 点的坐标;否则,请说明理由.否则,请说明理由. 解:解: 假设存在假设存在A (1,0)-B (1,0)C (0,1)- ∵ÐPAB=ÐBAC =45 ∴P A ^AC ∵MG ^x 轴于点G , ∴ÐMGA=ÐPAC =90 在Rt △AOC 中,OA=OC=1 ∴AC=2 在Rt △PAE 中,AE=PE=3 ∴AP= 32 设M 点的横坐标为m ,则M 2(,1)m m - ①点M 在y 轴左侧时,则1m <-(ⅰ) 当D AMG ∽D PCA 时,有AG PA =MG CA∵AG=1m --,MG=21m -即211322m m ---=解得11m =-(舍去)(舍去) 223m =(舍去)(舍去)(ⅱ) 当D MAG ∽D PCA 时有AG CA =MGPA即 211232m m ---=解得:1m =-(舍去)(舍去) 22m =- ∴M (2,3)-② 点M 在y 轴右侧时,则1m > (ⅰ) 当D AMG ∽D PCA 时有AG PA =MGCA∵AG=1m +,MG=21m -G M 图3 C B y P A oxG M 图2 C B y P A ox图1 C P B y A ox∴211322m m +-=解得11m =-(舍去)(舍去) 243m =∴M 47(,)39(ⅱ) 当D MAG ∽D PCA 时有AG CA =MGPA即211232m m +-=解得:11m =-(舍去)(舍去) 24m = ∴M (4,15)∴存在点M ,使以A 、M 、G 三点为顶点的三角形与D PCA 相似相似M 点的坐标为(2,3)-,47(,)39,(4,15)4.4.(2013•曲靖压轴题)如图,在平面直角坐标系(2013•曲靖压轴题)如图,在平面直角坐标系xOy 中,直线y=x+4与坐标轴分别交于A 、B 两点,过A 、B 两点的抛物线y=﹣x 2﹣3x+4..点D 为线段AB 上一动点,过点D 作CD⊥x 轴于点C ,交抛物线于点E .(1)当DE=4时,求四边形CAEB 的面积.的面积. (2)连接BE BE,,是否存在点D ,使得△DBE 和△DAC 相似?若存在,求此点D 坐标;若不存在,说明理由.说明理由.考点: 二次函数综合题. 分析: (1)首先求出点A 、B 的坐标,然后利用待定系数法求出抛物线的解析式;(2)设点C 坐标为(m ,0)(m <0),根据已知条件求出点E 坐标为(m ,8+m );由于点E 在抛物线上,则可以列出方程求出m 的值.在计算四边形CAEB 面积时,利用S 四边形CAEB =S △A CE +S 梯形OCEB ﹣S △BCO ,可以简化计算;(3)由于△ACD为等腰直角三角形,而△DBE和△DAC相似,则△DBE必为等腰直角三角形.分两种情况讨论,要点是求出点E的坐标,由于点E在抛物线上,则可以由此列出方程求出未知数.解答:解:(1)在直线解析式y=x+4中,令x=0,得y=4;令y=0,得x=﹣4,∴A(﹣4,0),B(0,4).∵点A(﹣4,0),B(0,4)在抛物线y=﹣x2+bx+c上,∴,解得:b=﹣3,c=4,∴抛物线的解析式为:y=﹣x 2﹣3x+4.(2)设点C坐标为(m,0)(m<0),则OC=﹣m,AC=4+m.∵OA=OB=4,∴∠BAC=45°,∴△ACD为等腰直角三角形,∴CD=AC=4+m,∴CE=CD+DE=4+m+4=8+m,∴点E坐标为(m,8+m).∵点E在抛物线y=﹣x 2﹣3x+4上,∴8+m=﹣m2﹣3m+4,解得m=﹣2.∴C(﹣2,0),AC=OC=2,CE=6,S四边形CAEB=S△ACE+S梯形OCEB﹣S△BCO=×2×6+(6+4)×2﹣×2×4=12.(3)设点C坐标为(m,0)(m<0),则OC=﹣m,CD=AC=4+m,BD=OC=﹣m,则D(m,4+m).∵△ACD为等腰直角三角形,△DBE和△DAC相似∴△DBE必为等腰直角三角形.i)若∠BED=90°,则BE=DE,∵BE=OC=﹣m,∴DE=BE=﹣m,∴CE=4+m﹣m=4,∴E(m,4).∵点E在抛物线y=﹣x2﹣3x+4上,∴4=﹣m2﹣3m+4,解得m=0(不合题意,舍去)或m=﹣3,∴D(﹣3,1);ii)若∠EBD=90°,则BE=BD=﹣m,在等腰直角三角形EBD中,DE=BD=﹣2m,∴C E=4+m﹣2m=4﹣m,∴E(m,4﹣m).∵点E在抛物线y=﹣x2﹣3x+4上,∴4﹣m=﹣m2﹣3m+4,解得m=0(不合题意,舍去)或m=﹣2,∴D(﹣2,2).综上所述,存在点D,使得△DBE和△DAC相似,点D的坐标为(﹣3,1)或(﹣2,2).点评:本题考查了二次函数与一次函数的图象与性质、函数图象上点的坐标特征、待定系数法、相似三角形、等腰直角三角形、图象面积计算等重要知识点.第(3)问需要分类讨论,这是本题的难点.5.5.(2013•绍兴压轴题)抛物线(2013•绍兴压轴题)抛物线y=y=((x ﹣3)(x+1x+1))与x 轴交于A ,B 两点(点A 在点B 左侧),与y 轴交于点C ,点D 为顶点.为顶点.(1)求点B 及点D 的坐标.的坐标.(2)连结BD BD,,CD CD,抛物线的对称轴与,抛物线的对称轴与x 轴交于点E .①若线段BD 上一点P ,使∠DCP=∠BDE,求点P 的坐标.的坐标.②若抛物线上一点M ,作MN⊥CD,交直线CD 于点N ,使∠CMN=∠BDE,求点M 的坐标.的坐标.考点: 二次函数综合题.3718684分析: (1)解方程(x ﹣3)(x+1)=0,求出x=3或﹣1,根据抛物线y=(x ﹣3)(x+1)与x轴交于A ,B 两点(点A 在点B 左侧),确定点B 的坐标为(3,0);将y=(x ﹣3)(x+1)配方,写成顶点式为y=x 2﹣2x ﹣3=(x ﹣1)2﹣4,即可确定顶点D 的坐标;(2)①根据抛物线y=(x ﹣3)(x+1),得到点C 、点E 的坐标.连接BC ,过点C 作CH⊥DE 于H ,由勾股定理得出CD=,CB=3,证明△BCD 为直角三角形.分别延长PC 、DC ,与x 轴相交于点Q ,R .根据两角对应相等的两三角形相似证明△BCD∽△QOC,则==,得出Q 的坐标(﹣9,0),运用待定系数法求出直线CQ 的解析式为y=﹣x ﹣3,直线BD 的解析式为y=2x ﹣6,解方程组,即可求出点P 的坐标;②分两种情况进行讨论:(Ⅰ)当点M 在对称轴右侧时.若点N 在射线CD 上,如备用图1,延长MN交y轴于点F,过点M作MG⊥y轴于点G,先证明△MCN∽△DBE,由相似三角形对应边成比例得出MN=2CN.设CN=a,再证明△CNF,△MGF均为等腰直角三角形,然后用含a的代数式表示点M的坐标,将其代入抛物线y=(x﹣3)(x+1),求出a的值,得到点M的坐标;若点N在射线DC上,同理可求出点M的坐标;(Ⅱ)当点M在对称轴左侧时.由于∠BDE<45°,得到∠CMN<45°,根据直角三角形两锐角互余得出∠MCN>45°,而抛物线左侧任意一点K,都有∠KCN<45°,所以点M不存在.解答:解:(1)∵抛物线y=(x﹣3)(x+1)与x轴交于A,B两点(点A在点B左侧),∴当y=0时,(x﹣3)(x+1)=0,解得x=3或﹣1,∴点B的坐标为(3,0).∵y=(x﹣3)(x+1)=x2﹣2x﹣3=(x﹣1)2﹣4,∴顶点D的坐标为(1,﹣4);(2)①如右图.∵抛物线y=(x﹣3)(x+1)=x2﹣2x﹣3与与y轴交于点C,∴C点坐标为(0,﹣3).∵对称轴为直线x=1,∴点E的坐标为(1,0).连接BC,过点C作CH⊥DE于H,则H点坐标为(1,﹣3),∴CH=DH=1,∴∠CDH=∠BCO=∠BCH=45°,∴CD=,CB=3,△BCD为直角三角形.分别延长PC、DC,与x轴相交于点Q,R.∵∠BDE=∠DCP=∠QCR,∠CDB=∠CDE+∠BDE=45°+∠DCP,∠QCO=∠RCO+∠QCR=45°+∠DCP,∴∠CDB=∠QCO,∴△BCD∽△QOC,∴==,∴OQ=3OC=9,即Q(﹣9,0).∴直线CQ的解析式为y=﹣x﹣3,直线BD的解析式为y=2x﹣6.由方程组,解得.∴点P的坐标为(,﹣);②(Ⅰ)当点M在对称轴右侧时.若点N在射线CD上,如备用图1,延长MN交y轴于点F,过点M作MG⊥y轴于点G.∵∠CMN=∠BDE,∠CNM=∠BED=90°,∴△MCN∽△DBE,∴==,∴MN=2CN.设CN=a,则MN=2a.∵∠CDE=∠DCF=45°,∴△CNF,△MGF均为等腰直角三角形,∴NF=CN=a,CF=a,∴MF=MN+NF=3a,∴MG=FG=a,∴CG=FG﹣FC=a,∴M(a,﹣3+a).代入抛物线y=(x﹣3)(x+1),解得a=,∴M(,﹣);若点N在射线DC上,如备用图2,MN交y轴于点F,过点M作MG⊥y轴于点G.∵∠CMN=∠BDE,∠CNM=∠BED=90°,∴△MCN∽△DBE,∴==,∴MN=2CN.设CN=a,则MN=2a.∵∠CDE=45°,∴△CNF,△MGF均为等腰直角三角形,∴NF=CN=a,CF=a,∴MF=MN﹣NF=a,∴MG=FG=a,点评: 本题是二次函数的综合题型,其中涉及到的知识点有二次函数图象上点的坐标特征,二次函数的性质,运用待定系数法求一次函数、二次函数的解析式,勾股定理,等腰直角三角形、相似三角形的判定与性质,综合性较强,有一定难度.(2)中第②问进行分类讨论及运用数形结合的思想是解题的关键.6.6.(2013•恩施州压轴题)如图所示,直线(2013•恩施州压轴题)如图所示,直线l :y=3x+3与x 轴交于点A ,与y 轴交于点B .把△AOB 沿y 轴翻折,点A 落到点C ,抛物线y=y=x x 2﹣4x+3过点B 、C 和D (3,0). (1)若BD 与抛物线的对称轴交于点M ,点N 在坐标轴上,以点N 、B 、D 为顶点的三角形与△MCD 相似,求所有满足条件的点N 的坐标.的坐标. (2)在抛物线上是否存在点P ,使S △PBD =6=6?若存在,求出点?若存在,求出点P 的坐标;若不存在,说明理由.由.考点: 二次函数综合题.分析: (1)由待定系数法求出直线BD 和抛物线的解析式;(2)首先确定△MCD 为等腰直角三角形,因为△BND 与△MCD 相似,所以△BND 也是等腰直角三角形.如答图1所示,符合条件的点N 有3个;(3)如答图2、答图3所示,解题关键是求出△PBD 面积的表达式,然后根据S △PBD =6的已知条件,列出一元二次方程求解.解答: (1)抛物线的解析式为:y=x 2﹣4x+3=(x ﹣2)2﹣1,∴抛物线的对称轴为直线x=2,顶点坐标为(2,﹣1).直线BD :y=﹣x+3与抛物线的对称轴交于点M ,令x=2,得y=1,∴M(2,1).设对称轴与x 轴交点为点F ,则CF=FD=MN=1,∴△MCD 为等腰直角三角形.∵以点N 、B 、D 为顶点的三角形与△MCD 相似,∴△BND 为等腰直角三角形.如答图1所示:(I )若BD 为斜边,则易知此时直角顶点为原点O ,∴N 1(0,0);(II )若BD 为直角边,B 为直角顶点,则点N 在x 轴负半轴上,∵OB=OD=ON 2=3,∴N 2(﹣3,0);(III)若BD为直角边,D为直角顶点,则点N在y轴负半轴上,∵OB=OD=ON3=3,∴N3(0,﹣3).∴满足条件的点N坐标为:(0,0),(﹣3,0)或(0,﹣3).(2)假设存在点P,使S△PBD=6,设点P坐标为(m,n).(I)当点P位于直线BD上方时,如答图2所示:过点P作PE⊥x轴于点E,则PE=n,DE=m﹣3.S△PBD=S梯形PEOB﹣S△BOD﹣S△PDE=(3+n)•m﹣×3×3﹣(m﹣3)•n=6,化简得:m+n=7 ①,∵P(m,n)在抛物线上,∴n=m2﹣4m+3,代入①式整理得:m2﹣3m﹣4=0,解得:m1=4,m2=﹣1,∴n1=3,n2=8,∴P1(4,3),P2(﹣1,8);(II)当点P位于直线BD下方时,如答图3所示:过点P作PE⊥y轴于点E,则PE=m,OE=﹣n,BE=3﹣n.S△PBD=S梯形PEOD+S△BOD﹣S△PBE=(3+m)•(﹣n)+×3×3﹣(3﹣n)•m=6,化简得:m+n=﹣1 ②,∵P(m,n)在抛物线上,∴n=m 2﹣4m+3,代入②式整理得:m2﹣3m+4=0,△=﹣7<0,此方程无解.故此时点P不存在.综上所述,在抛物线上存在点P,使S△PBD=6,点P的坐标为(4,3)或(﹣1,8).点评:本题是中考压轴题,综合考查了二次函数的图象与性质、待定系数法、相似三角形的判定与性质、图形面积计算、解一元二次方程等知识点,考查了数形结合、分类讨论的数学思想.第(2)(3)问均需进行分类讨论,避免漏解.。
2024中考备考重难点01 二次函数与几何的综合训练(9大题型+限时分层检测)

重难点01 二次函数与几何图形的综合练习中考数学中《二次函数与几何图形的综合练习》部分主要考向分为九类:一、二次函数与几何变换的综合(选择性考,10~12分)二、二次函数与直角三角形的综合(选择性考,10~12分)三、二次函数与等腰三角形的综合(选择性考,10~12分)四、二次函数与相似三角形的综合(选择性考,10~12分)五、二次函数与四边形的综合(选择性考,10~12分)六、二次函数与最值的综合(选择性考,10~12分)七、二次函数与新定义的综合(选择性考,10~12分)八、二次函数与圆的综合(选择性考,10~12分)九、二次函数与角的综合(选择性考,10~12分)因为二次函数是大多数中考压轴题的几何背景,所以,训练二次函数与其他几何图形的综合问题非常必要,只要自己见过一定量的题型,才能再遇到对应类型的压轴题时不至于新生畏惧。
所以,本专题就常见的中考数学中二次函数的几种结合类型的压轴题进行训练,希望大家在训练中摸索方法,掌握技能,练就心态!考向一:二次函数与几何变换的综合1.(2023•武汉)抛物线交x轴于A,B两点(A在B的左边),交y轴于点C.(1)直接写出A,B,C三点的坐标;(2)如图(1),作直线x=t(0<t<4),分别交x轴,线段BC,抛物线C1于D,E,F三点,连接CF,若△BDE与△CEF相似,求t的值;(3)如图(2),将抛物线C1平移得到抛物线C2,其顶点为原点.直线y=2x与抛物线交于O,G两点,过OG的中点H作直线MN(异于直线OG)交抛物线C2于M,N两点,直线MO与直线GN交于点P.问点P是否在一条定直线上?若是,求该直线的解析式;若不是,请说明理由.2.在平面直角坐标系中,已知抛物线y=ax2+bx+c与x轴交于点A(﹣3,0),B(1,0)两点,与y轴交于点C(0,3),点P是抛物线上的一个动点.(1)求抛物线的表达式;(2)当点P在直线AC上方的抛物线上时,连接BP交AC于点D,如图1,当的值最大时,求点P 的坐标及的最大值;(3)过点P作x轴的垂线交直线AC于点M,连结PC,将△PCM沿直线PC翻折,当点M的对应点M′恰好落在y轴上时,请直接写出此时点M的坐标.考向二:二次函数与直角三角形的综合1.(2023•连云港)如图,在平面直角坐标系xOy中,抛物线L1:y=x2﹣2x﹣3的顶点为P.直线l过点M (0,m)(m≥﹣3),且平行于x轴,与抛物线L1交于A、B两点(B在A的右侧).将抛物线L1沿直线l翻折得到抛物线L2,抛物线L2交y轴于点C,顶点为D.(1)当m=1时,求点D的坐标;(2)连接BC、CD、DB,若△BCD为直角三角形,求此时L2所对应的函数表达式;(3)在(2)的条件下,若△BCD的面积为3,E、F两点分别在边BC、CD上运动,且EF=CD,以EF为一边作正方形EFGH,连接CG,写出CG长度的最小值,并简要说明理由.2.(2023•内江)如图,在平面直角坐标系中,抛物线y=ax2+bx+c与x轴交于B(4,0),C(﹣2,0)两点,与y轴交于点A(0,﹣2).(1)求该抛物线的函数表达式;(2)若点P是直线AB下方抛物线上的一动点,过点P作x轴的平行线交AB于点K,过点P作y轴的平行线交x轴于点D,求的最大值及此时点P的坐标;(3)在抛物线的对称轴上是否存在一点M,使得△MAB是以AB为一条直角边的直角三角形;若存在,请求出点M的坐标,若不存在,请说明理由.考向三:二次函数与等腰三角形的综合1.(2023•青海)如图,二次函数y=﹣x2+bx+c的图象与x轴相交于点A和点C(1,0),交y轴于点B(0,3).(1)求此二次函数的解析式;(2)设二次函数图象的顶点为P,对称轴与x轴交于点Q,求四边形AOBP的面积(请在图1中探索);(3)二次函数图象的对称轴上是否存在点M,使得△AMB是以AB为底边的等腰三角形?若存在,请求出满足条件的点M的坐标;若不存在,请说明理由(请在图2中探索).2.(2023•娄底)如图,抛物线y=x2+bx+c过点A(﹣1,0)、点B(5,0),交y轴于点C.(1)求b,c的值.(2)点P(x0,y0)(0<x0<5)是抛物线上的动点.①当x0取何值时,△PBC的面积最大?并求出△PBC面积的最大值;②过点P作PE⊥x轴,交BC于点E,再过点P作PF∥x轴,交抛物线于点F,连接EF,问:是否存在点P,使△PEF为等腰直角三角形?若存在,请求出点P的坐标;若不存在,请说明理由.考向四:二次函数与相似三角形的综合1.(2023•乐至县)如图,直线与x轴、y轴分别交于A、B两点,抛物线经过A、B两点.(1)求抛物线的表达式;(2)点D是抛物线在第二象限内的点,过点D作x轴的平行线与直线AB交于点C,求DC的长的最大值;(3)点Q是线段AO上的动点,点P是抛物线在第一象限内的动点,连结PQ交y轴于点N.是否存在点P,使△ABQ与△BQN相似,若存在,求出点P的坐标;若不存在,说明理由.2.(2023•随州)如图1,平面直角坐标系xOy中,抛物线y=ax2+bx+c过点A(﹣1,0),B(2,0)和C (0,2),连接BC,点P(m,n)(m>0)为抛物线上一动点,过点P作PN⊥x轴交直线BC于点M,交x轴于点N.(1)直接写出抛物线和直线BC的解析式;(2)如图2,连接OM,当△OCM为等腰三角形时,求m的值;(3)当P点在运动过程中,在y轴上是否存在点Q,使得以O,P,Q为顶点的三角形与以B,C,N为顶点的三角形相似(其中点P与点C相对应),若存在,直接写出点P和点Q的坐标;若不存在,请说明理由.考向五:二次函数与四边形的综合1.(2023•枣庄)如图,抛物线y=﹣x2+bx+c经过A(﹣1,0),C(0,3)两点,并交x轴于另一点B,点M是抛物线的顶点,直线AM与y轴交于点D.(1)求该抛物线的表达式;(2)若点H是x轴上一动点,分别连接MH,DH,求MH+DH的最小值;(3)若点P是抛物线上一动点,问在对称轴上是否存在点Q,使得以D,M,P,Q为顶点的四边形是平行四边形?若存在,请直接写出所有满足条件的点Q的坐标;若不存在,请说明理由.2.定义:若一次函数的图象与二次函数的图象有两个交点,并且都在坐标轴上,则称二次函数为一次函数的轴点函数.【初步理解】(1)现有以下两个函数:①y=x2﹣1;②y=x2﹣x,其中,为函数y=x﹣1的轴点函数.(填序号)【尝试应用】(2)函数y=x+c(c为常数,c>0)的图象与x轴交于点A,其轴点函数y=ax2+bx+c与x轴的另一交点为点B.若OB=OA,求b的值.【拓展延伸】(3)如图,函数y=x+t(t为常数,t>0)的图象与x轴、y轴分别交于M,C两点,在x轴的正半轴上取一点N,使得ON=OC.以线段MN的长度为长、线段MO的长度为宽,在x轴的上方作矩形MNDE.若函数y=x+t(t为常数,t>0)的轴点函数y=mx2+nx+t的顶点P在矩形MNDE的边上,求n的值.3.(2023•邵阳)如图,在平面直角坐标系中,抛物线y=ax2+x+c经过点A(﹣2,0)和点B(4,0),且与直线l:y=﹣x﹣1交于D、E两点(点D在点E的右侧),点M为直线l上的一动点,设点M的横坐标为t.(1)求抛物线的解析式.(2)过点M作x轴的垂线,与抛物线交于点N.若0<t<4,求△NED面积的最大值.(3)抛物线与y轴交于点C,点R为平面直角坐标系上一点,若以B、C、M、R为顶点的四边形是菱形,请求出所有满足条件的点R的坐标.考向六:二次函数与最值的综合1.(2023•吉林)如图,在平面直角坐标系中,抛物线y=﹣x2+2x+c经过点A(0,1),点P,Q在此抛物线上,其横坐标分别为m,2m(m>0),连接AP,AQ.(1)求此抛物线的解析式.(2)当点Q与此抛物线的顶点重合时,求m的值.(3)当∠P AQ的边与x轴平行时,求点P与点Q的纵坐标的差.(4)设此抛物线在点A与点P之间部分(包括点A和点P)的最高点与最低点的纵坐标的差为h1,在点A与点Q之间部分(包括点A和点Q)的最高点与最低点的纵坐标的差为h2,当h2﹣h1=m时,直接写出m的值.2.(2023•聊城)如图①,抛物线y=ax2+bx﹣9与x轴交于点A(﹣3,0),B(6,0),与y轴交于点C,连接AC,BC.点P是x轴上任意一点.(1)求抛物线的表达式;(2)点Q在抛物线上,若以点A,C,P,Q为顶点,AC为一边的四边形为平行四边形时,求点Q的坐标;(3)如图②,当点P(m,0)从点A出发沿x轴向点B运动时(点P与点A,B不重合),自点P分别作PE∥BC,交AC于点E,作PD⊥BC,垂足为点D.当m为何值时,△PED面积最大,并求出最大值.考向七:二次函数与新定义的综合1.(2023•南通)定义:平面直角坐标系xOy中,点P(a,b),点Q(c,d),若c=ka,d=﹣kb,其中k 为常数,且k≠0,则称点Q是点P的“k级变换点”.例如,点(﹣4,6)是点(2,3)的“﹣2级变换点”.(1)函数y=﹣的图象上是否存在点(1,2)的“k级变换点”?若存在,求出k的值;若不存在,说明理由;(2)动点A(t,t﹣2)与其“k级变换点”B分别在直线l1,l2上,在l1,l2上分别取点(m2,y1),(m2,y2).若k≤﹣2,求证:y1﹣y2≥2;(3)关于x的二次函数y=nx2﹣4nx﹣5n(x≥0)的图象上恰有两个点,这两个点的“1级变换点”都在直线y=﹣x+5上,求n的取值范围.2.(2023•宿迁)规定:若函数y1的图象与函数y2的图象有三个不同的公共点,则称这两个函数互为“兄弟函数”,其公共点称为“兄弟点”.(1)下列三个函数①y=x+1;②;③y=﹣x2+1,其中与二次函数y=2x2﹣4x﹣3互为“兄弟函数”的是(填写序号);(2)若函数与互为“兄弟函数”,x=1是其中一个“兄弟点”的横坐标.①求实数a的值;②直接写出另外两个“兄弟点”的横坐标是、;(3)若函数y1=|x﹣m|(m为常数)与互为“兄弟函数”,三个“兄弟点”的横坐标分别为x1、x2、x3,且x1<x2<x3,求的取值范围.考向八:二次函数与圆的综合1.(2023•湘西州)如图(1),二次函数y=ax2﹣5x+c的图象与x轴交于A(﹣4,0),B(b,0)两点,与y轴交于点C(0,﹣4).(1)求二次函数的解析式和b的值.(2)在二次函数位于x轴上方的图象上是否存在点M,使?若存在,请求出点M的坐标;若不存在,请说明理由.(3)如图(2),作点A关于原点O的对称点E,连接CE,作以CE为直径的圆.点E′是圆在x轴上方圆弧上的动点(点E′不与圆弧的端点E重合,但与圆弧的另一个端点可以重合),平移线段AE,使点E移动到点E′,线段AE的对应线段为A′E′,连接E′C,A′A,A′A的延长线交直线E′C于点N,求的值.2.(2023•株洲)已知二次函数y=ax2+bx+c(a>0).(1)若a=1,c=﹣1,且该二次函数的图象过点(2,0),求b的值;(2)如图所示,在平面直角坐标系Oxy中,该二次函数的图象与x轴交于点A(x1,0),B(x2,0),且x1<0<x2,点D在⊙O上且在第二象限内,点E在x轴正半轴上,连接DE,且线段DE交y轴正半轴于点F,.①求证:.②当点E在线段OB上,且BE=1.⊙O的半径长为线段OA的长度的2倍,若4ac=﹣a2﹣b2,求2a+b的值.考向九:二次函数与角的综合1.(2023•无锡)已知二次函数y=(x2+bx+c)的图象与y轴交于点A,且经过点B(4,)和点C (﹣1,).(1)请直接写出b,c的值;(2)直线BC交y轴于点D,点E是二次函数y=(x2+bx+c)图象上位于直线AB下方的动点,过点E作直线AB的垂线,垂足为F.①求EF的最大值;②若△AEF中有一个内角是∠ABC的两倍,求点E的横坐标.2.(2023•营口)如图,抛物线y=ax2+bx﹣1(a≠0)与x轴交于点A(1,0)和点B,与y轴交于点C,抛物线的对称轴交x轴于点D(3,0),过点B作直线l⊥x轴,过点D作DE⊥CD,交直线l于点E.(1)求抛物线的解析式;(2)如图,点P为第三象限内抛物线上的点,连接CE和BP交于点Q,当=时,求点P的坐标;(3)在(2)的条件下,连接AC,在直线BP上是否存在点F,使得∠DEF=∠ACD+∠BED?若存在,请直接写出点F的坐标;若不存在,请说明理由.(建议用时:150分钟)1.(2023•宜兴市一模)如图,二次函数的图象与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,则∠ACB=°;M是二次函数在第四象限内图象上一点,作MQ∥y轴交BC 于Q,若△NQM是以NQ为腰的等腰三角形,则线段NC的长为.2.(2023•越秀区一模)如图,抛物线与H:交于点B(1,﹣2),且分别与y轴交于点D,E.过点B作x轴的平行线,交抛物线于点A,C.则以下结论:①无论x取何值,y2总是负数;②抛物线H可由抛物线G向右平移3个单位,再向下平移3个单位得到;③当﹣3<x<1时,随着x的增大,y1﹣y2的值先增大后减小;④四边形AECD为正方形.其中正确的是.(填写正确的序号)3.(2023•晋州市模拟)如图所示,已知在平面直角坐标系xOy中,点A(15,8),点M是横轴正半轴上的一个动点,⊙P经过原点O,且与AM相切于点M.(1)当AM⊥x轴时,点P的坐标为;(2)若点P在第一象限,设点P的坐标为(x,y),则y关于x的函数关系式为(不用写出自变量x的取值范围);(3)当射线OP与直线AM相交时,点M的横坐标t的取值范围是.4.(2024•道里区模拟)已知:在平面直角坐标系中,点O为坐标原点,直线y=﹣x+3与x轴交于点B,与y轴交于点C,抛物线y=﹣x2+bx+c经过B、C两点,与x轴的另一交点为点A.(1)如图1,求抛物线的解析式;(2)如图2,点D为直线BC上方抛物线上一动点,连接AC、CD,设直线BC交线段AD于点E,△CDE的面积为S1,△ACE的面积为S2当最大值时,求点D的坐标;(3)如图3,在(2)的条件下,连接CD、BD,将△BCD沿BC翻折,得到△BCF(点D和点F为对应点),直线BF交y轴于点P,点S为BC中点,连接PS,过点S作SP的垂线交x轴于点R,在对称轴TH上有一点Q,使得△PQB是以PB为直角边的直角三角形,求直线RQ的解析式.5.(2023•枣庄)如图,抛物线y=﹣x2+bx+c经过A(﹣1,0),C(0,3)两点,并交x轴于另一点B,点M是抛物线的顶点,直线AM与y轴交于点D.(1)求该抛物线的表达式;(2)若点H是x轴上一动点,分别连接MH,DH,求MH+DH的最小值;(3)若点P是抛物线上一动点,问在对称轴上是否存在点Q,使得以D,M,P,Q为顶点的四边形是平行四边形?若存在,请直接写出所有满足条件的点Q的坐标;若不存在,请说明理由.6.(2023•东莞市一模)抛物线y=ax2+bx﹣2与x轴交于A、B两点(点A在点B的左侧),且A(﹣1,0),B(4,0),与y轴交于点C.连结BC,以BC为边,点O为中心作菱形BDEC,点P是x轴上的一个动点,设点P的坐标为(m,0),过点P作x轴的垂线交抛物线于点Q,交BD于点M.(1)求该抛物线对应的函数表达式;(2)x轴上是否存在一点P,使△PBC为等腰三角形?若存在,请直接写出点P的坐标;若不存在,请说明理由;(3)当点P在线段OB上运动时,试探究:当m为何值时,四边形CQMD是平行四边形?请说明理由.7.(2024•碑林区校级二模)二次函数y=ax2+bx+4(a≠0)的图象与x轴交于A(﹣4,0),B(1,0)两点,点M为y轴负半轴上一点,且OM=2.(1)求二次函数表达式;(2)点E是线段AB(包含A,B)上的动点,过点E作x轴的垂线,交二次函数图象于点P,交直线AM于点N,若以点P,N,A为顶点的三角形与△AOM相似,若存在,请求出点P的坐标;若不存在,请说明理由.8.(2024•镇海区校级模拟)若二次函数y1=a1x2+b1x+c1与y2=a2x2+b2x+c2的图象关于点P(1,0)成中心对称图形,我们称y1与y2互为“中心对称”函数.(1)求二次函数y=x2+6x+3的“中心对称”函数的解析式;(2)若二次函数y=ax2+2ax+c(a>0)的顶点在它的“中心对称”函数图象上,且当时,y最大值为2,求此二次函数解析式;(3)二次函数y1=ax2+bx+c(a<0)的图象顶点为M,与x轴负半轴的交点为A、B,它的“中心对称”函数y2的顶点为N,与x轴的交点为C、D,从左往右依次是A、B、C、D,若AB=2BP,且四边形AMDN 为矩形,求b2﹣4ac的值.9.(2024•雁塔区校级二模)如图,在平面直角坐标系中,抛物线y=ax2+bx+2(a≠0)与x轴分别交于A,B两点,点A的坐标是(﹣4,0),点B的坐标是(1,0),与y轴交于点C,P是抛物线上一动点,且位于第二象限,过点P作PD⊥x轴,垂足为D,线段PD与直线AC相交于点E.(1)求该抛物线的解析式;(2)连接OP,是否存在点P,使得∠OPD=2∠CAO?若存在,求出点P的横坐标;若不存在,请说明理由.10.(2024•长沙模拟)若两条抛物线相交于A(x1,y1),B(x2,y2)两点,并满足y1﹣kx1=y2﹣kx2,其中k为常数,我们不妨把k叫做这两条抛物线的“依赖系数”.(1)若两条抛物线相交于A(﹣2,2),B(﹣4,4)两点,求这两条抛物线的“依赖系数”;(2)若抛物线1:y=2ax2+x+m与抛物线2:y=ax2﹣x﹣n相交于A(x1,y1),B(x2,y2)两点,其中a>0,求抛物线1与抛物线2的“依赖系数”;(3)如图,在(2)的条件下,设抛物线1和2分别与y轴交于C,D两点,AB所在的直线与y轴交于E点,若点A在x轴上,m≠0,DA=DC,抛物线2与x轴的另一个交点为点F,以D为圆心,CD为半径画圆,连接EF,与圆相交于G点,求tan∠ECG.11.(2023•嘉善县一模)“距离”是数学研究的重要对象,如我们所熟悉的两点间的距离.现在我们定义一种新的距离:已知P(a,b),Q(c,d)是平面直角坐标系内的两点,我们将|a﹣c|+|b﹣d|称作P,Q间的“L型距离”,记作L(P,Q),即L(P,Q)=|a﹣c|+|b﹣d|.已知二次函数y1的图象经过平面直角坐标系内的A,B,C三点,其中A,B两点的坐标为A(﹣1,0),B(0,3),点C在直线x=2上运动,且满足L(B,C)≤BC.(1)求L(A,B);(2)求抛物线y1的表达式;(3)已知y2=2tx+1是该坐标系内的一个一次函数.①若D,E是y2=2tx+1图象上的两个动点,且DE=5,求△CDE面积的最大值;②当t≤x≤t+3时,若函数y=y1+y2的最大值与最小值之和为8,求实数t的值.12.(2023•任城区二模)如图,抛物线y=ax2﹣2ax﹣3a(a>0)与x轴交于A,B两点(点A在点B的左边),与y轴交于点C,且OB=OC.(1)求抛物线的解析式;(2)如图,若点P是线段BC(不与B,C重合)上一动点,过点P作x轴的垂线交抛物线于M点,连接CM,当△PCM和△ABC相似时,求此时点P的坐标;(3)若点P是直线BC(不与B,C重合)上一动点,过点P作x轴的垂线交抛物线于M点,连接CM,将△PCM沿CM对折,如果点P的对应点N恰好落在y轴上,求此时点P的坐标;13.(2023•姑苏区校级二模)探究阅读题:【阅读】在大自然里,有很多数学的奥秘,一片美丽的心形叶片,一棵生长的幼苗都可以看作把一条抛物线的一部分沿直线折叠而形成.(如图1和图2)【探究任务1】确定心形叶片的形状如图3建立平面直角坐标系,心形叶片下部轮廓线可以看作是二次函数y=mx2﹣4mx﹣20m+5图象的一部分,且过原点,求抛物线的解析式和顶点D的坐标.【探究任务2】研究心形叶片的尺寸如图3,心形叶片的对称轴直线y=x+2与坐标轴交于A、B两点,直线x=6分别交抛物线和直线AB于点E、F点,点E、E′是叶片上的一对对称点,EE′交直线AB与点G,求叶片此处的宽度EE′.【探究任务3】研究幼苗叶片的生长小李同学在观察幼苗生长的过程中,发现幼苗叶片下方轮廓线都可以看作是二次函数y=mx2﹣4mx﹣20m+5图象的一部分.如图4,幼苗叶片下方轮廓线正好对应探究任务1中的二次函数,已知直线PD与水平线的夹角为45°,三天后,点D长到与点P同一水平位置的点D′时,叶尖Q落在射线OP上,如图5所示,求此时幼苗叶子的长度和最大宽度.。
2023年九年级数学中考专题:二次函数综合压轴题(相似三角形问题)(含简单答案)

2023年九年级数学中考专题:二次函数综合压轴题(相似三角形问题)1.如图,二次函数216y x bx c =++的图象交坐标轴于点()4,0A ,()0,2B -,点P 为x 轴上一动点.(1)求二次函数216y x bx c =++的表达式; (2)将线段PB 绕点P 逆时针旋转90︒得到线段PD ,若D 恰好在抛物线上,求点D 的坐标; (3)过点P 作PQ x ⊥轴分别交直线AB ,抛物线于点Q ,C ,连接AC .若以点B 、Q 、C 为顶点的三角形与APQ △相似,直接写出点P 的坐标. 2.抛物线25y ax bx =++经过点1,0A 和点()5,0B .(1)求该抛物线所对应的函数解析式;(2)该抛物线与直线25y x =+相交于C 、D 两点,点P 是抛物线上的动点且位于x 轴下方,直线PM y ∥轴,分别与x 轴和直线CD 交于点M 、N .①连结PC PD 、,如图1,在点P 运动过程中,PCD 的面积是否存在最大值?若存在,求出这个最大值;若不存在,说明理由;①连结PB ,过点C 作CQ PM ⊥,垂足为点Q ,如图2,是否存在点P ,使得CNQ 与PBM 相似?若存在,直接写出满足条件的点P 的坐标;若不存在,说明理由.3.已知抛物线24y ax ax b =-+与x 轴交于A ,B 两点,(A 在B 的左侧),与y 轴交于C ,若OB OC =,且03C (,).(1)求抛物线的解析式;(2)设抛物线的顶点为D ,点P 在抛物线的对称轴上,且APD ACB ∠=∠,求点P 的坐标; (3)在抛物线上是否存在一点M ,过M 作MN x ⊥轴于N ,以A 、M 、N 为顶点的三角形与AOC ∆相似,若存在,求出所有符合条件的M 点坐标,若不存在,请说明理由. 4.如图.在平面直角坐标系中.抛物线212y x bx c =++与x 轴交于A 、B 两点,与y 轴交于点C .点A 的坐标为()1,0-,点C 的坐标为()0,2-.已知点(),0E m 是线段AB 上的动点(点E 不与点A ,B 重合).过点E 作PE x ⊥轴交抛物线于点P ,交BC 于点F .(1)求该抛物线的表达式;(2)若:1:2EF PF =,请求出m 的值;(3)是否存在这样的m ,使得BEP △与ABC 相似?若存在,求出此时m 的值;若不存在,请说明理由;(4)当点E 运动到抛物线对称轴上时,点M 是x 轴上一动点,点N 是抛物线上的动点,在运动过程中,是否存在以C 、B 、M 、N 为顶点的四边形是平行四边形?若不存在,请说明理由;若存在,请直接写出点M 的坐标.5.如图,二次函数212y x bx c =-++图像交x 轴于点A ,B (A 在B 的左侧),与y 轴交于点(0,3)C ,CD y ⊥轴,交抛物线于另一点D ,且5CD =,P 为抛物线上一点,PE y轴,与x 轴交于E ,与BC ,CD 分别交于点F ,G .(1)求二次函数解析式;(2)当P 在CD 上方时,是否存在点P ,使得以C ,P ,G 为顶点的三角形与FBE 相似,若存在,求出CPG △与FBE 的相似比,若不存在,说明理由.(3)点D 关于直线PC 的对称点为D ,当点D 落在抛物线的对称轴上时,此时点P 的坐标为________.6.如图,抛物线22y ax bx =++与x 轴交于点A ,B ,与y 轴交于点C ,已知A ,B 两点坐标分别是(1,0)A ,(4,0)B -,连接,AC BC .(1)求抛物线的表达式;(2)将ABC ∆沿BC 所在直线折叠,得到DBC ∆,点A 的对应点D 是否落在抛物线的对称轴上?若点D 在对称轴上,请求出点D 的坐标;若点D 不在对称轴上,请说明理由;(3)若点P 是抛物线位于第二象限图象上的一动点,连接AP 交BC 于点Q ,连接BP ,BPQ ∆的面积记为1S ,ABQ ∆的面积记为2S ,求12S S 的值最大时点P 的坐标. 7.已知,二次函数23y ax bx =+-的图象与x 轴交于A ,B 两点(点A 在点B 的左边),与y 轴交于C 点,点A 的坐标为()1,0-,且OB OC =.(1)求二次函数的解析式;(2)当04x ≤≤时,求二次函数的最大值和最小值分别为多少?(3)设点C '与点C 关于该抛物线的对称轴对称.在y 轴上是否存在点P ,使PCC '△与POB 相似,且PC 与PO 是对应边?若存在,求出点P 的坐标;若不存在,请说明理由.8.已知菱形OABC 的边长为5,且点(34)A ,,点E 是线段BC 的中点,过点A ,E 的抛物线2y ax bx c =++与边AB 交于点D ,(1)求点E 的坐标;(2)连接DE ,将BDE △沿着DE 翻折痕.①当B 点的对应点B '恰好落在线段AC 上时,求点D 的坐标;①连接OB ,BB ',若BB D '△与BOC 相似,请直接写出此时抛物线二次项系数=a ______. 9.如图,抛物线22(0)y ax x c a =-+≠与x 轴交于A 、()3,0B 两点,与y 轴交于点()0,3C -,抛物线的顶点为D .(1)求抛物线的解析式;(2)已知点M 是x 轴上的动点,过点M 作x 轴的垂线交抛物线于点G ,是否存在这样的点M ,使得以点A 、M 、G 为顶点的三角形与BCD △相似,若存在,请求出点M 的坐标;若不存在,请说明理由.(3)在直线BC 下方抛物线上一点P ,作PQ 垂直BC 于点Q ,连接CP ,当CPQ 中有一个角等于ACO ∠时,求点P 的坐标.10.如图,抛物线顶点D 在x 轴上,且经过(0,3)-和(4,3)-两点,抛物线与直线l 交于A 、B 两点.(1)直接写出抛物线解析式和D 点坐标;(2)如图1,若()03A ,-,且 94ABDS =,求直线l 解析式; (3)如图2,若90ADB ∠=︒,求证:直线l 经过定点,并求出定点坐标.11.如图1,已知抛物线2=23y x x --与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C ,连接BC ,点P 是线段BC 下方抛物线上一动点,过点P 作∥PE BC ,交x 轴于点E ,连接OP 交BC 于点F .(1)直接写出点A ,B ,C 的坐标以及抛物线的对称轴; (2)当点P 在线段BC 下方抛物线上运动时,求BFPE取到最小值时点P 的坐标; (3)当点P 在y 轴右边抛物线上运动时,过点P 作PE 的垂线交抛物线对称轴于点G ,是否存在点P ,使以P 、E 、G 为顶点的三角形与①AOC 相似?若存在,来出点P 的坐标;若不存在,请说明理由.12.如图,抛物线212ax ax b =-+y 经过()1,0A -,32,2C ⎛⎫⎪⎝⎭两点,与x 轴交于另一点B .(1)求此抛物线的解析式;(2)若抛物线的顶点为M ,点P 为线段OB 上一动点(不与点B 重合),点Q 在线段MB 上移动,且2PM MQ MB =⋅,设线段OP x =,2MQ y =,求2y 与x 的函数关系式,并直接写出自变量x 的取值范围;并直接写出PM APPQ BQ-的值;(3)在同一平面直角坐标系中,两条直线x m =,x n =分别与抛物线交于点E ,G ,与(2)中的函数图象交于点F ,.H 问四边形EFHG 能否为平行四边形?若能,求m ,n 之间的数量关系;若不能,请说明理由.13.已知抛物线213222y x x =-++交x 轴于A 、B 两点,A 在B 的左边,交y 轴于点C .(1)求抛物线顶点的坐标;(2)如图1,若10,2E ⎛⎫- ⎪⎝⎭,P 在抛物线上且在直线AE 上方,PQ AE ⊥于O ,求PQ 的最大值;(3)如图2,点(),3D a (32a <)在抛物线上,过A 作直线交抛物线于第四象限另一点F ,点M 在x 轴上,以M 、B 、D 为顶角的三角形与AFB △相似,求点M 的坐标. 14.如图,抛物线23y ax bx =+-与x 轴交于点()1,0A 、()3,0B ,与y 轴交于点C ,联结AC 、BC .(1)求该抛物线的表达式及顶点D 的坐标;(2)如果点P 在抛物线上,CB 平分ACP ∠,求点P 的坐标:(3)如果点Q 在抛物线的对称轴上,DBQ 与ABC 相似.求点Q 的坐标.15.如图,抛物线23y ax x c =-+与x 轴交于(4,0)A -,B 两点,与y 轴交于点(0,4)C ,点D 为x 轴上方抛物线上的动点,射线OD 交直线AC 于点E ,将射线OD 绕点O 逆时针旋转45︒得到射线OP ,OP 交直线AC 于点F ,连接DF .(1)求抛物线的解析式; (2)当点D 在第二象限且34DE EO =时,求点D 的坐标; (3)当ODF △为直角三角形时,请直接写出点D 的坐标.16.如图①,抛物线与x 轴交于A ,B 两点,与y 轴交于点C (0,3),顶点为D (4,-1),对称轴与直线BC 交于点E ,与x 轴交于点F .(1)求二次函数的解析式;(2)点M 在第一象限抛物线的对称轴上,若点C 在BM 的垂直平分线上,求点M 的坐标; (3)如图①,过点E 作对称轴的垂线在对称轴的右侧与抛物线交于点H ,x 轴上方的对称轴上是否存在一点P ,使以E ,H ,P 为顶点的三角形与EFB △相似,若存在,求出P点坐标;若不存在,请说明理由.17.如图,在平面直角坐标系xOy 中,已知抛物线2y ax x c =++经过()2,0A -,()0,4B 两点,直线3x =与x 轴交于点C .(1)求a ,c 的值;(2)经过点O 的直线分别与线段AB ,直线3x =交于点D ,E ,且BDO △与OCE △的面积相等,求直线DE 的解析式;(3)P 是抛物线上位于第一象限的一个动点,在线段OC 和直线3x =上是否分别存在点F ,G ,使B ,F ,G ,P 为顶点的四边形是以BF 为一边的矩形?若存在,求出点F的坐标;若不存在,请说明理由.18.如图1,抛物线2y ax bx c =++与x 轴交于A ,B (点A 在点B 左侧),与y 轴负半轴交于C ,且满足2OA OB OC ===.(1)求抛物线的解析式;(2)如图2,D 为y 轴负半轴上一点,过D 作直线l 垂直于直线BC ,直线l 交抛物线于E ,F 两点(点E 在点F 右侧),若3DF DE =,求D 点坐标; (3)如图3,点M 为抛物线第二象限部分上一点,点M ,N 关于y 轴对称,连接MB ,P 为线段MB 上一点(不与M 、B 重合),过P 点作直线x t =(t 为常数)交x 轴于S ,交直线NB 于Q ,求QS PS -的值(用含t 的代数式表示).参考答案:1.(1)211266y x x =-- (2)()3,1D -或()8,10D -(3)点P 的坐标为()011-,或()10,.2.(1)265y x x =-+ (2)37,24⎛⎫- ⎪⎝⎭或()3,4-3.(1)243y x x =-+ (2)()2,2P 或()2,2-(3)存在符合条件的M 点,且坐标为:110(3M ,7)9-,()26,15M ,38(3M ,5)9-4.(1)213222y x x =--; (2)2m =;(3)存在,m 的值为0或3;(4)存在,M 点的坐标为()7,0或()1,0M 或⎫⎪⎪⎝⎭或⎫⎪⎪⎝⎭.5.(1)215322y x x =-++;(2)存在点P ,使得以C ,P ,G 为顶点的三角形与FBE 相似,CPG △与FBE 的相似比为2或25;(3)P 点横坐标55.6.(1)213222y x x =--+(2)点D 不在抛物线的对称轴上, (3)(2,3)-7.(1)2=23y x x --(2)函数的最大值为5,最小值为4- (3)存在,(0,9)P -或9(0,)5P -8.(1)13(2)2E , (2)①11(4)2D ,或23(4)6D ,;①47-9.(1)2=23y x x --(2)()0,0,()6,0,8,03⎛⎫ ⎪⎝⎭,10,03⎛⎫⎪⎝⎭(3)57,24⎛⎫- ⎪⎝⎭或者315,24⎛⎫- ⎪⎝⎭10.(1)()2324y x =--,()2,0D (2)334y x =-或1534y x =- (3)证明见解析,定点坐标为423⎛⎫- ⎪⎝⎭,11.(1)A (﹣1,0),B (3,0),C (0,﹣3),对称轴为直线x =1(2)当t =32时,BF PE 最小,最小值为47,此时P (32,﹣154).(3)存在,点P 的坐标为(2,﹣3)12.(1)211322y x x =-++(2)22150322y x x x =-+≤<(),PM AP PQ BQ -的值为0 (3)m 、n 之间的数量关系是2(1)m n m +=≠13.(1)(32,258)答案第3页,共3页(3)(2,0)或(-5,0)或13,07⎛⎫ ⎪⎝⎭或2205⎛⎫- ⎪⎝⎭,14.(1)2=+43y x x --,(21)D , (2)111639⎛⎫ ⎪⎝⎭,- (3)(2,−2)或12,3⎛⎫ ⎪⎝⎭15.(1)234y x x =--+(2)(1,6)D -或(3,4)D -(3)(3,4)-或(0,4)或2⎫⎪⎪⎝⎭或2⎫⎪⎪⎝⎭16.(1)21234y x x =-+(2)(4,3(3)存在P 1)或(4,1),使以E ,H ,P 为顶点的三角形与EFB △相似,17.(1)12a =-,4c = (2)23y x =- (3)存在这样的点F ,点F 的坐标为(2,0)或18.(1)2122y x =- (2)()0,1D -或190,8D ⎛⎫- ⎪⎝⎭, (3)24QS PS t -=-+。
题型九 二次函数综合题 类型七 二次函数与直角三角形有关的问题(专题训练)(解析版)

题型九 二次函数综合题类型七 二次函数与直角三角形有关的问题(专题训练)1.(2022·山东滨州)如图,在平面直角坐标系中,抛物线223y x x =--与x 轴相交于点A 、B (点A 在点B 的左侧),与y 轴相交于点C ,连接,AC BC .(1)求线段AC 的长;(2)若点Р为该抛物线对称轴上的一个动点,当PA PC =时,求点P 的坐标;(3)若点M 为该抛物线上的一个动点,当BCM V 为直角三角形时,求点M 的坐标.【答案】()11,-(3)()14-,或()25-,或-或-【分析】(1)根据解析式求出A ,B ,C 的坐标,然后用勾股定理求得AC 的长;(2)求出对称轴为x=1,设P (1,t ),用t 表示出PA 2和PC 2的长度,列出等式求解即可;(3)设点M (m,m 2-2m-3),分情况讨论,当222CM BC BM +=,222BM BC CM +=,222BM CM BC +=分别列出等式求解即可.(1)223y x x =--与x 轴交点:令y=0,解得121,3x x =-=,即A (-1,0),B (3,0),223y x x =--与y 轴交点:令x=0,解得y=-3,即C (0,-3),∴AO=1,CO=3,∴AC ==(2)抛物线223y x x =--的对称轴为:x=1,设P (1,t ),∴()()22221104PA t t =++-=+,()()()222210313PC t t =-++=++,∴24t + ()213t =++∴t=-1,∴P (1,-1);(3)设点M (m,m 2-2m-3),()()()()22222223230323BM m m m m m m =-+---=-+--,()()()222222202332CM m m m m m m =-+--+=+-,()()222300318BC =-++=,①当222CM BC BM +=时,()()()222222218323m m m m m m +-+=-+--,解得,10m =(舍),21m =,∴M (1,-4);②当222BM BC CM +=时,()()()222222323182m m m m m m -+--+=+-,解得,12m =-,23m =(舍),∴M (-2,5);③当222BM CM BC +=时,()()()222222323218m m m m m m -+--++-=,解得,m =,∴M -或-;综上所述:满足条件的M 为()14-,或()25-,或-或-.【点睛】本题是二次函数综合题,考查了与坐标轴交点、线段求值、存在直角三角形等知识,解题的关键是学会分类讨论的思想,属于中考压轴题.2.(2021·四川中考真题)如图1,在平面直角坐标系中,抛物线与x 轴分别交于A 、B 两点,与y 轴交于点C (0,6),抛物线的顶点坐标为E (2,8),连结BC 、BE 、CE .(1)求抛物线的表达式;(2)判断△BCE 的形状,并说明理由;(3)如图2,以C 为半径作⊙C ,在⊙C 上是否存在点P ,使得BP +12EP 的值最小,若存在,请求出最小值;若不存在,请说明理由.【答案】(1)y=12-x 2+2x+6;(2)直角三角形,见解析;(3【分析】(1)用待定系数法求函数解析式;(2)分别求出三角形三边的平方,然后运用勾股定理逆定理即可证明;(3)在CE 上截取(即CF 等于半径的一半),连接BF 交⊙C 于点P ,连接EP ,则BF 的长即为所求.【详解】解:(1)∵抛物线的顶点坐标为E (2,8),∴设该抛物线的表达式为y=a (x-2)2+8,∵与y 轴交于点C (0,6),∴把点C (0,6)代入得:a=12-,∴该抛物线的表达式为y=12-x 2+2x+6;(2)△BCE 是直角三角形.理由如下:∵抛物线与x 轴分别交于A 、B 两点,∴当y=0时,12-(x-2)2+8=0,解得:x 1=-2,x 2=6,∴A (-2,0),B (6,0),∴BC 2=62+62=72,CE 2=(8-6)2+22=8,BE 2=(6-2)2+82=80,∴BE 2=BC 2+CE 2,∴∠BCE=90°,∴△BCE 是直角三角形;(3)如图,在CE 上截取CF 等于半径的一半),连接BF 交⊙C 于点P ,连接EP ,则BF 的长即为所求.连接CP ,∵CP 为半径,∴12CF CP CP CE ==,又∵∠FCP=∠PCE ,∴△FCP ∽△PCE ,∴12CF FP CP PE ==,FP=12EP ,∴BF=BP+12EP ,由“两点之间,线段最短”可得:BF 的长即BP+12EP 为最小值.∵CF=14CE ,E (2,8),∴F (12,132),∴=【点睛】本题考查二次函数综合,待定系数法,二次函数图象和性质,勾股定理及其逆定理,圆的性质,相似三角形的判定和性质等,题目综合性较强,属于中考压轴题,熟练掌握二次函数图象和性质,圆的性质,相似三角形的判定和性质等相关知识是解题关键.3.(2021·湖北中考真题)在平面直角坐标系中,抛物线2y ax bx c =++与x 轴交于点()1,0A -和点B ,与y 轴交于点C ,顶点D 的坐标为()1,4-.(1)直接写出抛物线的解析式;(2)如图1,若点P 在抛物线上且满足PCB CBD Ð=Ð,求点P 的坐标;(3)如图2,M 是直线BC 上一个动点,过点M 作MN x ^轴交抛物线于点N ,Q 是直线AC 上一个动点,当QMN V 为等腰直角三角形时,直接写出此时点M 及其对应点Q 的坐标【答案】(1)223y x x =--;(2)()14,5P ,257,24P æö-ç÷èø;(3)154,33M æö-ç÷èø,154,93Q æö--ç÷èø;2134,33M æöç÷èø,2134,93Q æö-ç÷èø;()35,2M ,()35,12Q -;()42,1M -,()40,3Q -; ()51,2M -,()50,3Q -;()67,4M ,()67,18Q -.【分析】(1)由()1,0A -和D ()1,4-,且D 为顶点列方程求出a 、b 、c ,即可求得解析式;(2)分两种情况讨论:①过点C 作1//CP BD ,交抛物线于点1P ,②在BC 下方作BCF BCE Ð=Ð交BG 于点F ,交抛物线于2P ;(3)QMN V 为等腰直角三角形,分三种情况讨论:当90QM MN QMN =Ð=°,;②当90QN MN QNM =Ð=°,;③当90QM QN MQN =Ð=°,.【详解】解:(1)将()1,0A -和D ()1,4-代入2y ax bx c=++得04a b c a b c -+=ìí++=-î 又∵顶点D 的坐标为()1,4-∴12ba-=-∴解得123a b c =ìï=-íï=-î∴抛物线的解析式为:223y x x =--.(2)∵()3,0B 和()1,4D -∴直线BD 的解析式为:26y x =-∵抛物线的解析式为:223y x x =--,抛物线与y 轴交于点C ,与x 轴交于点()1,0A -和点B,则C 点坐标为()0,3-,B 点坐标为()3,0.①过点C 作1//CP BD ,交抛物线于点1P ,则直线1CP 的解析式为23y x =-,结合抛物线223y x x =--可知22323x x x --=-,解得:10x =(舍),24x =,故()14,5P .②过点B 作y 轴平行线,过点C 作x 轴平行线交于点G,由OB OC =可知四边形OBGC 为正方形,∵直线1CP 的解析式为23y x =-∴1CP 与x 轴交于点3,02E æöç÷èø,在BC 下方作BCF BCE Ð=Ð交BG 于点F ,交抛物线于2P ∴OCE FCGÐ=Ð又∵OC=CG ,90COE G Ð=Ð=° ∴OEC △≌()GFC ASA V ,∴32FG OE ==,33,2F æö-ç÷èø,又由()0,3C -可得直线CF 的解析式为132y x =-,结合抛物线223y x x =--可知212332x x x --=-,解得10x =(舍),252x =,故257,24P æö-ç÷èø.综上所述,符合条件的P 点坐标为:()14,5P ,257,24P æö-ç÷èø. (3)∵()3,0B ,()0,3C -∴直线BC 的解析式为3BC y x =-设M 的坐标为()3m m -,,则N 的坐标为()223m m m --,∴()22=3233MN m m m m m ----=-∵()1,0A -,()0,3C -∴直线BC 的解析式为33AC y x =--∵QMN V 为等腰直角三角形∴①当90QM MN QMN =Ð=°,时,如下图所示则Q 点的坐标为33m m æö--ç÷èø,∴4=33m mQM m æö--=ç÷èø∴24=33mm m -解得:10m =(舍去),2133m =,353m =∴此时154,33M æö-ç÷èø,154,93Q æö--ç÷èø;2134,33M æöç÷èø,2134,93Q æö-ç÷èø;②当90QN MN QNM =Ð=°,时,如下图所示则Q 点的坐标为222233m m m m æö---ç÷èø,∴222=33m m m mQM m -+-=∴22=33m mm m +-解得:10m =(舍去),25m =,32m =∴此时()35,2M ,()35,12Q -;()42,1M -,()40,3Q -;③当90QM QN MQN =Ð=°,时,如图所示则Q 点纵坐标为()()22211113236=32222m m m m m m m -+--=---- ∴Q 点的坐标为22111136622m m m m æö---ç÷èø,∴Q 点到MN 的距离=221151+6666m m m m m--=∴22511+=3662m m m m ×-(直角三角形斜边上的中线等于斜边的一半)解得:10m =(舍去),27m =,31m =∴此时()51,2M -,()50,3Q -;()67,4M ,()67,18Q -.综上所述,点M 及其对应点Q 的坐标为:154,33M æö-ç÷èø,154,93Q æö--ç÷èø;2134,33M æöç÷èø,2134,93Q æö-ç÷èø;()35,2M ,()35,12Q -;()42,1M -,()40,3Q -; ()51,2M -,()50,3Q -;()67,4M ,()67,18Q -.【点睛】本题主要考查二次函数与几何图形.该题综合性较强,属于中考压轴题.4.(2021·湖北中考真题)抛物线22y ax bx b =-+(0a ≠)与y 轴相交于点()0,3C -,且抛物线的对称轴为3x =,D 为对称轴与x 轴的交点.(1)求抛物线的解析式;(2)在x 轴上方且平行于x 轴的直线与抛物线从左到右依次交于E 、F 两点,若DEF V 是等腰直角三角形,求DEF V 的面积;(3)若()3,P t 是对称轴上一定点,Q 是抛物线上的动点,求PQ 的最小值(用含t 的代数式表示).【答案】(1)263y x x =-+-;(2)4;(3)6(6)6)112t t PQ t ìï-³=<<£【分析】(1)与y 轴相交于点()0,3C -,得到3b =-,再根据抛物线对称轴,求得1a =-,代入即可.(2)在x 轴上方且平行于x 轴的直线与抛物线从左到右依次交于E 、F 两点,可知E 、F 两点关于对称轴对称,DEF V 是等腰直角三角形得到45FED Ð=°,设(,)(0)E m n n >,根据等腰直角三角形的性质求得E 点坐标,从而求得DEF V 的面积.(3)(,)(6)Q p q q £,根据距离公式求得222(21)6PQ q t q t =-+++,注意到q 的范围,利用二次函数的性质,对t 进行分类讨论,从而求得PQ的最小值.【详解】解:(1)由抛物线22y ax bx b =-+(0a ≠)与y 轴相交于点()0,3C -得到3b =-抛物线的对称轴为3x =,即232b a--=,解得1a =-∴抛物线的方程为263y x x =-+-(2)过点E 作EM AB ^交AB 于点M ,过点F 作FN AB ^,交AB 于点N ,如下图:∵DEF V 是等腰直角三角形∴DE DF =,45FED Ð=°又∵EF x ∥轴∴45EDM Ð=°∴EMD V 为等腰直角三角形∴EM DM=设(,)(0)E m n n >,则(,0)M m ,3,DM m EM n=-=∴3n m=-又∵263n m m =-+-∴2363m m m -=-+-2760m m -+=解得1m =或6m =当1m =时,2n =,符合题意,2,4DM EM MN ===142DEF S MN EM =´=△当6m =时,30n =-<,不符合题意综上所述:4DEF S =V .(3)设(,)(6)Q p q q £,Q 在抛物线上,则263q p p =-+-222222(3)()692PQ p q t p p q tq t =-+-=-++-+将263q p p =-+-代入上式,得222(21)6PQ q t q t =-+++ 当112t >时,2162t +>,∴6q =时,2PQ 最小,即PQ 最小22223612661236(6)PQ t t t t t =--++=-+=-PQ =6(6)6116(6)2t t t t t -³ìï-=í-<<ïî当112t £时,212t +£2PQ 最小,即PQ 最小22344t PQ -=,PQ =综上所述6(6)6)112t t PQ t ìï-³=<<£【点睛】此题考查了二次函数的对称轴、二次函数与三角形面积、等腰直角三角形的性质以及距离公式等知识,熟练掌握距离公式和对代数式的计算是解决本题的关键.5.(2020•泸州)如图,已知抛物线y =ax 2+bx+c 经过A (﹣2,0),B (4,0),C (0,4)三点.(1)求该抛物线的解析式;(2)经过点B 的直线交y 轴于点D ,交线段AC 于点E ,若BD =5DE .①求直线BD 的解析式;②已知点Q 在该抛物线的对称轴l 上,且纵坐标为1,点P 是该抛物线上位于第一象限的动点,且在l 右侧,点R 是直线BD 上的动点,若△PQR 是以点Q 为直角顶点的等腰直角三角形,求点P 的坐标.【分析】(1)根据交点式设出抛物线的解析式,再将点C 坐标代入抛物线交点式中,即可求出a ,即可得出结论;(2)①先利用待定系数法求出直线AC 的解析式,再利用相似三角形得出比例式求出BF ,进而得出点E 坐标,最后用待定系数法,即可得出结论;②先确定出点Q 的坐标,设点P (x ,―12x 2+x+4)(1<x <4),得出PG =x ﹣1,GQ =―12x 2+x+3,再利用三垂线构造出△PQG ≌△QRH (AAS ),得出RH =GQ =―12x 2+x+3,QH =PG =x ﹣1,进而得出R (―12x 2+x+4,2﹣x ),最后代入直线BD 的解析式中,即可求出x 的值,即可得出结论.【解析】(1)∵抛物线y =ax 2+bx+c 经过A (﹣2,0),B (4,0),∴设抛物线的解析式为y =a (x+2)(x ﹣4),将点C 坐标(0,4)代入抛物线的解析式为y =a (x+2)(x ﹣4)中,得﹣8a =4,∴a =―12,∴抛物线的解析式为y =―12(x+2)(x ﹣4)=―12x 2+x+4;(2)①如图1,设直线AC 的解析式为y =kx+b',将点A (﹣2,0),C (0,4),代入y =kx+b'中,得―2k +b′=0b′=4,∴k =2b′=4,∴直线AC 的解析式为y =2x+4,过点E 作EF ⊥x 轴于F ,∴OD ∥EF ,∴△BOD ∽△BFE ,∴OB BF =BD BE ,∵B (4,0),∴OB =4,∵BD =5DE ,∴BD BE =BD BD DE =5DE 5DE BE=56,∴BF =BE BD ×OB =65×4=245,∴OF =BF ﹣OB =245―4=45,将x =―45代入直线AC :y =2x+4中,得y =2×(―45)+4=125,∴E (―45,125),设直线BD 的解析式为y =mx+n ,∴4m +n =0―45m +n =125,∴m =―12n =2,∴直线BD 的解析式为y =―12x+2;②∵抛物线与x 轴的交点坐标为A (﹣2,0)和B (4,0),∴抛物线的对称轴为直线x =1,∴点Q (1,1),如图2,设点P (x ,―12x 2+x+4)(1<x <4),过点P 作PG ⊥l 于G ,过点R 作RH ⊥l 于H ,∴PG =x ﹣1,GQ =―12x 2+x+4﹣1=―12x 2+x+3,∵PG ⊥l ,∴∠PGQ =90°,∴∠GPQ+∠PQG =90°,∵△PQR 是以点Q 为直角顶点的等腰直角三角形,∴PQ =RQ ,∠PQR =90°,∴∠PQG+∠RQH =90°,∴∠GPQ =∠HQR ,∴△PQG ≌△QRH (AAS ),∴RH =GQ =―12x 2+x+3,QH =PG =x ﹣1,∴R (―12x 2+x+4,2﹣x ),由①知,直线BD 的解析式为y =―12x+2,∴x =2或x =4(舍),当x =2时,y =―12x 2+x+4=―12×4+2+4=4,∴P (2,4).6.(2020·甘肃兰州?中考真题)如图,抛物线24y ax bx =+-经过A (-3,6),B (5,-4)两点,与y 轴交于点C ,连接AB ,AC ,BC .(1)求抛物线的表达式;(2)求证:AB 平分CAO Ð;(3)抛物线的对称轴上是否存在点M ,使得ABM D 是以AB 为直角边的直角三角形.若存在,求出点M 的坐标;若不存在,说明理由.【答案】(1)215466y x x =--;(2)详见解析;(3)存在,点M 的坐标为(52,-9)或(52,11).【解析】【分析】(1)将A (-3,0),B (5,-4)代入抛物线的解析式得到关于a 、b 的方程组,从而可求得a 、b 的值;(2)先求得AC 的长,然后取D (2,0),则AD=AC ,连接BD ,接下来,证明BC=BD ,然后依据SSS 可证明△ABC ≌△ABD ,接下来,依据全等三角形的性质可得到∠CAB=∠BAD ;(3)作抛物线的对称轴交x 轴与点E ,交BC 与点F ,作点A 作AM′⊥AB ,作BM ⊥AB ,分别交抛物线的对称轴与M′、M ,依据点A 和点B 的坐标可得到tan ∠BAE=12,从而可得到tan ∠M′AE=2或tan ∠MBF=2,从而可得到FM 和M′E 的长,故此可得到点M′和点M 的坐标.【详解】解:(1)将A (-3,0),B (5,-4)两点的坐标分别代入,得9340,25544a b a b --=ìí+-=-î,解得1,65,6a b ì=ïïíï=-ïî故抛物线的表达式为y =215466y x x =--. (2)证明:∵AO=3,OC=4,∴=5.取D (2,0),则AD=AC=5.由两点间的距离公式可知=5.∵C (0,-4),B (5,-4),∴BC=5.∴BD=BC .在△ABC 和△ABD 中,AD=AC ,AB=AB ,BD=BC ,∴△ABC ≌△ABD ,∴∠CAB=∠BAD ,∴AB 平分∠CAO ;(3)存在.如图所示:抛物线的对称轴交x 轴与点E ,交BC 与点F .抛物线的对称轴为x=52,则AE=112.∵A (-3,0),B (5,-4),∴tan ∠EAB=12.∵∠M′AB=90°.∴tan ∠M′AE=2.∴M′E=2AE=11,∴M′(52,11).同理:tan ∠MBF=2.又∵BF=52,∴FM=5,∴M (52,-9).∴点M 的坐标为(52,11)或(52,-9).【点睛】本题考查了二次函数的综合应用,主要应用了待定系数法求二次函数的解析式,全等三角形的性质和判定、锐角三角函数的定义,求得FM 和M′E 的长是解题的关键7.(2020·内蒙古通辽?中考真题)如图,在平面直角坐标系中,抛物线与x 轴交于点,与y 轴交于点C ,且直线过点B ,与y 轴交于点D ,点C 与点D 关于x 轴对称.点P 是线段上一动点,过点P 作x 轴的垂线交抛物线于点M ,交直线于点N .(1)求抛物线的函数解析式;(2)当的面积最大时,求点P 的坐标;(3)在(2)的条件下,在y 轴上是否存在点Q ,使得以三点为顶点的三角形是直角三角形,若存在,直接写出点Q 的坐标;若不存在,说明理由.2y x bx c =-++,A B 6y x =-OBBD MDB △,,Q M N【答案】(1);(2)(2,0);(3)存在,(0,12)或(0,-4)或(0,0,.【解析】【分析】(1)根据直线求出点B 和点D 坐标,再根据C 和D 之间的关系求出点C 坐标,最后运用待定系数法求出抛物线表达式;(2)设点P 坐标为(m ,0),表示出M 和N 的坐标,再利用三角形面积求法得出S △BMD =,再求最值即可;(3)分当∠QMN=90°时,当∠QNM=90°时,当∠MQN=90°时,三种情况,结合相似三角形的判定和性质,分别求解即可.【详解】解:(1)∵直线过点B ,点B 在x 轴上,令y=0,解得x=6,令x=0,解得y=-6,∴B (6,0),D (0,-6),∵点C 和点D 关于x 轴对称,∴C (0,6),∵抛物线经过点B 和点C ,代入,,解得:,∴抛物线的表达式为:;(2)设点P 坐标为(m ,0),则点M 坐标为(m ,),点N 坐标为(m ,m-6),∴MN=-m+6=,∴S △BMD =S △MNB +S △MND=256y x x =-++4+4-6y x =-231236m m -++6y x =-2y x bx c =-++03666b c c =-++ìí=î56b c =ìí=-î256y x x =-++256m m -++256m m -++2412m m -++()2141262m m ´-++´==-3(m-2)2+48当m=2时,S △BMD 最大=48,此时点P 的坐标为(2,0);(3)存在,由(2)可得:M (2,12),N (2,-4),设点Q 的坐标为(0,n ),当∠QMN=90°时,即QM ⊥MN ,如图,可得,此时点Q 和点M 的纵坐标相等,即Q (0,12);当∠QNM=90°时,即QN ⊥MN ,如图,可得,此时点Q 和点N 的纵坐标相等,即Q (0,-4);231236m m -++当∠MQN=90°时,MQ ⊥NQ ,如图,分别过点M 和N 作y 轴的垂线,垂足为E 和F ,∵∠MQN=90°,∴∠MQE+∠NQF=90°,又∠MQE+∠QME=90°,∴∠NQF=∠QME ,∴△MEQ ∽△QFN ,∴,即,解得:n=或∴点Q (0,)或(0,),综上:点Q 的坐标为(0,12)或(0,-4)或(0,)或(0,).【点睛】本题是二次函数综合题,考查了二次函数的表达式,相似三角形的判定和性质,直角三角形的性质,二次函数的最值,解一元二次方程,解题时要注意数形结合,分类讨论思想的运用.ME EQ QF FN =21242n n -=+4+4-4+4-4+4-。
2023年九年级中考数学:二次函数综合题压轴题(特殊三角形问题)(含答案)

(2)求该二次函数的表达式;
(3)如果点p在坐标轴上,且 是等腰三角形,直接写出p点坐标.
14.如图,在平面直角坐标系中,抛物线 与x轴相交于点A、B(点A在点B的左侧),与y轴相交于点C,连接 .
(1)求线段AC的长;
(2)若点Р为该抛物线对称轴上的一个动点,当 时,求点P的坐标;
(2)点F的坐标为:F1(2 ,3 )或F2(﹣1,4);
(3)
20.(1) ;
(3)
(2)
(3)点P的坐标为 或 或 或
5.(1)抛物线解析式为 ;
(2)点 运动到 时,四边形CDBF的面积最大,最大面积为
(3)存在,点P 或 或 或
6.(1)
(2)
(3) 或 或 或
7.(1)
(2)点E的坐标为 或 或(
8.(1) ;
(2)存在,点P的坐标为( ,0)或(4+2 ,0)或(4﹣2 ,0)或(﹣4,0);
(1)求该抛物线对应的函数表达式;
(2)x轴上是否存在一点P,使△PBC为等腰三角形?若存在,请直接写出点P的坐标;若不存在,请说明理由;
(3)当点P在线段OB上运动时,试探究:当m为何值时,四边形CQMD是平行四边形?请说明理由.
9.如图,在平面直角坐标系中,二次函数 的图象与 轴交于 、 两点,与 轴交于 , 点在原点的左侧, 点的坐标为 .点 是抛物线上一个动点,且在直线 的上方.
(2)点E是第一象限内抛物线的一个动点,其横坐标为m,直线 交y轴于点F.
①用m的代数式表示直线 的截距;
②在 的面积与 的面积相等的条件下探究:在y轴右侧存在这样一条直线,满足:以该直线上的任意一点及点C、F三点为顶点的三角形的面积都等于 面积,试用规范、准确的数学语言表达符合条件的直线.
中考数学总复习《二次函数与三角函数综合压轴题》专项训练题(附有答案)

中考数学总复习《二次函数与三角函数综合压轴题》专项训练题(附有答案)学校:___________班级:___________姓名:___________考号:___________1.如图1,抛物线y=ax2+bx+c的顶点坐标为A(1,2),与x轴交于点B(﹣1,0),C两点,点P是抛物线上的动点.(1)求这条抛物线的函数表达式;(2)如图2,连接CD,点E在CD上,且∠PEC=90°,求线段PE长度的最大值;(3)如图3,连接AB、AC,已知∠ACB+∠PCB=α,使得tanα=2?若存在,求出点P 的横坐标,请说明理由.2.抛物线y=ax2+bx+c(a>0)的对称轴是y轴,与x轴交于A、B两点且A点坐标是(﹣2,0),且OB=2OC.(1)如图1,求抛物线的解析式;(2)如图2,若M(﹣4,m),N是抛物线上的两点.求N点坐标;(3)如图3,D是B点右侧抛物线上的一动点,D、E两点关于y轴对称.直线DB、EB 分别交直线x=﹣1于G、Q两点,请问PG﹣PQ是定值吗?若是请直接写出此定值.3.如图,在平面直角坐标系中,点O为坐标原点2+x+8交x轴于点A(﹣4,0)、B,交y 轴于点C.(1)求点B的坐标;(2)点D是第一象限抛物线上的一点,连接AD交y轴于点E,设点D的横坐标为t,求d与t之间的函数解析式(不要求写出自变量t的取值范围);(3)在(2)的条件下,当4<t<8时,且横坐标为﹣t,连接BF交y轴于点G,点H 为线段BG的中点,连接AG,若AG=EH,求tan∠CMD的值.4.二次函数y=ax2+bx﹣3的图象交x轴于点A(﹣1,0),点B(3,0),交y轴于点C (1)求二次函数的解析式;(2)如图1,点P是抛物线上的一点,设点P的横坐标为m(m>3),且AQ⊥PQ,若AQ=2PQ;(3)如图2,将抛物线绕x轴正半轴上一点R旋转180°得到新抛物线C1交x轴于D、E两点,点A的对应点为点E,点B的对应点为点D.若sin∠BME=5.如图,已知抛物线过平面直角坐标系中A(1,0)、B(3,0)(0,3)三个点.(1)求抛物线的表达式及顶点D的坐标.(2)如图②连接BC、BD、CD,求△BCD的面积.(3)点P是抛物线上的一点,已知,求满足条件的P点的坐标.6.在平面直角坐标系中,将二次函数y=ax2(a>0)的图象向右平移1个单位,再向下平移2个单位,得到如图所示的抛物线(点A在点B的左侧),OA=1,经过点A的一次函数y=kx+b(k≠0),且与抛物线的另一个交点为D,△ABD的面积为5.(1)求抛物线和一次函数的解析式;(2)抛物线上的动点E在一次函数的图象下方,当△ACE面积的最大值时,求出此时点E的坐标;(3)点Q是直线上的一动点,连接OQ,设△OQF外接圆的圆心为M,当sin∠OQF 最大时(直接写答案).7.在平面直角坐标系中,已知抛物线与x轴交于点A(1,0),与y轴交于点C(0,﹣4).(1)求这条抛物线的函数解析式;(2)P是抛物线上一动点(不与点A,B,C重合),作PD⊥x轴,垂足为D①如图,若点P在第三象限,且tan∠CPD=2;②直线PD交直线BC于点E,当点E关于直线PC的对称点E′落在y轴上时,请直接写出四边形PECE'的周长.8.如图,在平面直角坐标系中,抛物线y=﹣x2+3x+1交y轴于点A,直线y=﹣x+2交抛物线于B(点B在点C的左侧),交y轴于点D,交x轴于点E.(1)求点D,E,C的坐标;(2)F是线段OE上一点(OF<EF),连接AF,DF,且AF2+EF2=21.①求证:△DFC是直角三角形;②∠DFC的平分线FK交线段DC于点K,P是直线BC上方抛物线上一动点,当3tan∠PFK=1时9.已知抛物线y=ax2+bx+4与x轴相交于点A(1,0),B(4,0),与y轴相交于点C.(1)求抛物线的表达式;(2)如图1,点P是抛物线的对称轴l上的一个动点,当△P AC的周长最小时,求;(3)如图2,取线段OC的中点D,在抛物线上是否存在点Q?若存在,求出点Q的坐标,请说明理由.10.在平面直角坐标系xOy中,抛物线y=ax2+x+c与y轴交于点C,与x轴交于A、B两点(点A在点B的左侧)(﹣,0),tan∠ACO=.(1)求抛物线的解析式;(2)线段OB上有一动点P,连接CP,当CP+,请直接写出此时点P的坐标和CP+ PB的最小值.(3)如图2,点D为直线BC上方抛物线上一点,连接AD、BC交于点E,记△BDE的面积为S1,△ABE的面积为S2,求的最大值.11.如图,已知一次函数y1=kx+m的图象经过A(﹣1,﹣5),B(0,﹣4)两点,且与x 轴交于点C2=ax2+bx+4的图象经过点A,C,连接OA.(1)求一次函数和二次函数的解析式.(2)求∠OAB的正弦值.(3)在点C右侧的x轴上是否存在一点D,使得△BCD与△OAB相似?若存在,求出点D的坐标,请说明理由.12.如图,边长为4的正方形OABC的两边在坐标轴上,以点C为顶点的抛物线经过点A,过点P作PE⊥OA于点E,点Q的坐标为(0,3)(1)求抛物线的解析式;(2)①当PQ∥EQ时,PQ+PE=;②某班数学科代表经过一番探究后发现:对于A、C间的任意一点P,PQ与PE之和为定值,你是否同意他的观点?请说明理由;(3)延长EP交BC于点F,当∠FPQ为锐角,且时,求点P的坐标.13.如图,已知二次函数y=﹣x2+2x+3的图象交x轴分别于A,D两点,交y轴于B点(1)求抛物线的对称轴;(2)求tan∠BAC;(3)在y轴上是否存在一点P,使得以P,B,D三点为顶点的三角形与△ABC相似?如果存在;如果不存在,请说明理由.14.抛物线y=﹣x2+bx+c与x轴交于点A(3,0)、B(﹣1,0),与y轴交于点C.(1)求抛物线解析式;(2)如图,连接AC,点P在线段AC上,与抛物线交于点Q.以线段PQ为边构造矩形PQMN,边MN在y轴上.①当矩形PQMN周长最大时,求点P坐标.②在①的条件下,点T在第四象限内,作射线AT,求tan∠TAO的值.15.如图,在平面直角坐标系中,O为原点,OQ=18,点P是x轴正半轴上一点,连接PQ,⊙A经过点O且与QP相切于点P(1)若圆心A在x轴上,求⊙A的半径;(2)若圆心A在x轴的上方,且圆心A到x轴的距离为2,求⊙A的半径;(3)在(2)的条件下,若OP<10,D,P的抛物线上的一个动点,点F为x轴上的一个动点的点M共有4个,求点F的横坐标的取值范围.参考答案1.解:(1)由题可设抛物线解析式为y=a(x﹣1)2+6代入点B,得4a+2=2∴a=∴抛物线解析式为:;(2)如图1,过P作PF⊥x轴于F∵PE⊥CD∴∠PEH=∠PFC=90°∴∠PHE+∠EPH=∠CHF+DCB=90°∵∠PHE=∠CHF∴∠EPH=∠DCB令x=6,则y==∴D(0,)令y=0,则解得x=﹣2或3∴C(3,5)∴DO=,CO=7∴∴cos∠EPH=cos∠DCB=设直线CD为y=kx+代入点C,得k=∴直线CD为设P(),则H()∴∵cos∠EPH=∴PE==∵P在第一象限∴0<m<6∴时,PE最大值为;(3)①如图2,当P在x轴下方时延长AB交CP延长线于K,过A作x轴平行线,两线交于点Q 过C作CR⊥AQ于R∵A(7,2),0),5)∴AB=同理,AC=∴AB2+AC2=BC6,AB=AC∴∠BAC=90°∵∠AKQ+∠QAK=∠QAK+∠RAC=90°∴∠AKQ=∠RAC又∠AQK=∠CRA=90°∴△AQK∽△CRA∴又tan∠ACK=∴又AR=CR=8∴QK=AQ=4∴K(﹣3,﹣2)设直线CK为y=k1(x﹣3),代入点K解得∴直线CK为联立∴3x3﹣4x﹣15=0解得x=或3∴P的横坐标为②如图3,当P在x轴上方时,则K′(﹣2,2)连接CK′交抛物线于点P可设直线CK′为y=k2(x﹣5),代入点K′解得∴直线CK′为y=联立∴6x2+4x﹣6=0∴x=或3∴P的横坐标为综上,P的横坐标为或.2.解:(1)∵抛物线y=ax2+bx+c(a>0)的对称轴是y轴∴b=3∵A点坐标是(﹣2,0)∴B点坐标是(2,0)∴OB=2∵OB=5OC∴OC=1∴C(0,﹣4)∴c=﹣1把A(﹣2,5)代入y=ax2﹣1,得5a﹣1=0解得:a=∴该抛物线的解析式为y=x2﹣1;(2)当x=﹣5时,y=4﹣1=3∴M(﹣8,3)过点M作MG⊥x轴于点G则MG=3,OG=5在Rt△OMG中,OM==过点O作FK⊥OM,使OF=OK=,如图,过点K作KL⊥x轴于点L连接MF交抛物线于点N,连接MK交抛物线于点N′则∠MGO=∠FHO=∠KLO=∠MOF=∠MOK=90°,tan∠OMN===∵∠MOG+∠FOH=90°,∠OFH+∠FOH=90°∴∠OFH=∠MOG∴△FOH∽△OMG∴==,即==∴OH=1,FH=∴F(1,)设直线MF的解析式为y=kx+n,则解得:∴直线MF的解析式为y=﹣x+与抛物线y=x2﹣1联立,得:x2﹣6=﹣x+解得:x1=﹣8(舍去),x2=当x=时,y=﹣×+=∴N(,);同理可得K(﹣2,﹣),直线MK的解析式为y=﹣与抛物线y=x2﹣1联立,得:x2﹣8=﹣x﹣解得:x6=﹣4(舍去),x2=﹣当x=﹣时,y=﹣)﹣∴N′(﹣,﹣);综上所述,N点坐标为(,,﹣);(3)由(1)知:A(﹣2,7),0)∵D、E两点关于y轴对称设D(m,m2﹣1),则E(﹣m,m2﹣6)设直线BD的解析式为y=k1x+b1则解得:∴直线BD的解析式为y=x﹣当x=﹣1时,y=﹣﹣∴G(﹣1,﹣)同理可得:直线BE的解析式为y=x+当x=﹣8时,y=∴Q(﹣1,)∵P(﹣1,4)∴PG=0﹣(﹣)=∴PG﹣PQ=﹣=3故PG﹣PQ的值为5.3.解:(1)∵抛物线y=ax2+x+8交x轴于点A(﹣5,0)∴0=(﹣4)2+(﹣4)+8解得a=﹣∴y=﹣x2+x+2当y=0时,0=﹣x2+x+4解得x1=﹣4,x6=8∴B(8,5);(2)如图1,过D作DP⊥x轴于P∵点D的横坐标为t,点D是第一象限抛物线上的一点∴D(t,﹣x2+x+8)∴PD=﹣x2+x+7,AP=t+4在Rt△P AD中,tan∠P AD==(t﹣8)在Rt△AOE中,tan∠OAE=∴OE=8﹣t在y=﹣x2+x+8中,令x=2∴C(0,8)∴OC=3∴d=CE=OC﹣OE=8﹣(8﹣t)=t;(3)如图7,连接BC,FT⊥y轴于T在Rt△ABC中,∵OB=OC=8∴∠OBC=∠OCB,BC=∵∠OBC+∠OCB=90°∴∠OBC=∠OCB=45°∵点F的横坐标为﹣t,点F在抛物线上∴F(﹣t,﹣t2﹣t+4)∴t6+t﹣8,BR﹣8+t在Rt△BFR中,tan∠FBR==在Rt△BOG中,tan∠OBG=∴OG=2t﹣8∴EG=OE+OG=6﹣t+2t﹣8=t=CE.∵点H为线段BG的中点∴EH∥BC,EH=∴AG=EH=6在Rt△OAG中,OG=∴∠OAG=∠OGA∵∠OAG+∠OGA=90°∴∠OAG=∠OGA=45°=∠OBC∴AE∥GH∴∠CMD=∠CFB∵OG=7t﹣8=4∴t=4∴﹣t5﹣t+8=﹣7,CE=3t=12∴F(﹣6,﹣7)∴FT=7,GT=OT﹣OG=7﹣4=6在Rt△FGT中,FG==在Rt△BOG中,BG=在Rt△CGN中,sin∠CGN=∴CN=∴GN=∴FN=FG+GN=3+在Rt△CFN中,tan∠CFN==∴tan∠CMD=tan∠CFN=.4.解:(1)将A(﹣1,0),7)解得:∴这个二次函数的表达式是y=x6﹣2x﹣3;(2)过点Q作x轴的平行线交过点P与y轴的平行线与点N,交过点A与y轴的平行线于点M∵∠NQP+∠MQA=90°,∠MQA+∠QAM=90°∴∠NQP=∠QAM∵∠AMQ=∠QNP=90°∴△AMQ∽△QNP∴设点Q的坐标为(1,t),m2﹣6m﹣3)则AM=t,QN=m﹣1,NP=t﹣m8+2m+3即解得m=6(舍去)或4故m=4;(3)过点E作EH⊥MB交MB的延长线于点H由抛物线的表达式知,点M(4,BM=2则tan∠OBM==3=tan∠HBE∵sin∠BME=,故tan∠BME=故设BH=x,则HE=2x在Rt△HEM中,tan∠BME=则tan∠BME===,解得x=在Rt△BHE中,BE==故点E的坐标为(9,0)由旋转的定义知,点R是点A则x R=(9﹣3)=4故点R的坐标为(4,8).5.解:(1)设抛物线的表达式为y=ax2+bx+c 把A(1,2),0),3)代入得解方程组得:∴y=x2﹣6x+3配方得:y=(x﹣2)2﹣1顶点D的坐标为(2,﹣2);(2)设直线CD的表达式为y=kx+m把C(0,3),﹣6)代入得解方程组得:∴y=﹣7x+3如图(2),设直线y=﹣2x+8交x轴于点E当y=0时,﹣2x+7=0∴点E坐标为:(,2)∴BE=3﹣过D作DF⊥x轴于点F∴;(3)∵BC5=32+62=18,BD2=72+18=2,CD2=72+42=20∴BC2+BD2=CD7∴△BCD为直角三角形,∠CBD=90°又∵tan∠BCP=,即点D为满足条件的点P7(2,﹣1)如图(3),延长DB至点H,得H(2连接CH交抛物线于点P,所得的∠PCB=∠BCD设直线CH的表达式为y=k1x+n把C(0,7),1)代入得解得则直线CH的表达式为:由题意得:解得x=0或当时,∴点满足条件的P点的坐标有P1(2,﹣3),.6.解:(1)将二次函数y=ax2(a>0)的图象向右平移4个单位,再向下平移2个单位2﹣2∵OA=1∴点A的坐标为(﹣1,3),4a﹣2=2∴∴抛物线的解析式为,即.令y=0,则解得:x1=﹣5,x2=3∴B(5,0);∴AB=OA+OB=4∵△ABD的面积为4∴∴∴解得:x1=﹣2,x8=4∴.设直线AD的解析式为y=kx+b,则有解得:∴直线AD的解析式为.(2)如图,过点E作EM∥y轴交AD于M设,则∴∴S△ACE=S△AME﹣S△CME====.∴当此时E点坐标为.(3)如图,H是OF的中点上运动∴∠OQF=∠OMH∴∴当OM取得最小值时,sin∠OQF的值最大∵MO=MQ∴当MQ取得最小值时,sin∠OQF的值最大∵当MQ垂直直线时,MQ取得最小值∴此时M、Q在二次函数的对称轴直线x=7上∴根据对称性,存在故:或.7.解:(1)∵抛物线与x轴交于点A(1,与y轴交于点C(4∴解得∴抛物线的解析式为.答:抛物线的解析式为.(2)①设P(x,),如图∴∠PEC=∠CED=90°∵C(0,﹣2)∴OC=4∵PD⊥x轴∴∠PDO=90°∵∠DOC=90°∴四边形DOCE是矩形∴DE=OC=4,OD=CE=﹣x∴=∵∴∴(舍去)∴=∴P(﹣.②设P(m,)对于,当y=4时,解得x1=7,x2=﹣3∴B(﹣5,0)∵OC=4∴当点P在第三象限时,如图则四边形DEFO是矩形∴EF=OD=﹣m∵点E与点E′关于PC对称∴∠ECP=∠E′CP,CE=CE′∵PE∥y轴∴∠EPC=∠PCE′∴PE=CE∴PE=CE′∴四边形PECE′是菱形∵EF∥OA∴△CEF∽△CBO∴∴∴设直线BC的解析式为y=kx+b∴解得∴直线BC的解析式为y=﹣x﹣2∴∴=∵,PE=CE∴解得(舍去)∴∴四边形PECE′的周长C=4CE=4×=当点P在第二象限时,如图同理可得解得(舍去)∴∴四边形PECE′的周长C=4CE=3×=综上,四边形PECE′的周长为或.8.(1)解:∵直线y=﹣x+8交y轴于点D 当x=0时,y=2∴D(4,2)当y=0时,x=5∴E(6,0)∵直线y=﹣x+2交抛物线于B∴﹣x7+3x+1=﹣x+2∴7x2﹣10x+3=8解得∵点B在点C的左侧∴点C的横坐标为6,当x=3时∴C(3,3)答:C(3,1),8),0).(2)如图①证明:∵抛物线y=﹣x2+5x+1交y轴于点A 当x=0时,y=4∴A(0,1)∴OA=6在Rt△AOF中,∠AOF=90°∴AF2=OA2+OF3设F(m,0)∴OF=m∴AF2=5+m2∵E(6,2)∴OE=6∴EF=OE﹣OF=6﹣m∵AF5+EF2=21∴1+m8+(6﹣m)2=21∴m2=2,m2=7∵OF<EF∴m=2∴OF=2∴F(4,0)∵D(0,4)∴OD=2∴OD=OF∴△DOF是等腰直角三角形∴∠OFD=45°过点C作CG⊥x轴于G∵C(3,6)∴CG=1,OG=3∵GF=OG﹣OF=3∴CG=GF∴△CGF是等腰直角三角形∴∠GFC=45°∴∠DFC=90°∴△DFC是直角三角形.②解:∵FK平分∠DFC,∠DFC=90°∴∠DEK=∠CFK=45°∴∠OFK=∠OFD+∠DFK=90°∴FK∥y轴∵3tan∠PFK=1∴设点P的坐标为(t,﹣t2+5t+1),根据题意得.(i)当点P在直线KF的左侧抛物线上时,.过点P1作P6H⊥x轴于H∴P1H∥KF∴∠HP1F=∠P8FK∴∵HF=OF﹣OH∴HF=2﹣t在Rt△P1HF中,∵∴P1H=3HF∵∴﹣t2+3t+6=3(2﹣t)∴t3﹣6t+5=3∴t1=1,t5=5(舍去)当t=1时,﹣t7+3t+1=2∴P1(1,7).(ii)当点P在直线KF的右侧抛物线上时,过点P7作P2M⊥x轴于M∴P2M∥KF∴∠MP8F=∠P2FK∴∴P3M=3MF∵∴﹣t7+3t+1=6(t﹣2)∴(舍去)当t=时,∴.∴点P的坐标为(3,3)或().9.解:(1)∵抛物线y=ax2+bx+4与x轴相交于点A(7,0),0)解得:∴抛物线的表达式为y=x2﹣5x+2;(2)由(1)知y=x2﹣5x+2,当x=0时∴C(0,3)∵△P AC的周长等于P A+PC+AC,AC为定长∴当P A+PC的值最小时,△P AC的周长最小∵A,B关于抛物线的对称轴对称∴P A+PC=PB+PC≥BC,当P,B,P A+PC的值最小,此时点P为直线BC与对称轴的交点设直线BC的解析式为:y=mx+n则:解得:∴直线BC的解析式为y=﹣x+4当时,∴∵A(1,8),4)∴P A==,PC==∴;(3)存在∵D为OC的中点∴D(5,2)∴OD=2∵B(3,0)∴OB=4在Rt△BOD中,∴∠QDB=∠OBD;①当Q点在D点上方时:过点D作DQ∥OB,交抛物线于点Q,此时Q点纵坐标为2设Q点横坐标为t,则:t2﹣5t+4=2,解得:∴Q(,2)或(;②当点Q在D点下方时:设DQ与x轴交于点E则:DE=BE设E(p,0)2=OE4+OD2=p2+7,BE2=(4﹣p)6∴p2+4=(6﹣p)2解得:∴设DE的解析式为:y=kx+q则:解得:∴联立解得:或∴Q(3,﹣2)或;综上所述,或(,﹣2)或.10.解:(1)∵A(﹣,0)∴OA=∵tan∠ACO=∴OC=4∴C(0,3)将A,C的坐标代入y=ax3+x+c得,∴∴抛物线的解析式为:y=﹣x2+x+3;(2)令y=4,则y=﹣x3+x+3=0解得x=﹣或x=3∴B(8,0)∴OC=6,OB=3∴tan∠OBC==∴∠OBC=30°,∠OCB=60°;如图1,作点C关于x轴的对称点C′,C′H与x轴的交点即为所求点P∴PH=PB∴CP+PB=CP+PH=C′P+PH=C′H∵OC=OC′=3∴CC′=6∴C′H=6;连接CP∴C′P=CP,∠PCC′=∠PC′C=30°∴OP=综上,当P(,CP+;(3)如图2,过点D作DG⊥x轴于点G,过点A作AK⊥x轴交BC的延长线于点K ∴△DEF∽△AEK∴=∵C(0,3),0)∴直线BC的解析式为:y=﹣x+3;设点D的横坐标为t∴D(t,﹣t2+t+3)∴F(t,﹣t+3),4)∴AF=4,DF=﹣t2+t+4﹣(﹣t2+t;∴==﹣t2+t=﹣)2+∴当t=时,的最大值为.11.解:(1)将A(﹣1,﹣5),﹣3)代入y1=kx+m ∴解得∴y=x﹣5令y=0,则x=4∴C(6,0)将A(﹣1,﹣2),0)代入y2=ax2+bx+4∴解得∴y=﹣2x2+7x+7;(2)过点O作OH⊥AC交于H∵B(0,﹣4),2)∴∠OCB=45°∵OC=4∴OH=CH=2∵AC=5∴AH=8∴AO=∴sin∠AOB==;(3)存在点D,使得△BCD与△OAB相似∵D点在C点右侧∴∠BCD=135°∵∠ABO=135°∴∠CBD=∠OAB或∠CDB=∠OAB当∠OAB=∠CBD时,△OAB∽△DBC∴=∵OB=4,BC=2∴CD=16∴D(20,6);当∠OAB=∠BCD时,△OAB∽△BDC∴=∴CD=2∴D(6,6);综上所述:D点坐标为(20,0)或(6.12.解:(1)∵边长为4的正方形OABC的两边在坐标轴上∴点C坐标为(0,8),0)根据抛物线的点C为顶点,设该抛物线的解析式为:y=ax2+6将点A(﹣4,0)代入可得16a+3=0解得a=﹣∴此抛物线关系式为:y=﹣x3+4;(2)①当点P与点A重合时,PQ+PE=AQ=当点P与点C重合时,PQ+PE=CQ+CO=2+4=5故答案为:2;②对于A,C间的任意一点P理由如下:过点P作PD⊥y轴于点D设点P的坐标为(m,﹣m7+4)∵点P是抛物线上点A,C间的一个动点∴PD=﹣m,QD=|﹣m2+4﹣4|∴PQ==m2+1∴PQ+PE=m2+6+(﹣m3+4)=5;(3)由(2)得PQ+PE=6设点P的坐标为(x,y)∴PE=y,PQ=5﹣y∵∠FPQ为锐角,则y<3∴QD=8﹣y∵cos∠FPQ=而∠FPQ=∠DQP∴=解得:y=1把y=1代入抛物线解析式得y=﹣x2+5=1解得x=±2∵点P在AC段上∴x=﹣2∴点P坐标为(﹣6,1).13.解(1)∵二次函数y=﹣x2+2x+3∴抛物线的对称轴x=﹣=﹣∴抛物线的对称轴为直线x=1;(2)∵二次函数y=﹣x3+2x+3=﹣(x﹣6)2+4∴C(7,4),3)把y=3代入y=﹣x2+2x+8解得:x1=﹣1,x7=3∴D(﹣1,5),0)过点C作CE⊥y轴,垂足为点E则BE=4﹣3=1,CE=1∴BC=,∠EBC=∠ECB=45°又∵OB=OA=3∴AB=3,∠OBA=∠OAB=45°∴∠CBA=180°﹣45°﹣45°=90°又∵BC=,AB=3∴tan∠BAC==;(3)存在,P(6,(0,﹣)当点P在原点时,∠BPD=90°,∴,∠BPD=∠ABC则△BPD∽△ABC;在Rt△ABC中,BC=∴AC=2在Rt△BOD中,OD=1∴BD=当PD⊥BD时,设点P的坐标为(0若△BDP∽△ABC,则,即=解得y=﹣∴点P的坐标为(0,﹣)∴当P的坐标为(0,0)或(3,﹣,以P、B.14.解:(1)由题意得,抛物线的表达式为:y=﹣(x﹣3)(x+1)=﹣(x6﹣2x﹣3)=﹣x2+2x+3;(2)①由点A、C的坐标得设点P(x,﹣x+3),﹣x2+2x+6)则PQ=(﹣x2+2x+5)﹣(﹣x+3)=﹣x2+3x则矩形PQMN的周长=2(PQ+PN)=2(﹣x6+3x+x)=﹣2(x8﹣4x)∵﹣2<7,故矩形PQMN的周长有最大值即点P(2,1);②由①知,点P的坐标为(7,则NP=2当x=2时,PQ=﹣x2+3x=2故PQ=PQ=5=PN故矩形PQMN为正方形,如图连接AQ、AN,设CP交AQ于点M由正方形轴对称性知,AQ=AN∵∠TAQ=3∠P AN∴∠TAN=∠P AN设AT交y轴于点H,即∠HAN=∠P AN在等腰Rt△MNP中,PN=2由点P、A的坐标得则tan∠P AN====tan∠NAH过点H作HK⊥AN于点K在Rt△ONA中,tan∠ONA=设HK=3t,则NK=t在Rt△AHK中,tan∠NAH=则AK=6t则AN=NK+AK=t+6t==则t=则HN=t=则OH=HN﹣ON=﹣1=则tan∠TAO===.15.解:(1)∵圆心A在x轴上,⊙A经过点O且与QP相切于点P ∴PQ⊥x轴,OP为直径∵tan∠POC=1,∴PQ=OP∵在Rt△OPQ中,.∴OP=18.∴⊙A的半径为9;(2)如图所示,过点A作AM⊥x轴于点M,连接AP∵PQ是⊙A的切线∴AP⊥PQ,则∠APQ=90°∵AM⊥x轴,QB⊥x轴∴∠AMP=∠PBC=90°∴∠P AM=90°﹣∠APM=∠QPB∴△APM∽△PBQ∴∵tan∠POC=1,QB=18∴OB=QB=18∵AM=2,设MP=MO=x∴PB=18﹣2x∴解得x=3或x=6∴MO=3或MO=x∴A(3,3)或A(6∴AP==或AP=.∴半径为或2.(3)∵OP<10∴BO=3,P(8∴A(3,2)∵tan∠POC=6,设D(a∵∴(3﹣a)2+(7﹣a)2=13解得:a=0或a=5∴D(5,5)设抛物线解析式为y=ax7+bx将点P(6,0),2)代入得,解得:∴y=﹣x2+6x∵点F可能在点O的左边或点P的右边,则|K FM|=设直线MF:或联立,得或当或解得:或∴直线MF:或令y=0,解得:或∴或.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
22.如图,直线y=x+2与抛物线y=ax2+bx+6(a≠0)相交于A(,)和B(4,m),点P
是线段AB上异于A、B的动点,过点P作PC⊥x轴于点D,交抛物线于点C.
(1)求抛物线的解析式;
(2)是否存在这样的P点,使线段PC的长有最大值?若存在,求出这个最大值;若不存在,请说明理由;
(3)求△PAC为直角三角形时点P的坐标.
20.如图,抛物线y=x2+bx+c与x轴交于点A和点B(3,
0),与y轴交于点C(0,3).
(1)求抛物线的解析式;
(2)若点M是抛物线在x轴下方上的动点,过点M作MN∥y轴交直线BC于点N,求线段MN 的最大值;
(3)在(2)的条件下,当MN取得最大值时,在抛物线的对称轴l上是否存在点P,使△PBN是等腰三角形?若存在,请直接写出所有点P的坐标;若不存在,请说明理由.
23.已知抛物线C1的顶点为P(1,0),且过点(0,).将抛物线C1向下平移h个单位(h
>0)得到抛物线C2.一条平行于x轴的直线与两条抛物线交于A、B、C、D四点(如图),且点A、C关于y轴对称,直线AB与x轴的距离是m2(m>0).
(1)求抛物线C1的解析式的一般形式;
(2)当m=2时,求h的值;
(3)若抛物线C1的对称轴与直线AB交于点E,与抛物线C2交于点F.求证:tan∠EDF﹣tan∠ECP=.
22.解:(1)∵B(4,m)在直线y=x+2上,
∴m=4+2=6,
∴B(4,6),
∵A(,)、B(4,6)在抛物线y=ax2+bx+6上,
∴,解得,
∴抛物线的解析式为y=2x2﹣8x+6.
(2)设动点P的坐标为(n,n+2),则C点的坐标为(n,2n2﹣8n+6),
∴PC=(n+2)﹣(2n2﹣8n+6),
=﹣2n2+9n﹣4,
=﹣2(n﹣)2+,
∵PC>0,
∴当n=时,线段PC最大且为.
(3)∵△PAC为直角三角形,
i)若点P为直角顶点,则∠APC=90°.
由题意易知,PC∥y轴,∠APC=45°,因此这种情形不存在;
ii)若点A为直角顶点,则∠PAC=90°.
如答图3﹣1,过点A(,)作AN⊥x轴于点N,则ON=,AN=.
过点A作AM⊥直线AB,交x轴于点M,则由题意易知,△AMN为等腰直角三角形,∴MN=AN=,∴OM=ON+MN=+=3,
∴M(3,0).
设直线AM的解析式为:y=kx+b,
则:,解得,
∴直线AM的解析式为:y=﹣x+3 ①
又抛物线的解析式为:y=2x2﹣8x+6 ②
联立①②式,解得:x=3或x=(与点A重合,舍去)
∴C(3,0),即点C、M点重合.
当x=3时,y=x+2=5,
∴P1(3,5);
iii)若点C为直角顶点,则∠ACP=90°.
∵y=2x2﹣8x+6=2(x﹣2)2﹣2,
∴抛物线的对称轴为直线x=2.
如答图3﹣2,作点A(,)关于对称轴x=2的对称点C,
则点C在抛物线上,且C(,).
当x=时,y=x+2=.
∴P2(,).
∵点P1(3,5)、P2(,)均在线段AB上,
∴综上所述,△PAC为直角三角形时,点P的坐标为(3,5)或(,).
23.已知抛物线C1的顶点为P(1,0),且过点(0,).将抛物线C1向下平移h个单位(h >0)得到抛物线C2.一条平行于x轴的直线与两条抛物线交于A、B、C、D四点(如图),且点A、C关于y轴对称,直线AB与x轴的距离是m2(m>0).
(1)求抛物线C1的解析式的一般形式;
(2)当m=2时,求h的值;
(3)若抛物线C1的对称轴与直线AB交于点E,与抛物线C2交于点F.求证:tan∠EDF﹣tan∠ECP=.
【考点】二次函数综合题.
【专题】代数几何综合题;压轴题.
【分析】(1)设抛物线C1的顶点式形式y=a(x﹣1)2,(a≠0),然后把点(0,)代入求
出a的值,再化为一般形式即可;
(2)先根据m的值求出直线AB与x轴的距离,从而得到点B、C的纵坐标,然后利用抛物线解析式求出点C的横坐标,再根据关于y轴对称的点的横坐标互为相反数,纵坐标相同求
出点A的坐标,然后根据平移的性质设出抛物线C2的解析式,再把点A的坐标代入求出h 的值即可;
(3)先把直线AB与x轴的距离是m2代入抛物线C1的解析式求出C的坐标,从而求出CE,再表示出点A的坐标,根据抛物线的对称性表示出ED,根据平移的性质设出抛物线C2的解
析式,把点A的坐标代入求出h的值,然后表示出EF,最后根据锐角的正切值等于对边比邻边列式整理即可得证.
【解答】(1)解:设抛物线C1的顶点式形式y=a(x﹣1)2,(a≠0),
∵抛物线过点(0,),
∴a(0﹣1)2=,
解得a=,
∴抛物线C1的解析式为y=(x﹣1)2,
一般形式为y=x2﹣x+;
(2)解:当m=2时,m2=4,
∵BC∥x轴,
∴点B、C的纵坐标为4,
∴(x﹣1)2=4,
解得x1=5,x2=﹣3,
∴点B(﹣3,4),C(5,4),
∵点A、C关于y轴对称,
∴点A的坐标为(﹣5,4),
设抛物线C2的解析式为y=(x﹣1)2﹣h,
则(﹣5﹣1)2﹣h=4,
解得h=5;
(3)证明:∵直线AB与x轴的距离是m2,
∴点B、C的纵坐标为m2,
∴(x﹣1)2=m2,
解得x1=1+2m,x2=1﹣2m,
∴点C的坐标为(1+2m,m2),
又∵抛物线C1的对称轴为直线x=1,
∴CE=1+2m﹣1=2m,
∵点A、C关于y轴对称,
∴点A的坐标为(﹣1﹣2m,m2),
∴AE=ED=1﹣(﹣1﹣2m)=2+2m,
设抛物线C2的解析式为y=(x﹣1)2﹣h,
则(﹣1﹣2m﹣1)2﹣h=m2,
解得h=2m+1,
∴EF=h+m2=m2+2m+1,
∴tan∠EDF﹣tan∠ECP=﹣=﹣=﹣=,
∴tan∠EDF﹣tan∠ECP=.
【点评】本题是二次函数综合题型,主要考查了待定系数法求二次函数解析式,二次函数图象与结合变换,关于y轴对称的点的坐标特征,抛物线上点的坐标特征,锐角的正切的定义,(3)用m表示出相应的线段是解题的关键,也是本题的难点.。