直流电机控制系统开题报告
无刷直流电机控制系统的设计开题报告

1.无刷直流电机在国内外的发展水平和研究情况。
2.无刷直流电机的原理及资料分析。
3.无刷直流电机的选择。
4.无刷直流电机控制系统分析和确定。
5.无刷直流电机的维护分析和故障处理。
6.总结设计并写出心得体会。
三.研究方案及步骤
(一)研究方案:
1.认真查阅资料确定设计方案。
2.进行相关计算选取需要的元件和装置。
3.画出相应接线配置图。
4.画出总设计图。
5.进行校验改正,完成毕业论文。
(二)步骤:
1.设计方案的确定。
2.无刷直流电机的资料分析。
3.接线的确定和相关配置图的确定。
4.无刷直流电机故障的检测方法。
5.无刷直流电机故障预防措施。
6.总结。
四.存在问题及其解决方法
1.设计出来的方案可能不符合实际要求,不能满足现实状况,向有相关经验者请教并仔细修改。
目前,无刷直流电机的应用越来越普遍,国内近年来在无刷直流电机的设计和控制方面有很多的研究,但与国外成熟的产品化相比还有很多地方只得提高。如何在无刷直流电机方面做出积极的研究是很有现实意义的。
1.2.国内外状况
有刷直流电动机作为最早的电动机广泛应用于工农业生产的各个领域,由于其宽阔而平滑的优良调速性能,在需要调速的应用领域占有重要地位,但机械换相装置的存在,限制了其发展和应用范围。直流电动机的机械电刷和换向器因强迫性接触,造成其结构复杂、可靠性差、火花、噪声等一系列问题,影响了直流电动机的调速精度和性能。科学技术的飞速发展,带来了半导体技术的飞跃,开关型晶体管的研制成功为创造新型的无刷直流电动机带来生机。“无刷直流电机”的概念已有最初的具有电子换相器的直流电机发展到泛指一切具有传统直流电机外部特性的电子换相电机。现今,无刷直流电机集电机、变速机构、检测元件、控制软件和硬件于一体,形成为新一代的电动调速系统。无刷直流电机具有最优越的调速性能,主要表现在:调速方便(可无级调速),调速范围宽,低速性能好(起动转矩大,起动电流小),运行平稳,噪音低,效率高,应用场合从工业到民用极其广泛。如电动自行车、电动汽车、电梯、抽油烟机、豆浆机、小型清污机、数控机床、机器人等。由于无刷直流电机具有这些优点,因此在2004年的国际电机会议上提出了有刷电机将被无刷电机取代这一发展趋势。我国目前是世界最大的永磁体(生产无刷电机的主要原材料)生产供应基地,中国还将要成为全球最大的无刷电机生产国。随着汽车工业的快速发展,车用小功率电机的需求增长带动了以永磁无刷直流电机为主体的车用小功率电机的兴起,我国正在成为世界电动汽车制造业的主要供应用。
直流电动机转速控制系统设计开题报告

1.本课题的研究内容、重点及难点 研究内容
直流电动机因其良好的起动性能和调速性能而得到广泛的应用。 直流电动机在社会 的应用很广泛,常应用于对起动和调速有较高要求的场合,例如在工矿、交通、医疗、 工业自动化等等行业。 利用单片机控制直流电动机转速往往可以提高系统的可靠性,抗 干扰能力,维修方便,能耗低,性价比高等特点。 直流电动机转速控制系统主要应用常应用于对起动和调速有较高要求的场合, 其良 好的起动性能、 调速性能和制动性能而在高铁、 工业、 航空航天等领域得到了广泛应用。 因此研究直流电动机转速控制的原理有着很大的现实意义。 本课题的研究内容是基于单 片机控制直流电动机转速控制系统要求采用闭环反馈控制。直流电动机初始速度为零, 并且通过液晶屏显示速度。本课题的研究内容主要有以下几个方面: (1) 研究直流电动机的工作原理; (2) 研究直流电动机的测速原理; (3) 研究直流电动机的闭环反馈控制; (4) 研究如何利用单片机系统设定转速、转速数据采集,反馈处理数据; (5) 研究直流电动机的闭环反馈控制减少转速稳态误差; (6) 研究直流电动机转速控制系统的硬件。
4
系统组成如图 2 所示:
LED 显示 驱动 电路 键盘
直流 电机
光电 编码器
AT89S52
A/D 转换
电位给定
电流检测 图2 系统组成
(3)软件设计 主程序软件流程图如图 3 所示,主要完成实时性要求不高的功能,完成系统初始化 以后,实现键盘处理、刷新显示等功能。 主程序软件流程图如图 3 所示:
研究重点及难点
重点: (1) 直流电动机转速控制系统的硬件设计,使基本硬件电路能满足初始速度为零, 额定负载时,单位阶跃响应超调量<5%,转速稳态误差<±5%; (2)选择合适的测速元件,更能精准的测出直流电动机的转速; (3)正确设计转速的程序,其偏差按某种控制算法进行计算,所得数字量输出信号 经 D/A 转换接口直接驱动执行装置,对控制对象进行调节,使其保持在设定值上。 难点: (1)利用数字 PID 技术实现对直流电动机的闭环控制; (2)如何合理单片机程序,使之能精确测量出直流电动机的转速; (3)如何减少额定负载时的转速稳态误差。
直流电机控制系统开题报告

毕业设计(论文)开题报告题目:直流电机控制系统专业:电子信息工程班级:08级学生:辛国鹏指导教师:***西安理工大学高科学院2012年一、毕业设计(论文)课题来源、类型本课题来源为社会实践,属于科研软件\硬件。
二、选题的目的及意义选题的目的:由于变频技术的出现,交流调速一直冲击直流调速,但综观全局,尤其是我国在此领域的现状,再加上全数字直流调速系统的出现,更提高了直流调速系统的精度及可靠性,直流调速系统仍将处于十分重要地位。
选题的意义:对于直流调速系统转速控制的要求有稳速、调速、加速或减速三个方面,而在工业生产中对于后两个要求已能很好地实现,但工程应用中稳速指标却往往不能达到预期的效果,稳速要求即以一定的精度在所需要的转速稳定运行,在各种干扰不允许有过大的转速波动。
稳速很难达到要求原因在于数字直流调速装置中的PID调节器对被控对象及其负载参数变化适应能力差。
直流电机的数学模型很容易得到,这使得经典控制理论在己知被控对象的传递函数才能进行设计的前提得到满足,大部分数字直流调速控制器就是建立在此基础上的。
然而,在实际的传动系统中,电机本身的参数和拖动负载的参数并不如模型那样一成不变,尤其对于中小型电机,在某些应用场合随工况而变化;同时,直流电机本身是一个非线性的被控对象,许多拖动负载含有弹性或间隙等非线性因素,因此,被控对象的参数变化与非线性特性,使得线性常参数PID 调节器顾此失彼,不能使系统在各种工况下都能保持设计时的性能指标,往往使得控制系统的鲁棒性差,特别是对于模型参数大范围变化且具有较强非线性环节的系统,常规PID调节器难以满足高精度、快响应的控制要求,常常不能有效克服负载、模型参数的大范围变化以及非线性因素的影响。
在工程上,这种控制器就很有可能满足不了生产的需求,如:轧钢工业同轴控制系统、回转窑传动装置、轧辊磨床拖板电控系统等都需要在生产过程中保持稳定的转速要求,而生产负载参数却是随着工况变化的。
无刷直流电机的双闭环控制系统研究的开题报告

无刷直流电机的双闭环控制系统研究的开题报告题目:无刷直流电机的双闭环控制系统研究一、选题背景和意义现代工业中,无刷直流电机已经广泛应用于机器人、自动化生产线、风能、水力发电等领域。
无刷直流电机具有体积小、重量轻、高效率、低噪音等优点,已成为当前最为主流的电机之一。
但是,无刷直流电机的特性随负载变化较大,且不能够直接控制转速,因此需要采用闭环控制系统来实现精确控制。
双闭环控制系统引入了位置环和速度环,可实现更精确和稳定的电机控制,因此在工业应用中被广泛采用。
二、研究内容和目标本文旨在研究无刷直流电机的双闭环控制系统,主要包括以下内容:1. 无刷直流电机的基本原理和特性,以及闭环控制系统的基本概念和原理。
2. 双闭环控制系统的设计和实现,包括位置环和速度环的设计和选型,以及PID控制器参数的调整和优化。
3. 基于MATLAB/Simulink的仿真实验,验证双闭环控制系统的性能和稳定性,包括转速响应、转速波动、位置误差等指标。
4. 测试实验,实现双闭环控制系统的实际应用,包括负载响应能力与实际应用环境的适应性等方面的测试和评估。
本研究旨在实现无刷直流电机的双闭环控制系统,提高电机的精度和稳定性,为其在工业应用中的广泛应用奠定基础。
三、研究方法和进度安排1. 研究方法本研究采用理论分析和仿真实验相结合的方法。
首先对无刷直流电机的基本原理和闭环控制系统的基本概念进行理论分析,然后设计双闭环控制系统,采用MATLAB/Simulink进行仿真实验,最后进行实际测试实验。
2. 进度安排第一阶段:文献调研和理论分析。
2019年10月-2019年11月。
第二阶段:设计双闭环控制系统。
2019年11月-2020年2月。
第三阶段:基于MATLAB/Simulink的仿真实验。
2020年2月-2020年4月。
第四阶段:测试实验和性能评估。
2020年4月-2020年6月。
第五阶段:撰写毕业论文。
2020年6月-2020年7月。
直流电机控制算法的研究与实现的开题报告

直流电机控制算法的研究与实现的开题报告一、选题背景和意义直流电机是一种常见的电动机种类,广泛应用于机械、工业、汽车、船舶、航空等领域。
随着现代控制技术的迅猛发展,直流电机的控制器件性能越来越精密、复杂,因此,如何设计一套有效、实用的直流电机控制算法技术已经成为研究的热点之一。
本研究拟通过系统地研究直流电机的控制原理、控制方法与控制器件性能等关键技术,设计并实现一套实用型的直流电机控制算法,为进一步推动直流电机技术的发展与应用提供科学依据和技术支撑,起到积极推动的作用。
二、研究内容1. 系统综述直流电机的基本原理、操作特性及其应用领域;2. 深入探讨直流电机控制算法的理论与实践问题;3. 研究常见的直流电机控制算法(Armature Control, Field Control, Chopper Control, PWM Control等)的工作原理、特点和适用范围,比较不同算法的优缺点;4. 基于所选控制算法的特点,设计相应的电路结构和数据处理算法,将其应用到实际的直流电机控制中;5. 针对实际应用中出现的问题,分析原因,提出优化方案。
三、研究方法1.理论方法:通过学习、总结和分析学术文献和经典著作,理解直流电机控制的基本原理、方法和技术;2.实验方法:根据设计思路,建立实验平台,对所选的算法进行实践验证,不断优化算法设计;3. 数据处理方法:采用MATLAB,python等软件、工具进行数据处理、实验数据分析与算法实现。
四、研究计划与进度安排主要任务计划进度实际进度文献综述 1周已完成直流电机基本原理及操作特性综述 2周已完成直流电机控制算法综述与分析 2周已完成设计算法方案及实验平台搭建 3周已完成算法实践验证、结果分析和提出方案 7周进行中论文撰写和形成 3周留出时间安排五、预期研究成果1. 深入了解并掌握直流电机控制算法的基本理论和概念;2. 设计实用型的直流电机控制算法,并通过实验验证其稳定性、性能以及应用价值;3. 比较常用直流电机控制算法的优缺点,提出本文实现的直流电机控制算法的优化方案;4. 最终完成一篇具有高水平的学术论文,为直流电机控制算法研究提供一定的参考和借鉴意义。
小功率直流电动机数字控制系统的开发的开题报告

小功率直流电动机数字控制系统的开发的开题报告一、研究背景随着工业自动化的不断发展,数字控制技术在机械制造、电子制造等各个领域得到广泛应用。
特别是在电机控制的领域,数字控制系统能够实现高效、精确和稳定的控制,因此在工业控制中得到了广泛的应用。
在小功率直流电机的控制方面,数字控制系统也有着广泛的应用前景。
二、问题描述小功率直流电机的控制系统在实际应用中需要满足以下要求:1. 能够实现精确的电机速度控制。
2. 能够对电机的转向进行控制。
3. 能够实现电机启停控制。
4. 控制系统的成本不能过高。
因此,设计一个能够满足以上要求、并且成本适中的数字控制系统成为了一个重要的课题。
三、研究目的为了实现小功率直流电机数字控制系统的设计,本研究主要目的包括:1. 研究数字控制技术及其在小功率直流电机控制中的应用。
2. 设计小功率直流电机数字控制系统,并包括硬件电路的设计和软件程序的编写。
3. 对数字控制系统进行性能测试和稳定性测试,以验证其控制效果和稳定性。
四、研究内容1. 数字控制技术的研究:介绍数字控制技术的基本原理及其在小功率直流电机控制中的应用。
2. 控制系统的硬件设计:设计小功率直流电机控制系统的硬件电路,包括电机驱动电路、电源电路、传感器接口电路等。
3. 控制系统的软件编写:编写小功率直流电机控制系统的软件程序,包括数据采集与处理、PID算法实现、电机控制等。
4. 性能测试和稳定性测试:对设计好的数字控制系统进行性能测试和稳定性测试,以验证其控制效果和稳定性。
五、研究意义1. 小功率直流电机数字控制系统的研发可以为各领域的小功率直流电机应用提供更高效、更精确和更稳定的控制解决方案。
2. 研究数字控制技术的应用也对数字控制相关领域的技术人员有着一定启示意义。
3. 通过开展数字控制技术的研究,提高了本团队的技术水平和研发能力。
六、论文结构本论文主要包括以下几个部分:第一章:引言。
本章介绍了研究背景、问题描述以及研究目的。
基于DSP的无刷直流电动机控制系统的研究的开题报告

基于DSP的无刷直流电动机控制系统的研究的开题报告一、研究背景直流无刷电机(BLDC)由于具有低噪声、高效率、高转矩密度等特性而成为目前电动车领域中最为常用的电动机型号之一。
直流无刷电机需要通过控制系统控制旋转速度、转向等参数,实现精细控制。
而数字信号处理器(DSP)由于其高速、低功耗、高可靠性等特点,适合用于BLDC控制系统的设计,特别是要求快速响应、多参数协调控制的现代控制系统。
因此,基于DSP的BLDC控制系统设计及优化研究成为了当前的热点之一。
二、研究目的和意义本研究旨在设计一种基于DSP的无刷直流电动机控制系统,实现BLDC马达的高效控制,包括速度、方向、转矩等参数实时调整,并通过对控制系统进行优化,提高系统性能和稳定性,使BLDC在电动车、电动工具等领域中更加实用和普及,减少传统燃油驱动汽车的使用,使得日益增加的环保意识得以落地实施。
三、研究内容1. BLDC基本理论及其控制方法的研究,包括功率电子器件驱动方法和测速、位置反馈控制等方面的内容;2. DSP的使用与开发,包括DSP引脚的初始化配置、优化算法设计、指令系统优化和控制回路调试等方面的内容;3. BLDC控制系统的设计与搭建,包括软件编写和硬件电路设计等方面,通过模拟仿真和实际测量验证其性能;4. BLDC控制系统性能分析和优化,通过仿真和实验对系统的响应速度、稳态误差、调节精度、抗干扰能力等方面进行评估分析,针对系统存在的问题进行优化改进。
四、研究方案及进度1. 研究方案:(1)学习BLDC基本原理及其控制方法,并根据要求选择合适的控制器;(2)学习DSP开发环境和工具,进行DSP的初始化配置和启动;(3)设计和实现BLDC控制系统的硬件、软件和控制算法设计;(4)进行仿真和实验验证控制系统的性能,分析该系统的特点和问题;(5)优化控制策略和算法,提高系统稳定性和响应速度。
2. 研究进度:本研究计划以四个月的时间完成,主要进度如下:第一周:了解BLDC基本知识和DSP开发环境;第二周:确定控制器类型和动态建模;第三周:确认控制系统硬件设计和编写应用程序;第四周:系统测试和完善功能;第五周:进行仿真测试和数据分析;第六周:论述控制系统的性能和特性;第七周:优化控制算法和系统的稳定性;第八周:进一步完善系统性能和性能测试;第九周:撰写毕业论文;第十周:完成论文的修改和修订;第十一周:完成论文的排版和打印;第十二周:提交论文。
无刷直流电机控制系统开发的开题报告

无刷直流电机控制系统开发的开题报告1. 研究背景和意义无刷直流电机具有高效、高速、高精度等特点,在各种自动控制系统和工业生产设备中得到广泛应用。
随着无刷直流电机市场的不断扩大,无刷直流电机控制系统研发成为了当前电机控制系统研究的热点之一。
因此,本文旨在研究无刷直流电机控制系统的关键技术问题,并基于此开发一种高性能的无刷直流电机控制系统,为该领域的技术发展做出贡献。
2. 研究内容和方法本文的研究内容主要包括以下几个方面:1)无刷直流电机的结构原理及特性分析2)无刷直流电机的数学模型建立及控制策略分析3)无刷直流电机控制系统硬件及软件设计4)无刷直流电机控制系统性能测试及评估研究方法主要包括理论分析、实验研究和仿真模拟等。
对于无刷直流电机的结构原理及特性分析,主要采用文献研究的方法进行;对于无刷直流电机的数学模型建立及控制策略分析,采用系统动力学建模及仿真模拟的方法进行;对于无刷直流电机控制系统硬件及软件设计,采用开发板实验及软件编程的方法进行;对于无刷直流电机控制系统性能测试及评估,采用实验测试及性能指标分析的方法进行。
3. 预期成果和创新点本文的预期成果主要包括以下几个方面:1)针对无刷直流电机的特性和需求,设计出一种高效、高精度的控制系统,具有良好的动态响应和稳态性能。
2)通过对无刷直流电机的数学模型建立及控制策略分析,实现对无刷直流电机控制的自动化和智能化。
3)通过对无刷直流电机控制系统的硬件及软件设计,实现对无刷直流电机的控制和调试。
4)通过无刷直流电机控制系统的性能测试及评估,验证系统的可行性及优越性。
本文的创新点主要体现在以下几个方面:1)研究无刷直流电机控制系统的关键技术问题,实现了对无刷直流电机控制的自动化和智能化。
2)采用系统动力学建模及仿真模拟的方法,提高了系统的控制精度和稳定性。
3)设计出一种高效、高精度的无刷直流电机控制系统,具有较好的动态响应和稳态性能。
4. 研究进度安排本文的研究计划分为以下几个阶段:第一阶段:对无刷直流电机的结构原理及特性进行深入研究,并建立相应的数学模型。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
毕业设计(论文)开题报告题目:直流电机控制系统专业:电子信息工程班级:08级学生:辛国鹏指导教师:***西安理工大学高科学院2012年一、毕业设计(论文)课题来源、类型本课题来源为社会实践,属于科研软件\硬件。
二、选题的目的及意义选题的目的:由于变频技术的出现,交流调速一直冲击直流调速,但综观全局,尤其是我国在此领域的现状,再加上全数字直流调速系统的出现,更提高了直流调速系统的精度及可靠性,直流调速系统仍将处于十分重要地位。
选题的意义:对于直流调速系统转速控制的要求有稳速、调速、加速或减速三个方面,而在工业生产中对于后两个要求已能很好地实现,但工程应用中稳速指标却往往不能达到预期的效果,稳速要求即以一定的精度在所需要的转速稳定运行,在各种干扰不允许有过大的转速波动。
稳速很难达到要求原因在于数字直流调速装置中的PID调节器对被控对象及其负载参数变化适应能力差。
直流电机的数学模型很容易得到,这使得经典控制理论在己知被控对象的传递函数才能进行设计的前提得到满足,大部分数字直流调速控制器就是建立在此基础上的。
然而,在实际的传动系统中,电机本身的参数和拖动负载的参数并不如模型那样一成不变,尤其对于中小型电机,在某些应用场合随工况而变化;同时,直流电机本身是一个非线性的被控对象,许多拖动负载含有弹性或间隙等非线性因素,因此,被控对象的参数变化与非线性特性,使得线性常参数PID 调节器顾此失彼,不能使系统在各种工况下都能保持设计时的性能指标,往往使得控制系统的鲁棒性差,特别是对于模型参数大范围变化且具有较强非线性环节的系统,常规PID调节器难以满足高精度、快响应的控制要求,常常不能有效克服负载、模型参数的大范围变化以及非线性因素的影响。
在工程上,这种控制器就很有可能满足不了生产的需求,如:轧钢工业同轴控制系统、回转窑传动装置、轧辊磨床拖板电控系统等都需要在生产过程中保持稳定的转速要求,而生产负载参数却是随着工况变化的。
模糊控制不要求被控对象的精确模型且适应性强,为了克服常规数字直流调速装置的缺点,可将模糊控制与PID调节器结合,形成fuzzy-PID 复合控制方案,设计能在负载、模型参数的大范围变化以及非线性因素的影响下均可以满足控制稳定转速精度要求的直流电机控制器。
三、本课题在国内外的研究状况及发展趋势1.直流电动机控制的发展历史常用的控制直流电动机有以下几种:第一,最初的直流调速系统是采用恒定的直流电压向直流电动机电枢供电,通过改变电枢回路中的电阻来实现调速。
这种方法简单易行设备制造方便,价格低廉。
但缺点是效率低、机械特性软、不能在较宽范围内平滑调速,所以目前极少采用。
第二,三十年代末,出现了发电机-电动机(也称为旋转变流组),配合采用磁放大器、电机扩大机、闸流管等控制器件,可获得优良的调速性能,如有较宽的调速范围(十比一至数十比一)、较小的转速变化率和调速平滑等,特别是当电动机减速时,可以通过发电机非常容易地将电动机轴上的飞轮惯量反馈给电网,这样,一方面可得到平滑的制动特性,另一方面又可减少能量的损耗,提高效率。
但发电机、电动机调速系统的主要缺点是需要增加两台与调速电动机相当的旋转电机和一些辅助励磁设备,因而体积大,维修困难等。
第三,自出现汞弧变流器后,利用汞弧变流器代替上述发电机、电动机系统,使调速性能指标又进一步提高。
特别是它的系统快速响应性是发电机、电动机系统不能比拟的。
但是汞弧变流器仍存在一些缺点:维修还是不太方便,特别是水银蒸汽对维护人员会造成一定的危害等。
第四,1957年世界上出现了第一只晶闸管,与其它变流元件相比,晶闸管具有许多独特的优越性,因而晶闸管直流调速系统立即显示出强大的生命力。
由于它具有体积小、响应快、工作可靠、寿命长、维修简便等一系列优点,采用晶闸管供电,不仅使直流调速系统经济指标上和可靠性有所提高,而且在技术性能上也显示出很大的优越性。
晶闸管变流装置的放大倍数在10000以上,比机组(放大倍数10)高1000倍,比汞弧变流器(放大倍数1000)高10倍;在响应快速性上,机组是秒级,而晶闸管变流装置为毫秒级。
从20世纪80年代中后期起,以晶闸管整流装置取代了以往的直流发电机电动机组及水银整流装置,使直流电气传动完成一次大的跃进。
同时,控制电路也实现了高度集成化、小型化、高可靠性及低成本。
以上技术的应用,使直流调速系统的性能指标大幅提高,应用范围不断扩大,直流调速技术不断发展。
随着微型计算机、超大规模集成电路、新型电子电力开关器件和新型传感器的出现,以及自动控制理论、电力电子技术、计算机控制技术的深入发展,直流电动机控制也装置不断向前发展。
微机的应用使直流电气传动控制系统趋向于数字化、智能化,极大地推动了电气传动的发展。
近年来,一些先进国家陆续推出并大量使用以微机为控制核心的直流电气传动装置,如西门子公司的SIMOREG K 6RA24、ABB公司的PAD/PSD等等。
随着现代化步伐的加快,人们生活水平的不断提高,对自动化的需求也越来越高,直流电动机应用领域也不断扩大。
例如,军事和宇航方面的雷达天线,火炮瞄准,惯性导航,卫星姿态,飞船光电池对太阳得跟踪等控制;工业方面的各种加工中心,专用加工设备,数控机床,工业机器人,塑料机械,印刷机械,绕线机,纺织机械,工业缝纫机,泵和压缩机等设备的控制;计算机外围设备和办公设备中的各种磁盘驱动器,各种光盘驱动器,绘图仪,扫描仪,打印机,传真机,复印机等设备的控制;音像设备和家用电器中的录音机,录像机,数码相机,洗衣机,冰箱,电扇等的控制。
随着计算机,微电子技术的发展以及新型电力电子功率器件的不断涌现,电动机的控制策略也发生了深刻的变化。
电动机控制技术的发展得力于微电子技术,电力电子技术,传感器技术,永磁材料技术,微机应用技术的最新发展成就。
变频技术和脉宽调制技术已成为电动机控制的主流技术。
正是这些技术的进步使电动控制技术在近二十年内发生了很大的变化。
其中,电动机控制策略的模拟实现正逐渐退出历史舞台,而采用微处理器,通用计算机,FPGA/CPLD,DSP控制器等现代手段构成的数字控制系统得到了迅速发展。
电动机的驱动部分所采用的功率器件经历了几次的更新换代以后,速度更快,控制更容易的全控型功率器件MOSFET和IGBT 逐渐成为主流。
功率器件控制条件的变化和微电子技术的使用也使新型的电动机控制方法能够得到实现。
其中,脉宽调制(PWM)方法,变频技术在直流调速和交流调速系统中得到了广泛应用。
永磁材料技术的突破与微电子技术的结合又产生了一批新型的电动机,如永磁直流电动机,交流伺服电动机,超声波电动机等。
由于有微处理器和传感器作为新一代运动控制系统的组成部分,所以又称这种运动控制系统为智能运动控制系统。
所以应用先进控制算法,开发全数字化智能运动控制系统将成为新一代运动控制系统设计的发展方向。
在那些对电动机控制系统的性能要求较高的场合(如数控机床,工业缝纫机,磁盘驱动器,打印机,传真机等设备中,要求电动机实现精确定位,适应剧烈负载变化),传统的控制算法已难以满足系统要求。
为了适应时代的发展,现有的电动机控制系统也在朝着高精度,高性能,网络化,信息化,模糊化的方向不断前进。
2.直流电动机控制的研究现状数字直流调速装置,从技术上,它能成功地做到从给定信号、调节器参数设定、直到触发脉冲的数字化,使用通用硬件平台附加软件程序控制一定范围功率和电流大小的直流电机,同一台控制器甚至可以仅通过参数设定和使用不同的软件版本对不同类型的被控对象进行控制,强大的通讯功能使它易和PLC等各种器件通讯组成整个工业控制过程系统,而且具有操作简便、抗干扰能力强等特点,尤其是方便灵活的调试方法、完善的保护功能、长期工作的高可靠性和整个控制器体积小型化,弥补了模拟直流调速控制系统的保护功能不完善、调试不方便、体积大等不足之处,且数字控制系统表现出另外一些优点,如查找故障迅速、调速精度高、维护简单,使其具备了广一阔的应用前景。
国外主要电气公司如瑞典的ABB公司、德国的西门子公司、AEG公司、日本的三菱公司、东芝公司、美国的GE公司、西屋公司等,均已经开发出多个数字直流调速装置,有成熟的系列化、标准化、模板化的应用产品。
我国从20世纪60年代初试制成功第一只硅晶闸管以来,晶闸管直流调速系统也得到迅速的发展和广泛的应用。
目前,晶闸管供电的直流调速系统在我国国民经济各部门得到广泛的应用。
我国关于数字直流调速系统的研究主要有:综合性最优控制,补偿PID 控制,PID算法优化,也有的只应用模糊控制技术。
随着新型电力半导体器件的发展,IGBT(绝缘栅双极型晶体管)具有开关速度快、驱动简单和可以自关断等优点,克服了晶闸管的主要缺点。
因此我国直流电机调速也正向着脉宽调制(pulse width modulation,简称PWM)方向发展。
我国现在大部分数字化控制直流调速装置依靠进口。
但由于进口设备价格昂贵,也给出了国产全数字控制直流调速装置的发展空间。
目前,国内许多大专院校、科研单位和厂家也都在开发全数字直流调速装置。
四、本课题主要研究内容1.设计、研究思路其中,固定部分有磁铁,这里称为主磁极;固定部分还有电刷。
转动部分有环形铁心和绕在环形铁心上的绕组。
(其中2个小圆圈是为了方便的表示该位置上的导体电势或电流的方向而设置的)上图表示一台最简单的两极直流电机模型,它的固定部分(定子)上,装设了一对直流励磁的静止的主磁极N和S,在旋转部分(转子)上装设电枢铁心。
定子与转子之间有一气隙。
在电枢铁心上放置了由A和X两根导体连成的电枢线圈,线圈的首端和末端分别连到两个圆弧形的铜片上,此铜片称为换向片。
换向片之间互相绝缘,由换向片构成的整体称为换向器。
换向器固定在转轴上,换向片与转轴之间亦互相绝缘。
在换向片上放置着一对固定不动的电刷B1和B2,当电枢旋转时,电枢线圈通过换向片和电刷与外电路接通。
2.课题研究的主要内容对图2.1所示的直流电机,如果去掉原动机,并给两个电刷加上直流电源,如上图(a)所示,则有直流电流从电刷 A 流入,经过线圈abcd,从电刷B 流出,根据电磁力定律,载流导体ab和cd收到电磁力的作用,其方向可由左手定则判定,两段导体受到的力形成了一个转矩,使得转子逆时针转动。
如果转子转到如上图(b)所示的位置,电刷 A 和换向片2接触,电刷B 和换向片1接触,直流电流从电刷 A 流入,在线圈中的流动方向是dcba,从电刷 B 流出。
此时载流导体ab和cd受到电磁力的作用方向同样可由左手定则判定,它们产生的转矩仍然使得转子逆时针转动。
这就是直流电动机的工作原理。
外加的电源是直流的,但由于电刷和换向片的作用,在线圈中流过的电流是交流的,其产生的转矩的方向却是不变的。