初三数学寒假培优提高班讲义——圆(2)

合集下载

中考数学-圆讲义及练习

中考数学-圆讲义及练习

第3讲圆知识点1 圆周角定理1. 圆的有关概念(1)圆的定义:在一个个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫做圆,固定的端点O叫做圆心,线段OA叫做半径。

以点O 为圆心的圆记作“⊙O”,读作“圆O”.圆是轴对称图形,经过圆心的每一条直线都是它的对称轴;圆是以圆心为对称中心的中心对称图形.(2)弦:连接圆上任意两点的线段叫做弦.(3)直径:经过圆心的弦叫做直径.(4)半圆:圆的任意一条直径的两个端点分圆成两条弧,每一条弧都叫做半圆.(5)弧、优弧、劣弧圆上任意两点间的部分叫做圆弧,简称弧.弧用符号“⌒”表示,以A,B为端点的弧记作“”,读作“圆弧AB”或“弧AB”.大于半圆的弧叫做优弧(多用三个字母表示);小于半圆的弧叫做劣弧(多用两个字母表示).2. 圆心角、弧、弦的关系(1)定理:在同圆和等圆中,相等的圆心角所对的弧相等,所对的弦也相等.(2)推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.三者关系可理解为:在同圆或等圆中,①圆心角相等,②所对的弧相等,③所对的弦相等,三项“知一推二”.3. 圆周角定理(1)圆周角的定义:顶点在圆上,并且两边都与圆相交的角叫做圆周角.(2)圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.典例剖析例(1)如图,BC是⊙O的直径,A,D是⊙O上的两点,连接AB,AD,BD,若∠ADB=70°,则∠ABC的度数是()A.20°B.70°C.30°D.90°(例(1)图)(例(2)图)(2)如图所示,AB为⊙O的直径,点C在⊙O上,且OC⊥AB,过点C的弦CD与线段OB相交于点E,满足∠AEC=65°,连接AD,则∠BAD=度.跟踪训练1.如图,⊙O是△ABC的外接圆,∠OCB=40°,则∠A的度数等于()A.60°B.50°C.40°D.30°(第1题图)(第2题图)(第3题图)2.如图,A、B、C是⊙O上的三个点,若∠AOC=110°,则∠ABC=.3.如图,C、D两点在以AB为直径的圆上,AB=2,∠ACD=30°,则AD=.过关精练1.如图,△ABC是⊙O的内接三角形,若∠ABC=70°,则∠AOC的度数等于()A.140°B.130°C.120°D.110°(第1题图)(第2题图)(第3题图)(第4题图)2.如图,⊙O是△ABC的外接圆,AB是直径.若∠BOC=80°,则∠A等于()A.60°B.50°C.40°D.30°3.如图,AB是⊙O的直径,点C在⊙O上,则∠ACB的度数为()A.30°B.45°C.60°D.90°4.如图,点A,B,C,D,E均在⊙O上,∠BAC=15°,∠CED=30°,则∠BOD的度数为()A.45°B.60°C.75°D.90°5.AB是⊙O的直径,点C在圆上,∠ABC=65°,那么∠OCA的度数是()A.25°B.35°C.15°D.20°(第5题图)(第6题图)(第7题图)(第8题图)6.如图,点A、B、C都在⊙O上,若∠AOC=140°,则∠B的度数是()A.70°B.80°C.110°D.140°7.如图,AB是⊙O的弦,OC⊥AB,交⊙O于点C,连接OA,OB,BC,若∠ABC=20°,则∠AOB的度数是()A.40°B.50°C.70°D.80°8.如图,AB为⊙O的直径,点C、D在⊙O上,若∠CBA=70°,则∠D的度数是.9.如图,点A,B,C在⊙O上,点C在优弧上,若∠OBA=50°,则∠C的度数为.(第9题图)(第10题图)10.如图,点A、B、C为⊙O上的三个点,∠BOC=2∠AOB,∠BAC=40°,则∠ACB=度.知识点2 垂径定理(1)垂径定理垂直于弦的直径平分这条弦,并且平分所对的两条弧.(2)垂径定理的推论推论1:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.推论2:弦的垂直平分线经过圆心,并且平分弦所对的两条弧.推论3:平分弦所对一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧.典例剖析例(1)如图⊙O的直径CD=20,AB是⊙O的弦,AB⊥CD,垂足为M,OM:OC=3:5,则AB的长为()A.8B.12C.16D.2(例(1)图)(例(2)图)(2)如图,AB是⊙O的直径,AB=4,点M是OA的中点,过点M的直线与⊙O交于C、D两点.若∠CMA=45°,则弦CD的长为.跟踪训练1.如图,在⊙O中,半径OC与弦AB垂直于点D,且AB=8,OC=5,则CD的长是()A.3B.2.5C.2D.1(第1题图)(第2题图)2.如图,AB为⊙O的直径,弦CD⊥AB于点E,已知CD=6,EB=1,则⊙O的半径为.3.已知⊙O的半径为10cm,AB,CD是⊙O的两条弦,AB∥CD,AB=16cm,CD=12cm,则弦AB和CD之间的距离是cm.1.如图,AB是⊙O的直径,弦CD⊥AB于点E,OC=5cm,CD=8cm,则AE=()A.8cm B.5cm C.3cm D.2cm(第1题图)(第2题图)(第3题图)2.如图,AB是⊙O的直径,弦CD⊥AB于点E.若AB=8,AE=1,则弦CD的长是()A.B.2C.6D.83.如图,在⊙O中,AB是直径,CD是弦,AB⊥CD,垂足为E,连接CO,AD,∠BAD =20°,则下列说法中正确的是()A.AD=2OB B.CE=EO C.∠OCE=40°D.∠BOC=2∠BAD 4.如图,在半径为的⊙O中,弦AB与CD交于点E,∠DEB=75°,AB=6,AE=1,则CD的长是()A.2B.2C.2D.4(第4题图)(第5题图)(第6题图)(第7题图)5.如图,在直径为10cm的⊙O中,BC是弦,半径OA⊥BC于点D,AD=2cm,则BC的长为cm.6.如图所示,在⊙O中,直径CD⊥弦AB,垂足为E,已知AB=6,OE=4,则直径CD=.7.如图,AB为⊙O的直径,弦CD⊥AB于点E,已知CD=6,EB=1,则⊙O的半径为.知识点3 切线的性质(1)切线的性质①圆的切线垂直于经过切点的半径.②经过圆心且垂直于切线的直线必经过切点.③经过切点且垂直于切线的直线必经过圆心.(2)切线性质的运用见切点,连半径,见垂直.例(1)如图,AB是⊙O的直径,AC是⊙O的切线,A为切点,BC与⊙O交于点D,连结OD.若∠C=50°,则∠AOD的度数为()A.40°B.50°C.80°D.100°(例(1)图)(例(2)图)(2)如图,△ABC中,∠A=30°,点O是边AB上一点,以点O为圆心,以OB为半径作圆,⊙O恰好与AC相切于点D,连接BD.若BD平分∠ABC,AD=2,则线段CD的长是()A.2B.C.D.跟踪训练1.如图,AC是⊙O的切线,切点为C,BC是⊙O的直径,AB交⊙O于点D,连接OD.若∠BAC=55°,则∠COD的大小为()A.70°B.60°C.55°D.35°(第1题图)(第2题图)2.如图,已知AB是⊙O的直径,点P在BA的延长线上,PD与⊙O相切于点D,过点B 作PD的垂线交PD的延长线于点C,若⊙O的半径为4,BC=6,则P A的长为()A.4B.2C.3D.2.5过关精练1.如图AB是⊙O的直径,AC是⊙O的切线,A为切点,若∠C=40°,则∠B的度数为()A.60°B.50°C.40°D.30°(第1题图)(第2题图)2.如图,AB是⊙O直径,点C在⊙O上,AE是⊙O的切线,A为切点,连接BC并延长交AE于点D.若∠AOC=80°,则∠ADB的度数为()A.40°B.50°C.60°D.20°3.如图,AB是⊙O的切线,B为切点,AO与⊙O交于点C,若∠BAO=40°,则∠OCB 的度数为()A.40°B.50°C.65°D.75°(第3题图)(第4题图)(第5题图)4.如图,CB为⊙O的切线,点B为切点,CO的延长线交⊙O于点A,若∠A=25°,则∠C的度数是()A.25°B.30°C.35°D.40°5.如图,AB为⊙O的切线,切点为A,连接AO、BO,BO与⊙O交于点C,延长BO与⊙O 交于点D,连接AD.若∠ABO=36°,则∠ADC的度数为()A.54°B.36°C.32°D.27°6.如图,P是⊙O外一点,P A是⊙O的切线,PO=26cm,P A=24cm,则⊙O的周长为()A.18πcm B.16πcm C.20πcm D.24πcm(第6题图)(第7题图)7.如图,AB是⊙O的直径,P A切⊙O于点A,连结PO并延长交⊙O于点C,连结AC,AB=10,∠P=30°,则AC的长度是()A.B.C.5D.8.如图,菱形OABC的顶点A,B,C在⊙O上,过点B作⊙O的切线交OA的延长线于点D.若⊙O的半径为1,则BD的长为()A.1B.2C.D.(第8题图)(第9题图)9.如图,在△ABC中,O是AB边上的点,以O为圆心,OB为半径的⊙O与AC相切于点D,BD平分∠ABC,AD=OD,AB=12,CD的长是()A.2B.2C.3D.410.如图,在△ABC中,D是边BC上的一点,以AD为直径的⊙O交AC于点E,连接DE.若⊙O与BC相切,∠ADE=55°,则∠C的度数为.(第10题图)(第11题图)(第12题图)11.如图,AB是⊙O的切线,点B为切点,若∠A=30°,则∠AOB=.12.如图,AC是⊙O的切线,切点为C,BC是⊙O的直径,AB交⊙O于点D,连接OD,若∠A=50°,则∠COD的度数为.13.如图,P A、PB是⊙O的切线,A、B为切点,AC是⊙O的直径,∠P=40°,则∠BAC =.(第13题图)(第14题图)(第15题图)14.如图,AB与⊙O相切于点B,AO的延长线交⊙O于点C,连接BC.若∠A=36°,则∠C=度.15.如图,⊙O与AB相切于点A,BO与⊙O交于点C,∠B=26°,则∠OCA=度.16.如图,C为⊙O外一点,CA与⊙O相切,切点为A,AB为⊙O的直径,连接CB.若⊙O的半径为2,∠ABC=60°,则BC=.(第16题图)(第17题图)17.已知:如图,CD是⊙O的直径,点A在CD的延长线上,AB切⊙O于点B,若∠A=30°,OA=10,则AB=.知识点4 扇形面积的计算(1)圆面积公式:S=πr2(2)扇形:由组成圆心角的两条半径和圆心角所对的弧所围成的图形叫做扇形.(3)扇形面积计算公式:设圆心角是n°,圆的半径为R的扇形面积为S,则S扇形=πR2或S扇形=lR(其中l为扇形的弧长)(4)求阴影面积常用的方法:①直接用公式法;②和差法;③割补法.(5)求阴影面积的主要思路是将不规则图形面积转化为规则图形的面积.例(1)如图,四边形ABCD是矩形,AB=4,AD=2,以点A为圆心,AB长为半径画弧,交CD于点E,交AD的延长线于点F,则图中阴影部分的面积是.(2)如图,在Rt△ABC中,∠ACB=90°,AB=4,BC=2,将△ABC绕点B顺时针方向旋转到△A′BC′的位置,此时点A′恰好在CB的延长线上,则图中阴影部分的面积为(结果保留π).跟踪训练1.如图,矩形ABCD的边AB=1,BE平分∠ABC,交AD于点E,若点E是AD的中点,以点B为圆心,BE长为半径画弧,交BC于点F,则图中阴影部分的面积是()A.B.C.D.(第1题图)(第2题图)(第3题图)2.如图,在Rt△ABC中,∠BCA=90°,∠BAC=30°,BC=2,将Rt△ABC绕A点顺时针旋转90°得到Rt△ADE,则BC扫过的面积为()A.B.(2﹣)πC.πD.π3.如图,半圆的直径AB=6,点C在半圆上,∠BAC=30°,则阴影部分的面积为(结果保留π).1.如图,在矩形ABCD中,AB=4,AD=2,分别以点A、C为圆心,AD、CB为半径画弧,交AB于点E,交CD于点F,则图中阴影部分的面积是()A.4﹣2πB.8﹣C.8﹣2πD.8﹣4π(第1题图)(第2题图)(第3题图)2.如图,以AB为直径,点O为圆心的半圆经过点C,若AC=BC=,则图中阴影部分的面积是()A.B.C.D.+3.如图,直角三角形ABC中,∠C=90°,AC=2,AB=4,分别以AC、BC为直径作半圆,则图中阴影部分的面积为()A.2π﹣B.π+C.π+2D.2π﹣24.如图,在Rt△ABC中,∠ACB=90°,AC=BC=2,以BC为直径作半圆,交AB于点D,则阴影部分的面积是()A.π﹣1B.4﹣πC.D.2(第4题图)(第5题图)(第6题图)(第7题图)5.如图,在Rt△ABC中,∠ABC=90°,AB=2,BC=2,以AB的中点O为圆心,OA 的长为半径作半圆交AC于点D,则图中阴影部分的面积为()A.﹣B.+C.2﹣πD.4﹣6.如图,在边长为4的正方形ABCD中,以点B为圆心,AB为半径画弧,交对角线BD于点E,则图中阴影部分的面积是(结果保留π)()A.8﹣πB.16﹣2πC.8﹣2πD.8﹣π7.如图,点A、B、C在⊙O上,若∠BAC=45°,OB=2,则图中阴影部分的面积为()A.π﹣4B.C.π﹣2D.8.如图,在扇形AOB中∠AOB=90°,正方形CDEF的顶点C是的中点,点D在OB上,点E在OB的延长线上,当正方形CDEF的边长为2时,则阴影部分的面积为()A.2π﹣4B.4π﹣8C.2π﹣8D.4π﹣4(第8题图)(第8 题图)(第10题图)9.如图,在Rt△ABC中,∠A=30°,BC=2,以直角边AC为直径作⊙O交AB于点D,则图中阴影部分的面积是()A.﹣B.﹣C.﹣D.﹣10.如图,在菱形ABCD中,对角线AC,BD交于点O,∠ABC=60°,AB=2,分别以点A、点C为圆心,以AO的长为半径画弧分别与菱形的边相交,则图中阴影部分的面积为.(结果保留π)11.如图,在边长为4的正方形ABCD中,以点B为圆心,以AB为半径画弧,交对角线BD于点E,则图中阴影部分的面积是(结果保留π).(第11题图)(第12题图)(第13题图)12.如图,在矩形ABCD中,AB=3,AD=2,以点A为圆心,AD长为半径画弧,交AB 于点E,图中阴影部分的面积是(结果保留π).13.如图,在边长为4的正方形ABCD中,先以点A为圆心,AD的长为半径画弧,再以AB边的中点为圆心,AB长的一半为半径画弧,则两弧之间的阴影部分面积是(结果保留π).14.如图,在等腰直角三角形ABC中,∠ACB=90°,AB=4.以A为圆心,AC长为第 11 页 共 12 页半径作弧,交AB 于点D ,则图中阴影部分的面积是 .(结果保留π)15.如图,在边长为4的正方形ABCD 中,以AB 为直径的半圆与对角线AC 交于点E ,则图中阴影部分的面积为 .(结果保留π)(第14题图) (第15题图)16.如图,一个圆心角为90°的扇形,半径OA =2,那么图中阴影部分的面积为 (结果保留π).(第16题图) (第17题图) (第18题图)17.如图在正方形ABCD 中,点E 是以AB 为直径的半圆与对角线AC 的交点,若圆的半径等于1,则图中阴影部分的面积为 .18.如图,在扇形OAB 中,∠AOB =90°.D ,E 分别是半径OA ,OB 上的点,以OD ,OE 为邻边的▱ODCE 的顶点C 在上.若OD =8,OE =6,则阴影部分图形的面积是 (结果保留π).19.如图,在Rt △ABC 中,∠ACB =90°,AC =BC =2,将Rt △ABC 绕点A 逆时针旋转30°后得到Rt △ADE ,点B 经过的路径为弧BD ,则图中阴影部分的面积为 .(第19题图) (第20题图)20.如图,在矩形ABCD 中,CD =2,以点C 为圆心,CD 长为半径画弧,交AB 边于点E ,且E 为AB 中点,则图中阴影部分的面积为 .21.如图,在▱ABCD 中,AD =2,AB =4,∠A =30°,以点A 为圆心,AD的长为半径画弧交AB于点E,连接CE,则阴影部分的面积是(结果保留π).22.如图,在直角三角形ABC中,∠ABC=90°,AC=2,BC=,以点A为圆心,AB.为半径画弧,交AC于点D,则阴影部分的面积是第12 页共12 页。

圆单元培优讲义

圆单元培优讲义

教师姓名学生姓名年级初三上课时间学科数学课题名称待提升的知识点/题型Ⅰ知识梳理知识点一:圆的定义及有关概念1、圆的定义:平面上到一个定点的距离等于定长的所有点所成的图形叫做圆。

2、有关概念:A:弧、半圆、优弧、劣弧、等弧;B:弦、直径、弦心距;C:同圆、等圆、同心圆;D:弓形、拱高注:圆上任意两点间的部分叫做圆弧,简称弧;连接圆上任意两点间的线段叫做弦,经过圆心的弦叫做直径,直径是最长的弦;在同圆或等圆中,能够重合的两条弧叫做等弧;圆心到弦的距离叫做弦心距;由圆的弦及其所对的弧组成的图形叫做弓形,拱高即弓形高(弧的中点到弦的距离)。

知识点二:点与圆的位置关系1、点在圆外⇒d r>⇒点A在圆外;2、点在圆上⇒d r=⇒点B在圆上;3、点在圆内⇒d r<⇒点C在圆内;(点到圆心的距离d与半径r之间的关系)rddCBAO知识点三:圆的基本性质及与三角形的关系1、圆是轴对称图形,其对称轴是任意一条过圆心的直线;圆是中心对称图形,对称中心是圆心;圆具有旋转对称性。

2、圆与三角形的关系:不在同一条直线上的三个点确定一个圆。

3、三角形的外接圆:经过三角形三个顶点的圆;外心(即外接圆的圆心)是三角形三边垂直平分线的交点。

4、三角形的内切圆:与三角形的三边都相切的圆;内心(即内切圆的圆心):三角形三条角平分线的交点。

Ⅱ知识精析一、圆的定义及有关概念(一)典例分析、学一学例1-1若P为⊙O内一点,OP=3cm,⊙O半径为5cm,则经过P点的最短弦长为________;最长弦长为_______.例1-2和已知点距离等于3cm的点的集合是___________.例1-3一个圆的圆心决定这个圆的_________,圆的半径决定这个圆的_________.(二)限时巩固,练一练已知线段8AB =,则过A B 、的圆的最小直径为____________.二、点与圆的位置关系(一)典例分析、学一学例2-1已知⊙O 的半径为5,点A 在⊙O 外,线段OA 的的取值范围是 . 例2-2O 的半径为6,圆心O 的坐标为(00),,点P 的坐标为(-2√3,2√6),则点P 与O 的位置关系是( ) A .点P 在O 上 B .点P 在O 内C .点P 在O 外 D .点P 在O 内或点P 在O 外例2-3在直角坐标平面中,M (2,0),圆M 的半径为4 ,那么点P (-2,3)与圆M 的位置关系是( )A .点P 在圆内B .点P 在圆上C .点P 在圆外D .不能确定.例2-4已知⊙O 的半径为4,A 为线段OP 的中点,当10OP =时,点A 与⊙O 的位置关系是 ( ) A .点A 在O 内 B .点A 在O 上 C .点A 在O 外 D .不能确定例2-5如图所示,已知ABC ∆,90ACB ∠=,12AC =,13AB =,CD AB ⊥于点D ,以C 为圆心,5为半径作⊙C ,则 ( )A .点D 在圆内,B A 、在圆外 B .点D 在圆内,点B 在圆上,点A 在圆外C .点B 、D 在圆内,A 在圆外 D .点D 、B A 、都在圆外(二)限时巩固、练一练1.已知⊙P 在直角坐标平面内,它的半径是5,圆心P (-3,4),则坐标原点O 与⊙P 的位置位置关系是_________.2.在直角坐标平面内,圆O 的半径为5,圆心O 的坐标为(14)--,.试判断点(31)P -,与圆O 的位置关系.三、圆的基本性质及与三角形的关系(一)典例分析,学一学例3-1如图,点O 是△ABC 的内切圆的圆心,若∠BAC=80°,则∠BOC=( )A .130°B .100°C .50°D .65°例3-3小明不慎把家里的圆形玻璃打碎了,其中四块碎片如图示,为配到与原来大小一样的圆形玻璃,小明带到商定去的一块玻璃片应该是 ( )A .第①快B .第②快C .第③快D .第④快(二)限时巩固、练一练下列四个命题中,真命题的个数是 ( )Ⅲ课堂测评1.下列说法中,正确的是()A.两个半圆是等弧B.同圆中优弧与半圆的差必是劣弧C.长度相等的弧是等弧D.直径未必是弦2.一个点到圆的最大距离为11cm,最小距离为5cm,则圆的半径为( )(A)16cm或6cm (B)3cm或8cm (C)3cm (D)8cm3.在⊿ABC中,∠C=90°,AB=3cm,BC=2cm,以点A为圆心,以2.5cm为半径作圆,则点C和⊙A 的位置关系是()(A)C在⊙A 上(B)C在⊙A 外(C)C在⊙A 内(D)C在⊙A 位置不能确定。

著名机构初中数学培优讲义圆的概念.第06讲(B级).学生版

著名机构初中数学培优讲义圆的概念.第06讲(B级).学生版

内容基本要求略高要求较高要求圆的有关概念理解圆及其有关概念会过不在同一直线上的三点作圆;能利用圆的有关概念解决简单问题圆的性质知道圆的对称性,了解弧、弦、圆心角的关系能用弧、弦、圆心角的关系解决简单问题能运用圆的性质解决有关问题垂径定理 会在相应的图形中确定垂径定理的条件和结论能用垂径定理解决有关问题1.理解圆及相关概念,了解弧、弦、圆心角的关系; 2.探索圆的性质,了解圆周角与圆心角的关系; 3.能够利用垂径定理解决相关问题.祖冲之(公元429-500年)是我国南北朝时期,河北省涞源县人.他从小就阅读了许多天文、数学方面的书籍,勤奋好学,刻苦实践,终于使他成为我国古代杰出的数学家、天文学家.祖冲之在数学上的杰出成就,是关于圆周率的计算.秦汉以前,人们以"径一周三"做为圆周率,这就是"古率".后来发现古率误差太大,圆周率应是"圆径一而周三有余",不过究竟余多少,意见不一.直到三国时期,刘徽提出了计算圆周率的科学方法--"割圆术",用圆内接正多边形的周长来逼近圆周长.刘徽计算到圆内接96边形, 求得π=3.14,并指出,内接正多边形的边数越多,所求得的π值越精确.祖冲之在前人成就的基础上,经过刻苦钻研,反中考要求重难点课前预习圆的基本性质复演算,求出π在3.1415926与3.1415927之间.并得出了π分数形式的近似值,取为约率,取为密率,其中取六位小数是3.141929,它是分子分母在1000以内最接近π值的分数.祖冲之究竟用什么方法得出这一结果,现在无从考查.若设想他按刘徽的"割圆术"方法去求的话,就要计算到圆内接16,384边形,这需要化费多少时间和付出多么巨大的劳动啊!由此可见他在治学上的顽强毅力和聪敏才智是令人钦佩的.祖冲之计算得出的密率,外国数学家获得同样结果,已是一千多年以后的事了.为了纪念祖冲之的杰出贡献,有些外国数学史家建议把π=叫做"祖率".祖冲之博览当时的名家经典,坚持实事求是,他从亲自测量计算的大量资料中对比分析,发现过去历法的严重误差,并勇于改进,在他三十三岁时编制成功了《大明历》,开辟了历法史的新纪元.祖冲之还与他的儿子祖暅(也是我国著名的数学家)一起,用巧妙的方法解决了球体体积的计算.他们当时采用的一条原理是:"幂势既同,则积不容异."意即,位于两平行平面之间的两个立体,被任一平行于这两平面的平面所截,如果两个截面的面积恒相等,则这两个立体的体积相等.这一原理,在西文被称为卡瓦列利原理,但这是在祖氏以后一千多年才由卡氏发现的.为了纪念祖氏父子发现这一原理的重大贡献,大家也称这原理为"祖暅原理".例题精讲模版一圆的概念与性质一、圆的相关概念1.圆的定义(1)描述性定义:在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫做圆,其中固定端点O叫做圆心,OA叫做半径.(2)集合性定义:平面内到定点的距离等于定长的点的集合叫做圆,顶点叫做圆心,定长叫做半径.(3)圆的表示方法:通常用符号⊙表示圆,定义中以O为圆心,OA为半径的圆记作”O⊙“,读作”圆O“.(4)同圆、同心圆、等圆:圆心相同且半径相等的圆叫同圆;圆心相同,半径不相等的两个圆叫做同心圆;能够重合的两个圆叫做等圆.注意:注意:同圆或等圆的半径相等.2.弦和弧(1)弦:连结圆上任意两点的线段叫做弦.(2)直径:经过圆心的弦叫做圆的直径,直径等于半径的2倍.(3)弦心距:从圆心到弦的距离叫做弦心距.、为端点的圆弧记作»AB,读作弧AB.(4)弧:圆上任意两点间的部分叫做圆弧,简称弧.以A B(5)等弧:在同圆或等圆中,能够互相重合的弧叫做等弧.(6)半圆:圆的任意一条直径的两个端点分圆成两条弧,每一条弧都叫做半圆.(7)优弧、劣弧:大于半圆的弧叫做优弧,小于半圆的弧叫做劣弧.(8) 弓形:由弦及其所对的弧组成的图形叫做弓形. 3. 圆心角和圆周角(1) 圆心角:顶点在圆心的角叫做圆心角.将整个圆分为360等份,每一份的弧对应1︒的圆心角,我们也称这样的弧为1︒的弧.圆心角的度数和它所对的弧的度数相等. (2) 圆周角:顶点在圆上,并且两边都和圆相交的角叫做圆周角.二、圆的对称性1. 旋转对称性(1) 圆是中心对称图形,对称中心是圆心;圆是旋转对称图形,无论绕圆心旋转多少度角,总能与自身重合.(2) 圆的旋转对称性⇒圆心角、弧、弦、弦心距之间的关系. 2. 轴对称性(1) 圆是轴对称图形,经过圆心的任一条直线是它的对称轴. (2) 圆的轴对称性⇒垂径定理.三、圆的性质定理1. 垂径定理D(1) 定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧. (2) 推论1:①平分弦(非直径)的直径,垂直于弦,并且平分弦所对的两条弧. ②弦的垂直平分线经过圆心,并且平分弦所对的两条弧.③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧. (3) 推论2:圆的两条平行线所夹的弧相等.注意:若“过圆心的直线”、“垂直于弦”、“平分弦(非直径)”、“平分弦所对的优弧”、“平分弦所对的劣弧”中的任意两个成立,则另外三个都成立.注意:应用垂径定理与推论进行计算时,往往要构造如右图所示的直角三角形,根据垂径定理与勾股定理有:222()2ar d =+,根据此公式,在a ,r ,d 三个量中知道任何两个量就可以求出第三个量.【例1】 如图,点A B 、是O e 上两点,AB =10,点P 是O e 上的动点(P 与A B 、不重合),连接AP BP 、,过点O 分别做OE AP ⊥于E ,OF PB ⊥于F ,则EF = .PFE O BA【例2】 如图,AB 是O e 的直径,CD 是弦,若10AB =,8CD =,那么A B 、两点到直线CD 的距离之和为 .【巩固】如图,AB 是O e 的直径,CD 是弦,AE CD ⊥于E ,BF CD ⊥于F ,BF 交O e 于G ,下面的结论成立:①EC DF =;②AE BF AB +=;③AE GF =;④FG FB EC ED ⋅=⋅.其中正确的结论有 .【例3】 如图,一量角器放置在AOB ∠上,角的一边OA 与量角器交于点C 、D ,且点C 处的度数是20︒,点D 处的度数为110°,则AOB ∠的度数是( )A 、20°B 、25°C 、45°D 、55°【巩固】如图,弦CD 垂直于O e 的直径AB,垂足为H ,且CD=BD =则AB 的长为 .D【巩固】如图,半径为5的P e 与y 轴交于点M (0,-4),N (0,-10),函数ky x=()0x <的图像上过点P ,则k = .【例4】(1)如图,多边形ABDEC是由边长为2的等边三角形和正方形BDEC组成,Oe过A、D、E 三点,则Oe的半径等于.A【巩固】如图,正方形ABCD内接于Oe,E为DC的中点,直线BE交Oe于点F,如果Oe则点O到BE的距离为OM=.【例5】如图,把正三角形ABC的外接圆对折,使点A落在»BC的中点A'上,若5BC=,则折痕在ABC△内的部分DE长为.A'C【巩固】如图,点P为弦AB上的一点,连接OP,过点P作PC OP⊥,PC交Oe于C.若8AP=,2PB=,则PC的长为.C【例6】如图甲,Oe的直径为AB,过半径OA的中点G作弦CE AB⊥,在»BC上取一点D,分别做直径CD ED、,交直线AB于点F M,.(1)求COA∠和FDM∠的度数;(2)求证:FDM COM△∽△.A【例7】已知AD是Oe的直径,AB AC、是弦,且AB AC=.(1)如图1,求证:直径AD平分BAC∠;(2)如图2,若弦BC经过半径OA的中点E,F是»CD的中点,G是»FB的中点,Oe的半径为1,求弦长FG的长(3)如图3,在(2)中若弦BC经过半径OA的中点E,P为劣弧»AF上一动点,连结PA PB PD PF、、、,求证:PA PFPB PD++为定值.ADA【巩固】如图,在平面直角坐标系中,点M在x轴的正半轴上,Me交x轴于A B、两点,交y轴于C D、两点,E是Me上一点,»»AC CE=,AE交y轴于G点.已知点A的坐标为()20,,8AE=.(1)求点C的坐标;(2)连结MG BC∥,,求证:MG BC模版二圆中角1.圆周角定理(1)定理:一条弧所对的圆周角等于它所对的圆心角的一半.(2)推论:推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧相等.推论2:半圆(或直径)所对的圆周角是直角,90 的圆周角所对的弦是直径.推论3:如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形.2.圆心角、弧、弦、弦心距之间的关系(1)定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等.A(2)推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量分别相等.注意:①前提条件是在同圆或等圆中;②在由等弦推出等弧时应注意:优弧与优弧相等;劣弧与劣弧相等.【例8】 如图,AB 为O e 的直径,AC 交O e 于E 点,BC 交O e 于D 点,CD BD =,70C ∠=︒.现给出以下四个结论:①45A ∠=︒;②AC AB =;③»»AE BE=;④22CE AB BD ⋅=其中正确的结论的序号是 .AR【巩固】如图AB 是半圆O 的直径,点C D 、在弧AB 上,且AD 平分CAB ∠,已知106AB AC ==,,则AD的长为 .【例9】 如图,BC 为半圆O 的直径,A D、为半圆O 上两点,AB =,2BC =,则D ∠的度数为 .【巩固】如图,PQR △是O e 的内接正三角形,四边形ABCD 是O e 的内接正方形,BC QR ∥,则AOQ ∠的度数为 .【例10】 已知:如图,面积为2的四边形ABCD 内接于O ⊙,对角线AC 经过圆心,若45BAD ∠=︒,CD 则AB 的长等于 .【巩固】如图,已知四边形ABCD 内接于直径为3的圆O ,对角线AC 是直径,对角线AC 和BD 的交点P ,AB BD =,且0.6PC =,则四边形ABCD 的周长为 .CC【例11】 在同圆中,»CD的度数小于180︒,且»»2AB CD =,那么弦AB 和弦CD 的大小关系为( ) A .AB CD > B .AB CD = C .AB CD < D .无法确定(C)A (C)(C)【巩固】如图所示在O ⊙中,2AB CD =,那么( )»»A.2AB CD > »»B.2AB CD< »»C.2AB CD = »D.AB 与»2CD的大小关系不能确定【例12】 如图,已知:在O ⊙中,直径4AB =,点E 是OA 上任意一点,过E 作弦CD AB ⊥,点F 是»BC上一点,连接AF 交CE 于H ,连接AC CF BD OD 、、、. (1) 求证:ACH AFC ∆∆∽;(2)猜想:AH AF ⋅与AE AB ⋅的数量关系,并说明你的猜想; (3)探究:当点E 位于何处时,:1:4AEC BOD S S ∆∆=?并加以说明.【巩固】如图,AB ,AC ,AD 是圆中的三条弦,点E 在AD 上,且AB AC AE ==.请你说明以下各式成立的理由:(1)2CAD DBE ∠=∠;(2)22AD AB BD DC -=⋅.E DC BAG654321A BCDE模版三 点与圆的位置关系 一、点与圆的位置关系4. 确定圆的条件(5) 圆心(定点),确定圆的位置; (6) 半径(定长),确定圆的大小.注意:只有当圆心和半径都确定时,圆才能确定. 5. 点与圆的位置关系(7) 点与圆的位置关系有:点在圆上、点在圆内、点在圆外三种,这三种关系由这个点到圆心的距离与半径的大小关系决定.(8) 设O ⊙的半径为r ,点P 到圆心O 的距离为d ,则有:点在圆外⇔d r >;点在圆上⇔d r =;点在圆内⇔d r <.如下表所示:二、过已知点的圆1.过已知点的圆(1)经过点A的圆:以点A以外的任意一点O为圆心,以OA的长为半径,即可作出过点A的圆,这样的圆有无数个.(2)经过两点A B、的圆:以线段AB中垂线上任意一点O作为圆心,以OA的长为半径,即可作出过点A B、的圆,这样的圆也有无数个.(3)过三点的圆:若这三点A B C、、三点不共线时,圆心、、共线时,过三点的圆不存在;若A B C是线段AB与BC的中垂线的交点,而这个交点O是唯一存在的,这样的圆有唯一一个.(4)过n()4n≥个点的圆:只可以作0个或1个,当只可作一个时,其圆心是其中不共线三点确定的圆的圆心.2.定理:不在同一直线上的三点确定一个圆(1)“不在同一直线上”这个条件不可忽视,换句话说,在同一直线上的三点不能作圆;(2)“确定”一词的含义是”有且只有”,即”唯一存在”.三、三角形的外接圆及外心1.三角形的外接圆(1)经过三角形三个顶点的圆叫做三角形的外接圆,外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心,这个三角形叫做这个圆的内接三角形.(2)锐角三角形外接圆的圆心在它的内部;直角三角形外接圆的圆心在斜边中点处(即直角三角形外接圆半径等于斜边的一半);钝角三角形外接圆的圆心在它的外部.2.三角形外心的性质(1)三角形的外心是指外接圆的圆心,它是三角形三边垂直平分线的交点,它到三角形各顶点的距离相等;(2)三角形的外接圆有且只有一个,即对于给定的三角形,其外心是唯一的,但一个圆的内接三角形却有无数个,这些三角形的外心重合.【例1】已知圆内一点到圆周上的点的最大距离是7,最小距离是5,则该圆的半径是( ) A.2 B.6 C.12 D.7【巩固】一个已知点到圆周上的点的最大距离为5cm ,最小距离为1cm ,则此圆的半径为______.【巩固】定义:定点A 与O ⊙上的任意一点之间的距离的最小值称为点A 与O ⊙之间的距离.现有一矩形ABCD 如图,14cm 12cm AB BC ==,,K ⊙与矩形的边AB BC CD 、、分别相切于点E F G 、、,则点A 与K ⊙的距离为______________.GF EK DCB A1.如图,ABC ∆内接于O ⊙,120AB BC ABC =∠=︒,,AD 为O ⊙的直径,6AD =,那么BD =_________.ODCA2.已知,如图:AB 为O ⊙的直径,AB AC =,BC 交O ⊙于点D ,AC 交O ⊙于点E ,45BAC ∠=︒.给出以下五个结论:①22.5EBC ∠=︒,;②BD DC =;③2AE EC =;④劣弧»AE 是劣弧»DE 的2倍;⑤AE BC =.其中正确结论的序号是 .OECBA1.通过本堂课你学会了 .课堂检测总结复习2.掌握的不太好的部分 . 3.老师点评:① .② .③ .1.如图,AB 是O ⊙的直径,点C D 、在O ⊙上,110BOC ∠=︒,AD OC ∥,则AOD ∠=___________.OD CBA2.如图,已知ACB ∠是O e 的圆周角,50ACB ∠=︒,则圆心角AOB ∠是( ) A .40︒ B .50︒ C .80︒ D .100︒OCBA3.如图,四边形ABCD 是O ⊙的内接正方形,点P 是劣弧»CD 上不同于点C 的任意一点,则BPC ∠的度数是( )A.45︒ B .60︒ C.75︒ D.90︒PO D C BA4.如图,已知AB 为⊙O 的直径,20E ∠=︒,50DBC ∠=︒,则CBE ∠=______.OEDCBA5.如图,半圆的直径10AB =,点C 在半圆上,6BC =. (1)求弦AC 的长;(2)若P 为AB 的中点,PE AB ⊥交AC 于点E ,求PE 的长.课后作业PEC B A。

初三数学寒假讲义 第3讲.圆 教师版

初三数学寒假讲义 第3讲.圆  教师版

1考试内容考试要求层次ABC 圆的有关概念 理解圆及其有关概念会过不在同一直线上的三点作圆;能利用圆的有关概念解决简单问题圆的性质知道圆的对称性,了解弧、弦、圆心角的关系能用弧、弦、圆心角的关系解决简单问题,能用垂径定理解决有关问题 能运用圆的性质解决有关问题 圆周角 了解圆周角与圆心角的关系;知道直径所对的圆周角是直角 会求圆周角的度数,能用圆周角的知识解决与角有关的简单问题 能综合运用几何知识解决与圆周角有关的问题弧长 会计算弧长 能利用弧长解决有关问题 扇形 会计算扇形面积能利用扇形面积解决有关问题 圆锥的侧面积和全面积 会求圆锥的侧面积和全面积 能解决与圆锥有关的简单实际问题点与圆的位置关系 了解点与圆的位置关系直线与圆的位置关系了解直线与圆的位置关系;了解切线的概念,理解切线与过切点的半径之间的关系;会过圆上一点画圆的切线,了解切线长的概念 能判定一条直线是否为圆的切线;能利用直线和圆的位置关系解决简单问题 能解决与切线有关的问题圆与圆的位置关系 了解圆与圆的位置关系能利用圆与圆的位置关系解决简单问题本讲结构中考大纲剖析3中考第一轮复习圆2一、垂径定理1. 定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.2. 推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.二、弧、弦、圆心角定理1. 定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等.2. 推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其 余各组量分别相等.三、圆周角定理定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半. 推论1:在同圆或等圆中,如果两个圆周角相等,它们所对的弧一定相等. 推论2:半圆(或直径)所对的圆周角是直角,90︒的圆周角所对的弦是直径.四、与圆相关的位置关系1.点和圆的位置关系:设O ⊙的半径为r ,点P 到圆心O 的距离为d ,则有: 点在圆外⇔d r >;点在圆上⇔d r =;点在圆内⇔d r <.2.直线和圆的位置关系:设O ⊙的半径为r ,圆心O 到直线l 的距离为d ,则有: d r >⇔直线l 与O ⊙相离;d r =⇔直线l 与O ⊙相切;d r <⇔直线l 与O ⊙相交 切线的性质:定理:圆的切线垂直于过切点的半径.推论1:经过圆心且垂直于切线的直线必经过切点. 推论2:经过切点且垂直于切线的直线必经过圆心. 切线的判定:定义:和圆只有一个公共点的直线是圆的切线; 距离:和圆心距离等于半径的直线是圆的切线;定理:经过半径的外端并且垂直于这条半径的直线是圆的切线.3.圆和圆的位置关系:设12O O 、⊙⊙的半径分别为r R 、(其中R r >),两圆圆心距为d ,则有:d R r >+⇔两圆外离;d R r =+⇔两圆外切;R r d R r -<<+⇔两圆相交; d R r =-⇔两圆内切;0d R r <-⇔≤两圆内含.五、圆中的相关计算公式设O ⊙的半径为R ,n ︒圆心角所对弧长为l ,1. 弧长公式:π180n Rl =2. 扇形面积公式:21π3602n S R lR ==扇形3. 圆柱体表面积公式:22π2πS R Rh =+4. 圆锥体表面积公式:2ππS R Rl =+(l 为母线)六、圆中常见辅助线作法知识导航3连半径,得等腰三角形作相等圆周角作2倍角关系 作直径所对圆周角,得垂直 知弦长或求弦长作弦心距,用勾股证切线,连半径,证垂直;知切线,连半径,得垂直七、圆中常见倒角模型【编写思路】本讲包括以下知识点:圆的基本性质,包括垂径定理、弦弧圆周角定理、圆周角定理及其推论等的综合运用;点圆、线圆、圆圆位置关系;圆中弧的长度、扇形弓形面积、阴影面积等的求法.知识点较多,容量较大.其中针对中考中“圆”的两问题中的难点——第二问圆中的相似问题进行探究,旨在锻炼学生解决此类问题的方法和速度.【例1】 (1)如图,OC 是⊙O 的半径,AB 是弦,且OC ⊥AB ,点P 在⊙O上,∠APC=26°,则∠BOC=_________. (2013贵州遵义)(2)如图,⊙O 的半径OD ⊥弦AB 于点C ,连结AO 并延长交⊙O 于点E ,连 结EC .若AB =8,CD =2,则EC 的长为( )A.215B.8C.210D.213 (2013浙江嘉兴)(3)现有直径为2的半圆O 和一块等腰直角三角板① 将三角板如图1放置,锐角顶点P 在圆上,斜边经过点B ,一条直角边交圆于点Q ,则BQ 的长为_____;② 将三角板如图2放置,锐角顶点P 在圆上,斜边经过点B ,一条直角边的延长线交圆于Q ,则BQ 的长为______ . (2013大兴期末)夯实基础模块一 圆的基本性质QP OBAQPO BA BA OEC BAO4图1 图2【解析】(1)52°;(2)A.(3)①2,连结OQ ,290QOB P ∠=∠=︒ ②2.连结AQ ,45A P ∠=∠=︒.【例2】 如图,点P 是等边三角形ABC 外接圆⊙O 上的点,在以下判断中,不正确...的是( ) A 、当弦PB 最长时, △APC 是等腰三角形. B 、当△APC 是等腰三角形时,PO ⊥AC .C 、当PO ⊥AC 时,∠ACP =30°.D 、当∠ACP =30°,△PBC 是直角三角形. (2013安徽中考)【解析】C ,当点P 与点B 重合时不成立;【例3】 ⑴ 如图,在平面直角坐标系中,P ⊙与x 轴相切于原点O ,平行于y 轴、的直线交P ⊙于M N ,两点.若点M 的坐标是()21-,,则点N 的坐标是 _____________.(浙江绍兴中考)(2)已知,如图,四边形ABCD 内接于O ⊙,AB 为O ⊙的直径,MN 切O ⊙于C ,38BCM ∠=︒,则ADC ∠的度数为___________.(3)如图,Rt ABC △的内切圆O ⊙与两直角边AB 、AC 分别相切于点D 、E ,过劣弧DE (不包括端点D 、E )上任意一点P 作O ⊙的切线MN 与AB 、 BC 分别交于点M 、N ,若O ⊙的半径为r ,则Rt MBN △的周长为( ) A .r B.1.5r C.2r D.2.5r夯实基础模块二 与圆有关的位置关系能力提升xyNM POO ND BA OPCBE OP N M DCB A5(4)在同一平面上,已知1O ⊙和2O ⊙的直径分别为6cm 和8cm ,请在不同条件下写出1O ⊙和2O ⊙的位置关系:当12O O =7cm ,两圆__________;当12O O =5cm ,两圆__________;当12O O =8cm ,两圆__________. 【解析】(1)(2,-4)过点P 作MN 的垂线,先求出半径为2.5; (2)128°,连结OC ; (3)C ,切线长定理; (4)外切;相交;外离.【例4】 1. 如图,在ABC △中,AB AC =,以AB 为直径的O ⊙分别交AC 、BC 于点D 、E ,点F 在AC 的延长线上,且12CBF CAB ∠=∠.⑴ 求证:直线BF 是O ⊙的切线;⑵ 若5AB =,5sin 5CBF ∠=,求BC 和BF 的长.(2011北京)(【解析】⑴ 证明:连结AE .∵AB 是O 的直径,∴90AEB ∠=︒. ∴1290∠+∠=︒.∵AB AC =, ∴112CAB ∠=∠.∵12CBF CAB ∠=∠, ∴1CBF ∠=∠.∴290CBF ∠+∠=︒.即90ABF ∠=︒.∵AB 是O 的直径, ∴直线BF 是O 的切线. ⑵ 解:过点C 作CG AB ⊥于点G .∵5sin 15CBF CBF ∠=∠=∠,,∴5sin 15∠=. ∵905AEB AB ∠=︒=,,∴sin 15BE AB =⋅∠=.∵90AB AC AEB =∠=︒,,∴225BC BE ==.由Rt ABE △中,由勾股定理得222 5.AE AB BE =-=∴255sin 2cos 255∠=∠=,. 在Rt CBG △中,可求得42GC GB ==,.∴3AG =.∵GC BF ∥,∴AGC ABF △∽△.∴GC AGBF AB =. ∴203GC AB BF AG ⋅==. 所以CD =83. 另:如图,也可以过点C 作CG BF ⊥,构造“A”字图用相似.2. 如图AB 是O 的直径,PA ,PC 与O 分别相切于点A ,C ,PC 交AB 的延长线于点D ,DE PO ⊥交PO 的延长线于点E .能力提升OEFCDA 12G A DCFE O AO BCD EPOFEDCA6(1)求证:EPD EDO ∠=∠; (2)若6PC =,3tan 4PDA ∠=,求OE 的长. (2013北京)【解析】(1)∵PA 、PC 与O 分别相切于点A 、C∴APO EPD ∠=∠且PA AO ⊥即90PAO ∠=︒ ∵AOP EOD ∠=∠,90PAO E ∠=∠=︒ ∴APO EDO ∠=∠ 即EPD EDO ∠=∠ (2)连结OC ,∴6PA PC ==∵3tan 4PDA ∠= ∴在Rt PAD △中8AD =,10PD =∴4CD = ∵3tan 4PDA ∠=∴在Rt OCD △中,3OC OA ==,5OD = ∵EPD EDO ∠=∠∴OED △∽DEP △ ∴10251PD DE OD OE === 在Rt OED △中,2225OE DE +=,∴OE本讲探究主题:圆中的相似【探究1】如图,⊙O 是△ABC 是的外接圆,BC 为⊙O 直径,作∠CAD =∠B ,且点D 在BC 的延长线上. 若sin ∠CAD=4,⊙O 的半径为8,求CD 长. 【解析】过点C 作CE ⊥AD 于点E .∵∠CAD =∠B , ∴sinB =sin ∠CAD. ∵⊙O 的半径为8,∴BC=16. ∴AC =sin BC B ⋅=. ∴在Rt △ACE 中,CE=sin AC CAD ⋅∠=2. ∵CE ⊥AD , ∴∠CED =∠OAD =90°. ∴CE ∥OA . ∴△CED ∽△OAD . ∴CD CEOD OA =. 设CD =x ,则OD =x +8.即288x x =+. 解得x =83.【探究2】 如图,AB 是O ⊙的直径,点C 在O ⊙上,CAB ∠的平分线交O ⊙于点D ,连接BC 交AD 于点F .若108AB AD ==,,求CF 的长.【解析】连结BD .∵AB 是O ⊙的直径,∴90ADB ∠=°.∴ .622=-=AD AB BDBABB7∵ BAD CAD CBD ADB BDF ∠=∠=∠∠=∠,. ∴ .DAB DBF △∽△∴AD BD BD FD =,即866FD =,得92FD =. ∴ 97822AF AD FD =-=-=.可证FAC FBD △∽△∴ .CF AFFD BF = ∴ 2110CF =【探究3】已知:如图,AB 是O ⊙的直径,C 是O ⊙上一点,OD BC⊥于点D ,过点B 作O ⊙的切线,交OD 的延长线于点E ,连结BE .连结AD 并延长交BE 于点F ,若9OB =,2sin 3ABC ∠=,求BF 的长.【解析】过点D 作DM AB ⊥于点M ,则DM ∥FB .在Rt ODB ∆中, 2909sin 3sin 6.ODB OB ABC OD OB ABC ∠==∠=∴=⋅∠=,,,由勾股定理得BD == 在Rt DMB ∆中,同理得sin 5.DM BD ABC BM =⋅∠===O 是AB 的中点, 18.13.AB AM AB BM ∴=∴=-= DM ∥FB ,..AMD ABF MD AMBF ABMD AB BF AM ∴∴=⋅∴==△∽△【探究4】如图,AB 是⊙O 的直径, 点C 在⊙O 上,CE ⊥ AB 于E ,CD 平分∠ECB , 交过点B 的射线于D , 交AB 于F , 且BC=BD .若AE =9, CE =12, 求BF 的长.【解析】连接AC ,∵ AB 是⊙O 直径, ∴ 90ACB ∠=. ∵CE AB ⊥, 可得 2CE AE EB =⋅.∴ .162==AECE EB在Rt △CEB 中,∠CEB =90︒, 由勾股定理得20.BC∴ 20BD BC ==.∵ 1D ∠=∠, ∠EFC =∠BFD ,ABFEBAABEF8∴ △EFC ∽△BFD. ∴ BFEFBD EC =. ∴121620BFBF-=. ∴ BF =10.【点评】圆中的相似常见有以下模型:(老师根据自己的教学可以总结出更多更好的!)【例5】 (1) 如图,如果从半径为9cm 的圆形纸片剪去13圆的一个扇形,将留下的扇形围成一个圆锥(接缝处不重叠),那 么这个圆锥的高为( )A .6cmB .35cmC .8cmD .53cm(通州一模)(2)如图所示,已知大正方形的边长为10厘米,小正方形的边长为7厘米,则阴影部分面积为( )A .132π平方厘米B .312π平方厘米C .25π平方厘米D .无法计算(3)如图,在边长为1的等边△ABC 中,若将两条含120︒圆心角的AOB 、BOC 及边AC 所围成的阴影部分的面积记为S ,则S 与△ABC 面积 的比是 .【解析】(1)B ;(2)C ,作出两条对角线,用平行线等积变换将面积转成扇形面积; (3)13或1:3,连结AO 、BO 、CO .能力提升夯实基础模块三 有关圆的计算9【例6】 (1)已知每个网格中小正方形的边长都是1,图中的阴影图案是由三段以格点为圆心,半径分别为1和2的圆弧围成. 则阴影部分的面积是 .(2)如图,正方形ABCD 的边1AB =,BD 和AC 都是以1为半径的圆弧,则无阴影部分的两部分的面积之差是( )A.12π-B.14π- C.13π- D.16π- (湖北罗田中考) 【解析】(1)π-2,连对角线,转化为弓形面积; (2)A ,面积差=两个扇形面积和-正方形面积;【思维拓展训练】提高班训练1. 如图,C 为O 直径AB 上一动点,过点C 的直线交O 于D 、E 两点,且45ACD ∠=︒,DF AB ⊥于点F ,EG AB ⊥于点G .当点C 在AB 上运动时,设AF x =,DE y =,下列图象中,能表示y 与x 的函数关系的图象大致是( ) (2009北京中考)【解析】A.直径是圆中最长的弦.训练2. 如图,AB 是⊙O 的直径,点C 在⊙O 上,过点C 的直线与AB 的延长线交于点P ,∠COB =2∠PCB . (1)求证:PC 是⊙O 的切线;(2)点M 是弧AB 的中点,CM 交AB 于点N ,若MN · MC =8, 求⊙O 的直径. (2013西城一模) 【解析】(1)证明:∵OA =OC , ∴∠A =∠ACO . ∴∠COB =2∠ACO .又∵∠COB =2∠PCB ,∴∠ACO =∠PCB .D CBA NO P CBA10∵AB 是⊙O 的直径,∴∠ACO +∠OCB =90° . ∴∠PCB +∠OCB =90°, 即OC ⊥CP .∵OC 是⊙O 的半径, ∴PC 是⊙O 的切线. (2)解:连接MA 、MB .∵点M 是弧AB 的中点,∴∠ACM =∠BAM .∵∠AMC =∠AMN ,∴△AMC ∽△NMA . ∴AM MC NM MA=. ∴2AM MC MN =⋅. ∵MC MN ⋅=8, ∴22AM =.∵AB 是⊙O 的直径,点M 是弧AB 的中点, ∴∠AMB =90°,AM =BM=22. ∴224AB AM BM =+=.训练3. 阅读下列材料,然后解答问题.经过正四边形(即正方形)各顶点的圆叫做这个正四边形的外接圆,圆心是正四边形的对称中心,这个正四边形叫做这个圆的内接正四边形.如图,正方形ABCD 内接于⊙O ,⊙O 的面积为S 1,正方形ABCD 的面积为S 2.以圆心O 为顶点作∠MON ,使∠MON =90°.将∠MON 绕点O 旋转,OM 、ON 分别与⊙O 交于点E 、F ,分别与正方形ABCD 的边交于点G 、H .设由OE 、OF 、EF ⌒及正方形ABCD 的边围成的图形(阴影部分)的面积为S .⑴当OM 经过点A 时(如图①),则S 、S 1、S 2之间的关系为: (用含S 1、S 2的代数式表示);⑵当OM ⊥AB 于G 时(如图②),则⑴中的结论仍然成立吗?请说明理由; ⑶当∠MON 旋转到任意位置时(如图③),则⑴中的结论仍然成立吗?请说明理由.(湖南邵阳中考) 【解析】(1)根据图形的对称性,得214S S S =-(2)结论仍成立,∵扇形OEF 的面积仍是圆面积的1/4∴四边形OGBH 的面积仍是正方形的面积的1/4 (3)作OP ⊥AB ,OQ ⊥BC ,可以证明△OPG ≌△OQH .结合(2)中的结论即可证明A BCDDDC C ABABOO O M M NM NG HG H (E ) (F ) E FEF图①图②图③模块一 圆的基本性质 课后演练【演练1】 如图,将半径为2cm 的圆形纸片折叠后,圆弧恰好经过圆心O ,则折痕AB 的长为( )A.2cmB.3cmC.23cmD.25cm(连云港中考)【解析】C.【演练2】 ⑴如下左图,点O 为优弧ACB 所在圆的圆心,108AOC ∠=︒,点D 在AB 的延长线上,BD BC =,则D ∠=____________.(河北中考) ⑵ 如下右图,ABC △是⊙O 的内接三角形,点D 是BC 的中点,已知∠AOB =98°,∠COB =120°.则 ∠ABD 的度数是 .(舟山中考)ODCBA【解析】(1)27°; (2)101°.模块二 与圆有关的位置关系 课后演练【演练3】 (1)如图,已知⊙O 是以坐标原点O 为圆心,1为半径的圆,∠AOB =45°,点P 在x 轴上运动,若过点P 且与OA 平行的直线与 ⊙O 有公共点,设P (x ,0),则x 的取值范围是 .(2)如图,1O ⊙、2O ⊙内切于点A ,其半径分别是8和4,将2O ⊙沿直线12O O 平移至两圆相外切时,则点2O 移动的长度是( ) A .4 B .8 C .16 D .8 或16(茂名中考)【解析】(1)22x -≤≤ 且0x ≠; (2)D ,左右平移均可.【演练4】 已知:如图,AB 是⊙O 的直径,AC 是⊙O 的弦,M 为AB 上一点, 过点M 作DM ⊥AB ,交弦AC 于点E ,交⊙O 于点F ,且DC =DE .ABCDO实战演练OBAO 2O 1AOE M FDC BA12(1)求证:DC 是⊙O 的切线;(2)如果DM =15,CE =10,5cos 13AEM ∠=,求⊙O 半径的长. (2013门头沟一模)【解析】如图,过点D 作DG ⊥AC 于点G ,连结BC .∵DC =DE ,CE =10,∴EG =12CE =5. ∵cos ∠DEG =cos ∠AEM =EG DE =513,∴DE =13.∴DG =22DE EG -=12. ∵DM =15,∴EM =DM -DE =2. ∵∠AME =∠DGE =90°,∠AEM =∠DEG , ∴△AEM ∽△DEG . ∴AM EM AE =DG EG DE =.∴212513AM AE==. ∴245AM =,265AE =. ∴AC AE EC =+=765.∵AB 为⊙O 的直径,∴∠ACB =90°. ∴cos A =AM AC AE AB=.∴24715AB = ∴⊙O 的半径长为1247230AB =.模块三 有关圆的计算 课后演练【演练5】 如图,AB 为半圆的直径, 点P 为AB 上一动点,动点P 从点A 出发,沿AB 匀速运动到点B ,运动时间为t ,分别以AP 和PB 为直径作半圆,则图中阴影部分的面积S 与时间t 之间的函数图象大致为A .B .C .D .GABCD F ME O图2【解析】D13第十八种品格:坚持冰冻三尺非一日之寒晋代的大文学家陶渊明隐居田园后,某一天,有一个读书的少年前来拜访他,向他请教求知之道。

初三数学 圆中基本性质 讲义(学生版)

初三数学 圆中基本性质 讲义(学生版)

则 OP 的长为( )
A.3
B.4
C. 3 2
D. 4 2
练习 1.如图,⊙O 的半径为 2,弦 AB = 2 3 ,点 C 在弦 AB 上, AC = 1 AB ,求 OC 4
的长.
练习 2.如图,D 是⊙O 弦 BC 的中点,A 是⊙O 上的一点,OA 与 BC 交于点 E,已知 AO=8, BC=12. (1)求线段 OD 的长;
D
C
B
O
A
推论 2:半圆或直径所对的圆周角是直角;圆周角是直角所对的弧是半圆,所对的弦是直径.
数学语言:在⊙ O 中,∵ AB 是直径,∴ ∠C = 90° . 或∵ ∠C = 90° ,∴ AB 是直径.
C
B
A
O
3.圆内接四边形:圆内接四边形的对角互补. 注:圆内接四边形的性质、判定方法在综合类几何证明题里经常用到,多会利用该性质证明 角相等,虽然中考说明中多次强调不单独考查,但是在解题过程中该方法能够简化解题过程, 为学生提供解题方向.
为( ) A.1 cm B.7cm
C.3 cm 或 4 cm D.1cm 或 7cm
练习 1.已知圆心到圆的两条平行弦的距离分别是 2 和 3,则两条平行弦之间的距离为_ . 练习 2.已知⊙O 的半径为 13 cm,弦 AB ∥ ,ACDB=24cm,CD=10cm,那么 AB 和 CD 的 距离是 cm. 练习 3.如图,已知⊙O 的半径长为 R=5,弦 AB 与弦 CD 平行,它们之间距离为 7,AB=6, 求弦 CD 的长.
例 3.如图所示,⊙O 的直径 AB 为 10cm,弦 AC 为 6cm,∠ACB 的平分线交⊙O 于 D,求 BC,AD,BD 的长.
练习 1.如 图 , AB 为 ⊙O 的 直 径 , 点 C 在 ⊙O 上 , 延 长 BC 至 点 D, 使 DC=CB, 延 长 DA 与 ⊙O 的 另 一 个 交 点 为 E, 连 接 AC, CE. ( 1) 求 证 : ∠B = ∠D ; (2)若 AB=4,BC-AC=2,求 CE 的长

专题03 圆的认识-九年级数学讲义提高班(原卷版)

专题03 圆的认识-九年级数学讲义提高班(原卷版)

圆的认识知识网络图⎧⎪⎪⎨⎪⎪⎩圆的定义垂径定理圆弦、弧、圆心角定理圆周角定理1. 圆的认识知识概述1. 圆的定义(1)动态:如图,在一个平面内,线段OA 绕它固定的一个端点O 旋转一周,另一个端点A 随之旋转所形成的图形叫做圆,固定的端点O 叫做圆心,线段OA 叫做半径. 以点O 为圆心的圆,记作“⊙O”,读作“圆O”.(2)静态:圆心为O ,半径为r 的圆是平面内到定点O 的距离等于定长r 的点的集合.2.圆的性质①旋转不变性:圆是旋转对称图形,绕圆心旋转任一角度都和原来图形重合;圆是中心对称图形,对称中心是圆心;②圆是轴对称图形:任何一条直径所在直线都是它的对称轴.或者说,经过圆心的任何一条直线都是圆的对称轴.3.两圆的性质两个圆组成的图形是一个轴对称图形,对称轴是两圆连心线(经过两圆圆心的直线叫做两圆连心线).4. 弦弦:连结圆上任意两点的线段叫做弦. 直径:经过圆心的弦叫做直径.弦心距:圆心到弦的距离叫做弦心距.证明:连结OC 、OD∵AB=AO+OB=CO+OD≥CD(当且仅当CD 过圆心O 时,取“=”号)∴直径AB 是⊙O 中最长的弦. 5. 弧弧:圆上任意两点间的部分叫做圆弧,简称弧.以A 、B 为端点的弧记作,读作“圆弧AB”或“弧AB”.半圆:圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆; 优弧:大于半圆的弧叫做优弧; 劣弧:小于半圆的弧叫做劣弧. 5.同心圆与等圆圆心相同,半径不等的两个圆叫做同心圆.圆心不同,半径相等的两个圆叫做等圆.同圆或等圆的半径相等.6.等弧在同圆或等圆中,能够完全重合的弧叫做等弧.1.(2017春•高密市期末)如图,一枚半径为r 的硬币沿着直线滚动一圈,圆心经过的距离是( )A .4πrB .2πrC .πrD .2r2.(2016秋•武汉期末)由所有到已知点O 的距离大于或等于3,并且小于或等于5的点组成的图形的小试牛刀面积为( )A .4πB .9πC .16πD .25π3.(2017秋•锡山区校级月考)如图,AB 是⊙O 的直径,点C 在⊙O 上,CD ⊥AB ,垂足为D ,已知CD=4,OD=3,求AB 的长是____.4.(2017秋•灌南县校级期中)如图,AB 是半圆O 的直径,D 是半圆上的一点,∠DOB=75°,DC 交BA 的延长线于E ,交半圆于C ,且CE=AO ,求∠E 的度数.5.(2016秋•昭通期中)如图所示,AB 为⊙O 的直径,CD 是⊙O 的弦,AB 、CD 的延长线交于点E ,已知AB=2DE ,∠AEC=20°.求∠AOC 的度数.再接再厉2垂径定理知识概述1.垂径定理垂直于弦的直径平分这条弦,并且平分弦所对的两条弧. 2.推论平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.3.知二推三要点诠释:(1)垂径定理是由两个条件推出两个结论,即(2)这里的直径也可以是半径,也可以是过圆心的直线或线段.注意:根据圆的对称性及垂径定理还有如下结论:(1)平分弦(该弦不是直径)的直径垂直于弦,并且平分弦所对的两条弧; (2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧.1.(2018•聊城二模)如图,AB 是⊙O 的直径,弦CD ⊥AB ,垂足为E ,若CD=,CA=,则直径AB 的长为( )A .2B .3C .4D .5小试牛刀2.(2018•中江县模拟)如图,在半径为10cm 的圆形铁片上切下一块高为4cm 的弓形铁片,则弓形弦AB 的长为( )A .8cmB .12cmC .16cmD .20cm3.(2018•石家庄模拟)如图,一圆弧过方格的格点A 、B 、C ,在方格中建立平面直角坐标系,使点A 的坐标为(﹣3,2),则该圆弧所在圆心坐标是( )A .(0,0)B .(﹣2,1)C .(﹣2,﹣1)D .(0,﹣1)4.(2018•绵阳一模)据史料记载,雎水太平桥建于清嘉庆年间,已有200余年历史.桥身为一巨型单孔圆弧,既没有用钢筋,也没有用水泥,全部由石块砌成,犹如一道彩虹横卧河面上,桥拱半径OC 为13m ,河面宽AB 为24m ,则桥高CD 为( )A .15mB .17mC .18mD .20m再接再厉5.(2018•芦溪县模拟)如图,在半径为4的⊙O中,弦AB∥OC,∠BOC=30°,则AB的长为()A.2 B.C.4 D.6.(2018•浦东新区二模)如图,已知AB是圆O的直径,弦CD交AB于点E,∠CEA=30°,OE=4,DE=5,求弦CD及圆O的半径长.7.(2018•蒙城县一模)“圆材埋壁”是我国古代著名数学著作《九章算术》中的问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”用现在的数学语言可表达为:“如图,CD 为⊙O的直径,弦AB⊥CD于点E,CE=1寸,AB=10寸,则直径CD的长为多少?3弦、弧、圆心角的关系知识概述1.圆心角定义如图所示,∠AOB 的顶点在圆心,像这样顶点在圆心的角叫做圆心角.2.定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等. 3.推论:在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角相等,所对的弦也相等. 在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角相等,所对的弧也相等.1.(2018•桥东区模拟)如图,半径为5的⊙A 中,弦BC ,ED 所对的圆心角分别是∠BAC ,∠EAD ,若DE=6,∠BAC+∠EAD=180°,则弦BC 的长等于( )A .8B .10C .11D .122.(2018•龙湖区一模)如图,C 为弧AB 的中点,CN ⊥OB 于N ,CD ⊥OA 于M ,CD=4cm ,则CN=_____cm .小试牛刀3.(2017秋•溧水区期末)如图,已知⊙O 的弦AB ,E ,F 是弧AB 上两点,=,OE 、OF 分别交于AB 于C 、D 两点,求证:AC=BD .4.(2017秋•临颍县期中)如图,AB 是⊙O 的直径,CE 是⊙O 上的两点,CD ⊥AB 于D ,交BE 于F,,求证:BF=CF .5.(2017秋•工业园区校级月考)如图,A 、B .C .D 均为圆O 上的点,其中A .B 两点的连线经过圆心O ,线段AB 、CD 的延长线交于点E ,已知AB=2DE ,∠E=16°,求弧AC 的度数.4圆周角定理再接再厉1.圆周角定义:像图中∠AEB 、∠ADB 、∠ACB 这样的角,它们的顶点在圆上,并且两边都与圆相交的角叫做圆周角.2.圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半. 3.圆周角定理的推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.1.(2018•菏泽)如图,在⊙O 中,OC ⊥AB ,∠ADC=32°,则∠OBA 的度数是( )A .64°B .58°C .32°D .26°2.(2018•济宁)如图,点B ,C ,D 在⊙O 上,若∠BCD=130°,则∠BOD 的度数是( )A .50°B .60°C .80°D .100°再接再厉小试牛刀3.(2018•淮安)如图,点A、B、C都在⊙O上,若∠AOC=140°,则∠B的度数是()A.70°B.80°C.110°D.140°4.(2018•黄岛区一模)如图,AB是⊙O的直径,∠BAD=70°,则∠ACD的度数是()A.20°B.15°C.35°D.70°5.(2018•承德模拟)已知:如图,△ABC内接于⊙O,AF是⊙O的弦,AF⊥BC,垂足为D,点E为弧BF上一点,且BE=CF,(1)求证:AE是⊙O的直径;(2)若∠ABC=∠EAC,AE=8,求AC的长.6.(2018•商南县一模)如图,已知AD是⊙O的直径,BC且⊙O于点E,交AD延长线于点B,过点A作AC⊥BC交⊙O于点G,交DE于点F.(1)求证:AD=AF;(2)若DE=2CF,试说明四边形OEFG为菱形.。

初中数学九年级培优讲义-专题23 圆与圆的位置关系_答案

初中数学九年级培优讲义-专题23 圆与圆的位置关系_答案

专题23 圆与圆的位置关系例121a 6提示:连接14QP CP ==必过点O ,则34O O ⊥AB ,设⊙3O ,⊙4O 的半径为xcm ,在Rt △31O O O 中,有222a a a x =x 424⎛⎫⎛⎫⎛⎫+-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,解得x= a 6.例2 D 提示:连接AB ,1AA ,1BB ,作2AB ⊥1BB ,则22222AB AB BB =+,即()()2222a b =b a AB ++-,得22211=A B 4ab AB =,同理,211A 4ac C =,2114bc C B =,由111111=A B AC C B +.例3 提示:⑴过P 点作两圆的公切线. ⑵即证PA PB PC PD •=•. 例412BO C BAC ∠=∠,1112BO D BAC BO C ∠=∠=∠,则1O D 为1BO C ∠的平分线,又11O B O C =,故1O D BC ⊥.例5 ⑴过D 作DQ ⊥BC 于Q ,则BQ=AD=1,AB=DQ=2,CQ=()2222=222=2CD DQ --,故()1y=13x 2=4x 2+-⨯-(0<x<3).⑵分两种情况讨论:①当⊙P 与⊙D 外切时,如图1,QC=2,PC=x ,QP= 2x -,PD=x+12,DQ=2,在Rt △DQP 中,由()22212x 2=x+2⎛⎫-+ ⎪⎝⎭得,31x=20,3149y=4=2020-.②当⊙P 与⊙D 内切时,如图2,PC=x ,QC=2,PQ=x-2,PD=x-12,DQ=2,在Rt △DPQ 中,由()2221x 22=x-2⎛⎫-+ ⎪⎝⎭得,31x=12,3117y=4=1212-.例6 就图1给出解答:连接CP 并延长交AB 于点Q ,连接BP ,得∠BPC90°,又22QA QP CQ QB =•=,得AQ=QB=12AB ,在Rt △CQP 中,2214BQ QP CQ QP BC CP CQ CP •===•.过Q 作QM ∥BC 交AN 于M ,则MQ= 12BN .由△MQP ∽△NCP ,得14MQ QP CN CP ==,故BNNC=2142MQ MQ = .A 级1.12或32 2.2 3.y =214x -+x (0<x <4) 4. 3条 5.D 6.D 7.B 8.D 9.提示:(1)连结AB ,A 1O ,并延长交⊙1O 于E ,连结CE . (2)结论仍然成立. 10.(1)略 (2)提示:设AP =3t ,由BC ·BH =BP ·BA ,BH =2BC ,BC =5t .易证△HAP ∽△BAH ,得HA =15t ,故155HAt BCt==3. 11.连结BD ,CE ,作BM ⊥CE 于M ,作HN ⊥CE于N ,则BM ∥HN .∵H 是BC 的中点,故N 是CM 的中点,∴CN =12CM =12(CE -EM )=12(CE -BD ),而AH =BH -AB =12BC -AB =12 (AB +AC ) –AB =12(AC -AB ),因此CN =AH .由CE ⊥DE ,AF ⊥DE ,得CE //AF ,故∠NCH =∠HAF ,又∠CNH =∠AHF =90°,得△CNH ≌△AHF ,从而BC =2CH =2AF .12. (l )5 22 提示:由题意,设正方形边长为l ,则22212R l l ⎛⎫=+ ⎪⎝⎭,得R 2l =522.由2ED =AD ×DB ,DE=10,得AD ×DB =l 00.设AC 与内切圆交点S ,CB 与内切圆交点H ,设AD =r ,DB =100x.AB =x +100x,AS =AD =x ,BH =BD =100x.又△ABC 为直角三角形。

初三数学下《圆》全章复习与巩固—知识讲解(提高)+巩固练习

初三数学下《圆》全章复习与巩固—知识讲解(提高)+巩固练习

《圆》全章复习与巩固—知识讲解(提高)【学习目标】1.通过具体实例认识中心对称,探索它的基本性质,理解对应点所连线段被对称中心平分的性质,了解平行四边形、圆是中心对称图形;2.理解圆及其有关概念,理解弧、弦、圆心角的关系;探索并了解点与圆、直线与圆的位置关系,探索并掌握圆周角与圆心角的关系、直径所对的圆周角的特征;3.了解切线的概念,探索并掌握切线与过切点的半径之间的位置关系,能判定一条直线是否为圆的切线,会过圆上一点画圆的切线;4.了解三角形的内心和外心,探索如何过一点、两点和不在同一直线上的三点作圆;5.了解正多边形的概念,掌握用等分圆周画圆的内接正多边形的方法;会计算弧长及扇形的面积.【知识网络】【要点梳理】要点一、旋转1.旋转的概念:在平面内,一个图形绕着某一点O转动一个角度的图形变换叫做旋转.如下图,点O叫做旋转中心,转动的角叫做旋转角(如∠AO A′),如果图形上的点A经过旋转变为点A′,那么,这两个点叫做这个旋转的对应点.要点诠释:旋转的三个要素:旋转中心、旋转方向和旋转角度.2.旋转的性质: (1)对应点到旋转中心的距离相等(OA= OA′);(2)两组对应点分别与旋转中心的连线所成的角相等,都等于旋转角;(3)旋转中心是唯一不动的点;''').(4)旋转前、后的图形全等(△ABC≌△A B C要点诠释:图形绕某一点旋转,既可以按顺时针旋转也可以按逆时针旋转.3.旋转对称图形:在平面内,一个图形绕着一个定点旋转一定角度θ(0°<θ<360°)后,能够与原图形重合,这样的图形叫做旋转对称图形.4.特殊的旋转—中心对称(1)中心对称:把一个图形绕着某一个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心.这两个图形中的对应点叫做关于中心的对称点.(2)中心对称图形:把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心.要点诠释:(1)中心对称图形指的是一个图形,而中心对称指的是两个图形的关系;(2)线段,平行四边形,圆等等都是中心对称图形.要点二、圆的基本性质1.圆的定义(1)线段OA绕着它的一个端点O旋转一周,另一个端点A所形成的封闭曲线,叫做圆.(2)圆是到定点的距离等于定长的点的集合.要点诠释:①圆心确定圆的位置,半径确定圆的大小;确定一个圆应先确定圆心,再确定半径,二者缺一不可;②圆是一条封闭曲线.2.圆的性质(1)旋转不变性:圆是旋转对称图形,绕圆心旋转任一角度都和原来图形重合;圆是中心对称图形,对称中心是圆心.在同圆或等圆中,两个圆心角,两条弧,两条弦,两条弦心距,这四组量中的任意一组相等,那么它所对应的其他各组分别相等.(2)轴对称:圆是轴对称图形,经过圆心的任一直线都是它的对称轴.(3)垂径定理及推论:①垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.②平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.③弦的垂直平分线过圆心,且平分弦对的两条弧.④平分一条弦所对的两条弧的直线过圆心,且垂直平分此弦.⑤平行弦夹的弧相等.要点诠释:在垂经定理及其推论中:过圆心、垂直于弦、平分弦、平分弦所对的优弧、平分弦所对的劣弧,在这五个条件中,知道任意两个,就能推出其他三个结论.(注意:“过圆心、平分弦”作为题设时,平分的弦不能是直径)3.圆的确定:不在同一直线上的三个点确定一个圆.要点三、圆周角1.圆周角:顶点在圆上,两边都和圆相交的角叫做圆周角.2.圆周角定理:一条弧所对的圆周角等于它所对圆心角的一半.推论1:在同圆或等圆中,同弧或等弧所对的圆周角相等,相等的圆周角所对的弧也相等.推论2:半圆或直径所对的圆周角是直角;90°的圆周角所对的弦是直径.要点诠释:(1)圆周角必须满足两个条件:①顶点在圆上;②角的两边都和圆相交.(2)圆周角定理成立的前提条件是在同圆或等圆中.要点四、直线与圆的位置关系1.直线和圆的位置关系设⊙O 半径为R,点O到直线的距离为.(1)直线和⊙O没有公共点直线和圆相离.(2)直线和⊙O有唯一公共点直线和⊙O相切.(3)直线和⊙O有两个公共点直线和⊙O相交.2.切线的判定、性质(1)切线的判定:①经过半径的外端并且垂直于这条半径的直线是圆的切线.②到圆心的距离等于圆的半径的直线是圆的切线.(2)切线的性质:①圆的切线垂直于过切点的半径.②经过圆心作圆的切线的垂线经过切点.③经过切点作切线的垂线经过圆心.3.切线长:从圆外一点作圆的切线,这一点和切点之间的线段的长度叫做切线长.切线长定理:过圆外一点作圆的两条切线,两条切线长相等,圆心与这一点的连线平分两条切线的夹角.要点五、三角形的外接圆与内切圆、圆内接四边形与外切四边形1.三角形的内心、外心、重心、垂心(1)三角形的内心:是三角形三条角平分线的交点,它是三角形内切圆的圆心,在三角形内部,它到三角形三边的距离相等,通常用“I”表示.(2)三角形的外心:是三角形三边中垂线的交点,它是三角形外接圆的圆心,锐角三角形外心在三角形内部,直角三角形的外心是斜边中点,钝角三角形外心在三角形外部,三角形外心到三角形三个顶点的距离相等,通常用O表示.(3)三角形重心:是三角形三边中线的交点,在三角形内部;它到顶点的距离是到对边中点距离的2倍,通常用G表示.(4)垂心:是三角形三边高线的交点.要点诠释:(1) 任何一个三角形都有且只有一个内切圆,但任意一个圆都有无数个外切三角形;(2) 解决三角形内心的有关问题时,面积法是常用的,即三角形的面积等于周长与内切圆半径乘积的一半,即(S为三角形的面积,P为三角形的周长,r为内切圆的半径).(3) 三角形的外心与内心的区别:名称确定方法图形性质外心(三角形外接圆的圆心) 三角形三边中垂线的交点(1)OA=OB=OC;(2)外心不一定在三角形内部内心(三角形内切圆的圆心) 三角形三条角平分线的交点(1)到三角形三边距离相等;(2)OA、OB、OC分别平分∠BAC、∠ABC、∠ACB; (3)内心在三角形内部.2.圆内接四边形和外切四边形(1)四个点都在圆上的四边形叫圆的内接四边形,圆内接四边形的对角互补,且任意一个外角都等于它的内对角.(2)各边都和圆相切的四边形叫圆外切四边形,圆外切四边形对边之和相等.要点六、正多边形与圆1.正多边形的定义:各边相等、各角也相等的多边形叫做正多边形.2.正多边形的作图:通过等分圆周的方法能作出正多边形.要点诠释:等分圆周的方法:用量角器等分圆周;用尺规等分圆周.3.正多边形的性质:把一个正多边形的外接圆和内切圆的公共圆心,叫做正多边形的中心. 外接圆的半径叫做正多边形的半径,内切圆的半径叫做正多边形的边心距,正多边形每一条边所对的圆心角,叫做正多边形的中心角,正n边形的每个中心角都等于360n.要点七、弧长与扇形面积圆的面积公式:,周长.圆心角为、半径为R的弧长.圆心角为,半径为R,弧长为的扇形的面积.弓形的面积要转化为扇形和三角形的面积和、差来计算.要点诠释:(1)对于扇形面积公式,关键要理解圆心角是1°的扇形面积是圆面积的,即;(2)在扇形面积公式中,涉及三个量:扇形面积S、扇形半径R、扇形的圆心角,知道其中的两个量就可以求出第三个量.(3)扇形面积公式,可根据题目条件灵活选择使用,它与三角形面积公式有点类似,可类比记忆;(4)扇形两个面积公式之间的联系:.【典型例题】类型一、圆的有关概念及性质1. 如图,已知⊙O是以数轴的原点O为圆心,半径为1的圆,∠AOB=45°,点P在数轴上运动,若过点P且与OA平行(或重合)的直线与⊙O有公共点, 设OP=x,则x的取值范围是().≤x≤2C.0≤x≤2 D.x>2 A.-1≤x≤1 B.2【思路点拨】关键是通过平移,确定直线与圆相切的情况,求出此时OP的值.【答案】C;【解析】如图,平移过P点的直线到P′,使其与⊙O相切,设切点为Q,连接OQ,由切线的性质,得∠OQP′=90°,∵OA∥P′Q,∴∠OP′Q=∠AOB=45°,∴△OQP′为等腰直角三角形,在Rt△OQP′中,OQ=1,OP′=2,∴当过点P且与OB平行的直线与⊙O有公共点时,0≤OP≤,当点P在x轴负半轴即点P向左侧移动时,结果相同.故答案为:0≤OP≤2.【总结升华】本题考查了直线与圆的位置关系问题.举一反三:【变式】如图,已知⊙O是以数轴的原点为圆心,半径为1的圆,∠AOB=45°,点P在数轴上运动,若过点P且与OB平行的直线于⊙O有公共点,设P(x,0),则x的取值范围是().A.-1≤x<0或0<x≤1 B.0<x≤1 C.-2≤x<0或0<x≤2 D.x>1【答案】∵⊙O是以数轴的原点为圆心,半径为1的圆,∠AOB=45°,∴过点P′且与OB平行的直线与⊙O相切时,假设切点为D,∴OD=DP′=1,OP′=2,∴0<OP≤2,同理可得,当OP与x轴负半轴相交时,-2≤OP<0,∴-2≤OP<0,或0<OP≤2.故选C.类型二、弧、弦、圆心角、圆周角的关系及垂径定理2.如图所示,已知在⊙O 中,AB 是⊙O 的直径,弦CG ⊥AB 于D ,F 是⊙O 上的点,且CF CB =,BF 交CG 于点E ,求证:CE =BE .【思路点拨】主要用垂径定理及其推论进行证明. 【答案与解析】证法一:如图(1),连接BC ,∵ AB 是⊙O 的直径,弦CG ⊥AB ,∴ CB GB =.∵ CF BC =,∴ CF GB =.∴ ∠C =∠CBE .∴ CE =BE .证法二:如图(2),作ON ⊥BF ,垂足为N ,连接OE . ∵ AB 是⊙O 的直径,且AB ⊥CG ,∴ CB BG =.∵ CB CF =,∴ CF BC BG ==.∴ BF =CG ,ON =OD .∵ ∠ONE =∠ODE =90°,OE =OE ,ON =OD , ∴ △ONE ≌△ODE ,∴ NE =DE . ∵ 12BN BF =,12CD CG =, ∴ BN =CD ,∴ BN-EN =CD-ED ,∴ BE =CE .证法三:如图(3),连接OC 交BF 于点N .∵ CF BC =,∴ OC ⊥BF . ∵ AB 是⊙O 的直径,CG ⊥AB ,∵ BG BC =,CF BG BC ==.∴ BF CG =,ON OD =. ∵ OC =OB ,∴ OC-ON =OB-OD ,即CN =BD .又∠CNE =∠BDE =90°,∠CEN =∠BED , ∴ △CNE ≌△BDE ,∴ CE =BE .【总结升华】在平时多进行一题多解、一题多证、一题多变的练习,这样不但能提高分析问题的能力,而且还是沟通知识体系、学习知识,使用知识的好方法.举一反三:【变式】如图所示,在⊙O 内有折线OABC,其中OA=8,AB=12,∠A=∠B=60°,则BC 的长为( )A .19B .16C .18D .20【答案】如图,延长AO 交BC 于点D,过O 作OE ⊥BC 于E.则三角形ABD 为等边三角形,DA=AB=BD=12,OD=AD-AO=4在Rt △ODE 中,∠ODE=60°,∠DOE=30°,则DE=12OD=2,BE=BD-DE=10 OE 垂直平分BC ,BC=2BE=20. 故选D类型三、与圆有关的位置关系3.一个长方体的香烟盒里,装满大小均匀的20支香烟.打开烟盒的顶盖后,二十支香烟排列成三行,如图(1)所示.经测量,一支香烟的直径约为0.75cm ,长约为8.4cm. (1)试计算烟盒顶盖ABCD 的面积(本小题计算结果不取近似值);(2)制作这样一个烟盒至少需要多少面积的纸张(不计重叠粘合的部分,计算结果精确到,取)0.1cm 3173..【答案与解析】(1)如图(2),作O 1E ⊥O 2O 3()33333324AB cm +∴=⨯+=∴四边形ABCD 的面积是:(2)制作一个烟盒至少需要纸张:.【总结升华】四边形ABCD 中,AD 长为7支香烟的直径之和,易求;求AB 长,只要计算出如图(2)中的O 1E 长即可.类型四、圆中有关的计算4.( •丹东)如图,AB 是⊙O 的直径,=,连接ED 、BD ,延长AE 交BD 的延长线于点M ,过点D 作⊙O 的切线交AB 的延长线于点C . (1)若OA=CD=2,求阴影部分的面积; (2)求证:DE=DM .【答案与解析】解:如图,连接OD,∵CD是⊙O切线,∴OD⊥CD,∵OA=CD=2,OA=OD,∴OD=CD=2,∴△OCD为等腰直角三角形,∴∠DOC=∠C=45°,∴S阴影=S△OCD﹣S扇OBD=﹣=4﹣π;(2)证明:如图,连接AD,∵AB是⊙O直径,∴∠ADB=∠ADM=90°,又∵=,∴ED=BD,∠MAD=∠BAD,在△AMD和△ABD中,,∴△AMD≌△ABD,∴DM=BD,∴DE=DM.【点评】本题考查的是切线的性质、弦、弧之间的关系、扇形面积的计算,掌握切线的性质定理和扇形的面积公式是解题的关键,注意辅助线的作法.举一反三:【变式】(•贵阳)如图,⊙O是△ABC的外接圆,AB是⊙O的直径,FO⊥AB,垂足为点O,连接AF并延长交⊙O于点D,连接OD交BC于点E,∠B=30°,FO=2.(1)求AC的长度;(2)求图中阴影部分的面积.(计算结果保留根号)【答案】解:(1)∵OF⊥AB,∴∠BOF=90°,∵∠B=30°,FO=2,∴OB=6,AB=2OB=12,又∵AB为⊙O的直径,∴∠ACB=90°,∴AC=AB=6;(2)∵由(1)可知,AB=12,∴AO=6,即AC=AO,在Rt△ACF和Rt△AOF中,∴Rt△ACF≌Rt△AOF,∴∠FAO=∠FAC=30°,∴∠DOB=60°,过点D作DG⊥AB于点G,∵OD=6,∴DG=3,∴S△ACF S△OFD??S△AOD??×??×??????,.类型五、圆与旋转综合运用5.如图,△ABC是等边三角形,D是弧BC上任一点,求证:DB+DC=DA.【思路点拨】由已知条件,等边△ABC可得60°角,根据圆的性质,可得∠ADB=60°,利用截长补短的方法可得一个新的等边三角形,再证两个三角形全等,从而转移线段DC.【答案与解析】延长DB至点E,使BE=DC,连结AE∵△ABC是等边三角形∴∠ACB=∠ABC=60°,AB=AC∴∠ADB=∠ACB=60°∵四边形ABDC是圆内接四边形∴∠ABE=∠ACD在△AEB和△ADC中,∴△AEB≌△ADC∴AE=AD∵∠ADB=60°∴△AED是等边三角形∴AD=DE=DB+BE∵BE=DC∴DB+DC=DA.【总结升华】本例也可以用其他方法证明.如:(1)延长DC至F,使CF=BD,连结AF,再证△ACF≌△ABD,得出AD=DF,从而DB+CD=DA.(2)在DA上截取DG=DC,连结CG,再证△BDC≌△AGC,得出BD=AG,从而DB+CD=DA.(3)利用AB=AC可以将△ACD绕点A逆时针旋转60°,从而把条件集中到一个三角形中.举一反三:【变式】如图,在四边形ABCD中,∠ABC=30°,∠ADC=60°,AD=CD. 求证:BD2=AB2+BC2.【答案】证明:∵AD=CD,∠ADC=60°,∴△BCD绕点D逆时针旋转60°,得到△EAD,∴∠BDE=∠CDA=60°,△BCD≌△EAD.∴BC=AE, BD=DE,∠DAE=∠DCB,∴△BDE为等边三角形.∴BE=BD.∵在四边形ABCD中,∠ABC=30°,∠ADC=60°,∴∠DCB+∠DAB=270°,即∠DAE+∠DAB=270°.∴∠BAE=90°.∵在Rt△BAE中,,∴.6.如图,直径AB为6的半圆,绕A点逆时针旋转60°,此时点B到了点B′,则图中阴影部分的面积是().A. 3πB. 6πC. 5πD. 4π【答案】B;【解析】阴影部分的面积=以AB′为直径的半圆的面积+扇形ABB′的面积-以AB为直径的半圆的面积=扇形ABB′的面积.则阴影部分的面积是:=6π故选B.【总结升华】根据阴影部分的面积=以AB′为直径的半圆的面积+扇形ABB′的面积-以AB为直径的半圆的面积=扇形ABB′的面积.即可求解.举一反三:【变式】某中学举办校园文化艺术节,小颖设计了同学们喜欢的图案“我的宝贝”,图案的一部分是以斜边长为12cm的等腰直角三角形的各边为直径作的半圆,如图所示,则图中阴影部分的面积为( ).A. B.72 C.36 D.72【答案】本题解法很多,如两个小半圆面积和减去两个弓形面积等.但经过认真观察等腰直角三角形其对称性可知,阴影部分的面积由两个小半圆面积与三角形面积的和减去大半圆面积便可求得,所以由已知得直角边为,小半圆半径为(cm),因此阴影部分面积为.故选C.《圆》全章复习与巩固—巩固练习(提高)【巩固练习】一、选择题1.如图所示,AB、AC为⊙O的切线,B和C是切点,延长OB到D,使BD=OB,连接AD.如果∠DAC=78°,那么∠ADO等于( ).A.70° B.64° C.62° D.51°2.已知⊙O半径为3,M为直线AB上一点,若MO=3,则直线AB与⊙O的位置关系为().A.相切 B.相交 C.相切或相离 D.相切或相交3.设计一个商标图案,如图所示,在矩形ABCD中,AB=2BC,且AB=8cm,以A为圆心、AD的长为半径作半圆,则商标图案(阴影部分)的面积等于( ).A.(4π+8)cm2B.(4π+16)cm2C.(3π+8)cm2D.(3π+16)cm24.如图,四边形ABCD是⊙O的内接四边形,若∠B=110°,则∠ADE的度数为().A.55° B.70° C.90° D.110°5.“圆材埋壁”是我国古代著名的数学著作《九章算术》中的问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”用数学语言可表示为:如图所示,CD为⊙O的直径,弦AB⊥CD于E,CE=1寸,AB=10寸,则直径CD的长为( ).A.12.5寸 B.13寸 C.25寸D.26寸6.(•贵港)如图,已知P是⊙O外一点,Q是⊙O上的动点,线段PQ的中点为M,连接OP,OM.若⊙O 的半径为2,OP=4,则线段OM的最小值是()A.0 B.1 C.2 D.37.一条弦的两个端点把圆周分成4:5两部分,则该弦所对的圆周角为( ).A.80° B.100° C.80°或100° D.160°或200°8.如图所示,AB、AC与⊙O分别相切于B、C两点,∠A=50°,点P是圆上异于B、C的一动点,则∠BPC的度数是( ).A.65° B.115° C.65°或115° D.130°或50°二、填空题9.如图,在⊙O中,半径OA垂直弦于点D.若∠ACB=33°,则∠OBC的大小为度.10.如图所示,EB、EC是⊙O是两条切线,B、C是切点,A、D是⊙O上两点,如果∠E=46°,∠DCF=32°,那么∠A的度数是________________.11.在Rt△ABC中,∠BAC=30°,斜边AB=2,动点P在AB边上,动点Q在AC边上,且∠CPQ=90°,则线段CQ长的最小值= .12.(•巴彦淖尔)如图,AB为⊙O的直径,AB=AC,BC交⊙O于点D,AC交⊙O于点E,∠BAC=45°,给出以下五个结论:①∠EBC=22.5°;②BD=DC;③AE=2EC;④劣弧是劣弧的2倍;⑤AE=BC,其中正确的序号是.13.两个圆内切,其中一个圆的半径为5,两圆的圆心距为2,则另一个圆的半径是_______ ________.14.已知正方形ABCD外接圆的直径为2a,截去四个角成一正八边形,则这个正八边形EFGHIJLK的边长为____ ____,面积为_____ ___.15.如图(1)(2)…(m)是边长均大于2的三角形、四边形、……、凸n边形,分别以它们的各顶点为圆心,以l为半径画弧与两邻边相交,得到3条弧,4条弧,……(1)图(1)中3条弧的弧长的和为___ _____,图(2)中4条弧的弧长的和为_____ ___;(2)求图(m)中n条弧的弧长的和为____ ____(用n表示).16.如图,⊙O的半径是2,直线l与⊙O相交于A、B两点,M、N是⊙O上的两个动点,且在直线l的异侧,若∠AMB=45°,则四边形MANB面积的最大值是.三、解答题17. 如图,⊙O是△ABC的外接圆,FH是⊙O 的切线,切点为F,FH∥BC,连结AF交BC于E,∠ABC的平分线BD交AF于D,连结BF.(1)证明:AF平分∠BAC;(2)证明:BF=FD.18.(•沈阳)如图,四边形ABCD是⊙O的内接四边形,∠ABC=2∠D,连接OA、OB、OC、AC,OB与AC相交于点E.(1)求∠OCA的度数;(2)若∠COB=3∠AOB,OC=2,求图中阴影部分面积(结果保留π和根号)19.如图,相交两圆的公共弦长为120cm,它分别是一圆内接正六边形的边和另一圆内接正方形的边.求两圆相交弧间阴影部分的面积.20.问题背景:课外学习小组在一次学习研讨中,得到了如下两个命题:①如图(1),在正△ABC中,M、N分别是AC、AB上的点,BM与CN相交于点O,若∠BON=60°,则BM=CN;②如图(2),在正方形ABCD中,M、N分别是CD、AD上的点,BM与CN相交于点O,若∠BON=90°,则BM=CN.然后运用类似的思想提出了如下命题:③如图(3),在正五边形ABCDE中,M、N分别是CD、DE上的点,BM与CN相交于点O,若∠BON=108°,则BM=CN.任务要求:(1)请你从①②③三个命题中选择一个进行证明;(2)请你继续完成下面的探索;①在正n(n≥3)边形ABCDEF…中,M、N分别是CD、DE上的点,BM与CN相交于点O,试问当∠BON等于多少度时,结论BM=CN成立(不要求证明);②如图(4),在正五边形ABCDE中,M、N分别是DE、AE上的点,BM与CN相交于点O,∠BON=108°时,试问结论BM=CN是否成立.若成立,请给予证明;若不成立,请说明理由.【答案与解析】一、选择题1.【答案】B;【解析】由AB为⊙O的切线,则AB⊥OD.又BD=OB,则AB垂直平分OD,AO=AD,∠DAB=∠BAO.由AB、AC为⊙O的切线,则∠CAO=∠BAO=∠DAB.所以,∠DAB=∠DAC=26°.∠ADO=90°-26°=64°.本题涉及切线性质定理、切线长定理、垂直平分线的性质、等腰三角形的性质等.2.【答案】D;3.【答案】A.;【解析】对图中阴影部分进行分析,可看做扇形、矩形、三角形的面积和差关系.∵矩形ABCD中,AB=2BC,AB=8cm,∴ AD=BC=4cm,∠DAF=90°,,,又AF=AD=4cm,∴,∴.4.【答案】D;【解析】∵四边形ABCD是⊙O的内接四边形,∴∠ADC+∠B=180°,∵∠ADC+∠ADE=180°,∴∠ADE=∠B.∵∠B=110°,∴∠ADE=110°.5.【答案】D;【解析】因为直径CD垂直于弦AB,所以可通过连接OA(或OB),求出半径即可.根据“垂直于弦的直径平分弦,并且平分弦所对的两条弧”,知(寸),在Rt△AOE中,,即,解得OA=13,进而求得CD=26(寸).6.【答案】B.【解析】设OP与⊙O交于点N,连结MN,OQ,如图,∵OP=4,ON=2,∴N是OP的中点,∵M为PQ的中点,∴MN为△POQ的中位线,∴MN=OQ=×2=1,∴点M在以N为圆心,1为半径的圆上,当点M在ON上时,OM最小,最小值为1,∴线段OM的最小值为1.故选B.7.【答案】C;【解析】圆周角的顶点在劣弧上时,圆周角为5136010092⨯⨯=°°;圆周角的顶点在优弧上时,圆周角为413608092⨯⨯=°°.注意分情况讨论.8.【答案】C;【解析】连接OC、OB,则∠BOC=360°-90°-90°-50°=130°.点P在优弧上时,∠BPC=12∠BOC=65°;点P在劣弧上时,∠BPC=180°-65°=115°.主要应用了切线的性质定理、圆周角定理和多边形内角和定理.二、填空题9.【答案】24;10.【答案】99°;【解析】由EB=EC,∠E=46°知,∠ECB= 67°,从而∠BCD=180°-67°-32°=81°,在⊙O中,∠BCD与∠A互补,所以∠A=180°-81°=99°.11.【答案】83;【解析】以CQ为直径作⊙O,当⊙O与AB边相切动点P时,CQ最短,∴OP⊥AB,∵∠B=90°,∠A=30°,∴∠POA=60°,∵OP=OQ,∴△POQ为等边三角形,∴∠POQ=60°,∴∠APQ=30°,∴设PQ=OQ=AP=OC=r ,3r=AC=ABsin 30︒=233=4,∴CQ=83,∴CQ 的最小值为83.12.【答案】①②④;【解析】连接AD ,AB 是直径,则AD ⊥BC ,又∵△ABC 是等腰三角形,故点D 是BC 的中点,即BD=CD ,故②正确; ∵AD 是∠BAC 的平分线,由圆周角定理知,∠EBC=∠DAC=∠BAC=22.5°,故①正确; ∵∠ABE=90°﹣∠EBC ﹣∠BAD=45°=2∠CAD ,故④正确; ∵∠EBC=22.5°,2EC ≠BE ,AE=BE ,∴AE ≠2CE ,③不正确; ∵AE=BE ,BE 是直角边,BC 是斜边,肯定不等,故⑤错误. 综上所述,正确的结论是:①②④.13.【答案】7或3;【解析】两圆有三种位置关系:相交、相切(外切、内切)和相离(外离、内含).两圆内切时,圆心距,题中一圆半径为5,而d=2,所以有,解得r=7或r=3,即另一圆半径为7或3.14.【答案】(21)a ; 2(222)a ;【解析】正方形ABCD 外接圆的直径就是它的对角线,由此求得正方形边长为a .如图所示,设正八边形的边长为x .在Rt △AEL 中,LE =x ,AE =AL =22x ,∴ 222x x a ⨯+=,(21)x a =,即正八边形的边长为(21)a .22222421)](222)AEL S S S a x a a a =-=-=-=△正方形正八边形.15.【答案】(1)π; 2π; (2)(n-2)π;【解析】∵ n 边形内角和为(n-2)180°,前n 条弧的弧长的和为(2)1801(2)3602n n -=-个以某定点为圆心,以1为半径的圆周长,∴ n 条弧的弧长的和为121(2)(2)2n n ππ⨯⨯-=-.本题还有其他解法,比如:设各个扇形的圆心角依次为1α,2α,…,n α, 则12(2)180n n ααα+++=-…°,∴ n 条弧长的和为1212111()180180180180n n απαπαππααα⨯+⨯++⨯=+++……(2)180(2)180n n ππ=-⨯=-.16.【答案】4;【解析】解:过点O 作OC ⊥AB 于C ,交⊙O 于D 、E 两点,连结OA 、OB 、DA 、DB 、EA 、EB ,如图, ∵∠AMB=45°,∴∠AOB=2∠AMB=90°,∴△OAB 为等腰直角三角形,∴AB=OA=2,∵S 四边形MANB =S △MAB +S △NAB ,∴当M 点到AB 的距离最大,△MAB 的面积最大;当N 点到AB 的距离最大时,△NAB 的面积最大,即M 点运动到D 点,N 点运动到E 点,此时四边形MANB 面积的最大值=S 四边形DAEB =S △DAB +S △EAB =AB •CD+AB •CE=AB (CD+CE )=AB •DE=×2×4=4.三、解答题17.【答案与解析】(1)连结OF∵FH是⊙O的切线∴OF⊥FH∵FH∥BC ,∴OF垂直平分BC∴BF FC∴AF平分∠BAC .(2)由(1)及题设条件可知∠1=∠2,∠4=∠3,∠5=∠2∴∠1+∠4=∠2+∠3∴∠1+∠4=∠5+∠3∠FDB=∠FBD∴BF=FD.18.【答案与解析】解:(1)∵四边形ABCD是⊙O的内接四边形,∴∠ABC+∠D=180°,∵∠ABC=2∠D,∴∠D+2∠D=180°,∴∠D=60°,∴∠AOC=2∠D=120°,∵OA=OC,∴∠OAC=∠OCA=30°;(2)∵∠COB=3∠AOB,∴∠AOC=∠AOB+3∠AOB=120°,∴∠AOB=30°,∴∠COB=∠AOC﹣∠AOB=90°,在Rt△OCE中,OC=2,∴OE=OC•tan∠OCE=2•tan30°=2×=2,∴S△OEC=OE•OC=×2×2=2,∴S扇形OBC==3π,∴S 阴影=S 扇形OBC ﹣S △OEC =3π﹣2.19.【答案与解析】解:∵公共弦AB =120r R a 6624222212060603=-⎛⎝ ⎫⎭⎪=-=.20. 【答案与解析】 (1)如选命题①. 证明:在图(1)中,∵ ∠BON =60°,∴ ∠1+∠2=60°. ∵ ∠3+∠2=60°,∴ ∠1=∠3. 又∵ BC =CA ,∠BCM =∠CAN =60°, ∴ △BCM ≌△CAN ,∴ BM =CM . 如选命题②.证明:在图(2)中,∵ ∠BON =90°,∴ ∠1+∠2=90°. ∵ ∠3+∠2=90°,∴ ∠1=∠3. 又∵ BC =CD ,∠BCM =∠CDN =90°, ∴ △BCM ≌△CDN ,∴ BM =CN . 如选命题③.证明:在图(3)中,∵ ∠BON =108°,∴ ∠1+∠2=108°. ∵ ∠2+∠3=108°,∴ ∠1=∠3. 又∵ BC =CD ,∠BCM =∠CDN =108°, ∴ △BCM ≌△CDN ,∴ BM =CN .(2)①答:当∠BON=(2)180nn°时结论BM=CN成立.②答:当∠BON=108°时.BM=CN还成立.证明:如图(4),连接BD、CE在△BCD和△CDE中,∵ BC=CD,∠BCD=∠CDE=108°,CD=DE,∴△BCD≌△CDE.∴ BD=CE,∠BDC=∠CED,∠DBC=∠ECD.∵∠CDE=∠DEN=108°,∴∠BDM=∠CEM.∵∠OBC+∠OCB=108°,∠OCB+∠OCD=108°.∴∠MBC=∠NCD.又∵∠DBC=∠ECD=36°,∴∠DBM=∠ECM.∴△BDM≌△CEN,∴ BM=CN.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初三数学寒假培优提高班讲义(2)圆(2)
一、选择题
1.下列命题中,假命题是( )
(A )如果一个点到圆心的距离大于这个圆的半径,那么这个点在圆外;
(B )如果一个圆的圆心到一条直线的距离小于它的半径,那么这条直线与这个圆有两个交点; (C )边数相同的正多边形都是相似图形; (D )正多边形即是轴对称图形,又是中心对称图形.
2.如果两圆的直径分别为6和14,圆心距为4,那么这两圆的位置关系是( ) (A) 内含; (B) 内切; (C) 相交; (D)外切.
3.如果⊙1O 的半径是5,⊙2O 的半径是8,12O O ﹦4,那么⊙1O 与⊙2O 的位置关系是 ( ) (A )内含; (B )内切; (C )相交; (D )外离.
4.在直角坐标平面内,点A 的坐标为(1,0),点B 的坐标为(a ,0),圆A 的半径为2. 下列说法中不正确...的是 ( ) (A )当a = -1时,点B 在圆A 上;
(B )当a <1时,点B 在圆A 内;
(C )当a <-1时,点B 在圆A 外; (D )当-1<a <3时,点B 在圆A 内.
5.如果⊙1O 的半径是
5,⊙2O 的半径为 8,124O O =,那么⊙1O 与⊙2O 的位置关系是( ) A .内含; B .内切; C .相交; D .外离.(青浦区)答案C
6.下列图形中,既是轴对称图形又是中心对称图形是( )
(A )正六边形; (B )正五边形; (C )等腰梯形; (D )等边三角形. 二、填空题
1.半径为2的圆中,60°的圆心角所对的弦长为 .
2.已知⊙1O 与⊙2O 相切,⊙1O 的半径比⊙2O 的半径的2倍还大1,又127O O =,那么⊙2O 的半径长为 .
3.已知两圆的半径R 、r 分别为方程2
560x x -+=的两根,两圆的圆心距为1,两圆的位置关系是 .
4.已知两圆的圆心距为4,其中一个圆的半径长为3,那么当两圆内切时,另一圆的半径为 . 5.已知⊙1O 与⊙2O 相交于点A 、B 两点,如果⊙1O 、⊙2O 的半径分别为10cm 和17cm ,公共弦AB 的长为16cm ,那么这两个圆的圆心距12O O 的长为 厘米. 6.在直角坐标系中,⊙P 的圆心是P (a ,2)(a >0),半径为2;直线y=x 被⊙P 截得的弦长为23,则a 的值是 .
7.如图4,边长为1的菱形ABCD 的两个顶点B 、C 恰好落在扇形AEF 的弧EF 上时,弧BC 的长度等于 (结果保留π).
F
C
D
E
A
8.AB 是⊙O 的直径,弦CD ⊥AB ,垂足为E ,如果AB =10,CD =8,那么线段OE 的长是______。

9.已知⊙1O 和⊙2O 外切,821=O O ,若⊙1O 的半径为3,则⊙2O 的半径为 . 10.在半径为5的圆中,30°的圆心角所对弧的弧长为 .(结果保留π) 11.如图,正方形ABCD 中,E 是BC 边上一点,以E 为圆心,EC 为半径的半圆与以A 为圆心,AB 为半径的圆弧外切,则ABCD ADCE S S :正方形四边形的值为 . 三、解答题
1.已知⊙1O 、⊙2O 外切于点T ,经过点T 的任一直线分别与⊙1O 、⊙2O 交于点A 、B . (1)若⊙1O 、⊙2O 是等圆(如图1),求证:AT =BT ;
(2)若⊙1O 、⊙2O 的半径分别为R ,r ,(如图2),试写出线段AT 、BT 与R 、r 之间始终存在的数量关系(不需要证明)
2、如图,圆O 经过平行四边形ABCD 的三个顶点A 、B 、D ,且圆心O 在平行四边形ABCD 的外部,1tan 2
DAB ∠=, AD BD =,圆O 的半径为5,求平行四边形的面积.
A B
T
1
O 2O
图 1
A
A
T
1
O 2O
图 2
A
B
C D E
第11题
O
A
B
C
D
第2题图
3.如图4,AB 是圆O 的直径,作半径OA 的垂直平分线,交圆O 于C 、D 两点,垂足为H ,联结BC 、BD . (1)求证:BC =BD ;
(2)已知CD =6,求圆O 的半径长.
4.已知:半圆O 的半径OA ﹦4,P 是OA 延长线上一点,过线段OP 的中点B 做垂线交 ⊙O 于点C ,射线PC 交⊙O 于点D ,联结OD .
(1)若 AC CD
=,求弦CD 的长; (2)若点C 在 AD 上时,设PA ﹦x ,CD ﹦y ,求y 与x 的函数关系式及自变量x 的取
值范围.
(3)设CD 的中点为E ,射线BE 与射线OD 交于点F ,当DF ﹦1时,请直接写出tan P ∠ 的值.
A O D P C
B A B O
C
D H
图4
5.如图9,已知ABC ∆中,90C ∠=︒,AC BC =,6AB =,O 是BC 边上的中点,N 是AB 边上的点(不与端点重合),M 是OB 边上的点,且MN ∥AO ,延长CA 与直线MN 相交于点D ,G 点是AB 延长线上的点,且BG AN =,联结MG ,设AN x =,BM y =. (1)求y 关于x 的函数关系式及其定义域;
(2)联结CN ,当以DN 为半径的D 和以MG 为半径的M 外切时,求ACN ∠的正切值;
(3)当ADN ∆与MBG ∆相似时,求AN 的长.
A B C
O
N M D G 图9 备用图a
A
B
C O 备用图b
A
B
C
O。

相关文档
最新文档