高考物理知识点总结机械能守恒定律与动能定理的区别

合集下载

高中物理《机械能》知识点总结

高中物理《机械能》知识点总结

高中物理《机械能》知识点总结一、功1概念:一个物体受到力的作用,并在力的方向上发生了一段位移,这个力就对物体做了功。

功是能量转化的量度。

2条件:.力和力的方向上位移的乘积3公式:W=F S cosθ--某力功,单位为焦耳(--某力(要为恒力,单位为牛顿(S--物体运动的位移,一般为对地位移,单位为米(m--力与位移的夹角4功是标量,但它有正功、负功。

某力对物体做负功,也可说成"物体克服某力做功"。

当时,即力与位移成锐角,功为正;动力做功;当时,即力与位移垂直功为零,力不做功;当时,即力与位移成钝角,功为负,阻力做功;5功是一个过程所对应的量,因此功是过程量。

6功仅与F、S、θ有关,与物体所受的其它外力、速度、加速度无关。

7几个力对一个物体做功的代数和等于这几个力的合力对物体所做的功。

即W总=W1+W2+...+Wn或W总=F合Scosθ8合外力的功的求法:方法1:先求出合外力,再利用W=Flcosα求出合外力的功。

方法2:先求出各个分力的功,合外力的功等于物体所受各力功的代数和。

二、功率1概念:功跟完成功所用时间的比值,表示力(或物体做功的快慢。

2公式:(平均功率(平均功率或瞬时功率3单位:瓦特W4分类:额定功率:指发动机正常工作时最大输出功率实际功率:指发动机实际输出的功率即发动机产生牵引力的功率,P实≤P额。

5分析汽车沿水平面行驶时各物理量的变化,采用的基本公式是P=Fv和F-f=ma6应用:(1机车以恒定功率启动时,由(为机车输出功率,为机车牵引力,为机车前进速度机车速度不断增加则牵引力不断减小,当牵引力时,速度不再增大达到最大值,则。

(2机车以恒定加速度启动时,在匀加速阶段汽车牵引力恒定为,速度不断增加汽车输出功率随之增加,当时,开始减小但仍大于因此机车速度继续增大,直至时,汽车便达到最大速度,则。

三、重力势能1定义:物体由于被举高而具有的能,叫做重力势能。

2公式:h--物体具参考面的竖直高度3参考面a重力势能为零的平面称为参考面;b选取:原则是任意选取,但通常以地面为参考面若参考面未定,重力势能无意义,不能说重力势能大小如何选取不同的参考面,物体具有的重力势能不同,但重力势能改变与参考面的选取无关。

高考物理知识点总结机械能守恒定律与动能定理的区别

高考物理知识点总结机械能守恒定律与动能定理的区别

机械能守恒定律1.由物体间的相互作用和物体间的相对位置确定的能叫做势能.如重力势能、弹性势能、分子势能、电势能等.(1)物体由于受到重力作用而具有重力势能,表达式为E P=一mgh.式中h是物体到零重力势能面的高度.(2)重力势能是物体与地球系统共有的.只有在零势能参考面确定之后,物体的重力势能才有确定的值,若物体在零势能参考面上方高h处其重力势能为E P=一mgh,若物体在零势能参考面下方低h处其重力势能为E P=一mgh,“一”不表示方向,表示比零势能参考面的势能小,明显零势能参考面选择的不同,同一物体在同一位置的重力势能的多少也就不同,所以重力势能是相对的.通常在不明确指出的状况下,都是以地面为零势面的.但应特殊留意的是,当物体的位置变更时,其重力势能的变更量与零势面如何选取无关.在实际问题中我们更会关切的是重力势能的变更量.(3)弹性势能,发生弹性形变的物体而具有的势能.中学阶段不要求详细利用公式计算弹性势能,但往往要依据功能关系利用其他形式能量的变更来求得弹性势能的变更或某位置的弹性势能.2.重力做功与重力势能的关系:重力做功等于重力势能的削减量W G=ΔE P减=E P初一E P末,克服重力做功等于重力势能的增加量W克=ΔE P增=E P末—E P初特殊应留意:重力做功只能使重力势能与动能相互转化,不能引起物体机械能的变更.3、动能和势能(重力势能与弹性势能)统称为机械能.二、机械能守恒定律1、内容:在只有重力(和弹簧的弹力)做功的状况下,物体的动能和势能发生相互转化,但机械能的总量保持不变.2.机械能守恒的条件(1)做功角度:对某一物体,若只有重力(或弹簧弹力)做功,其他力不做功(或其他力做功的代数和为零),则该物体机械能守恒.(2)能转化角度:对某一系统,物体间只有动能和重力势能及弹性势能的相互转化,系统和外界没有发朝气械能的传递,机械能也没有转变为其他形式的能,则系统机械能守恒.3.表达形式:E K1+E pl=E k2+E P2(1)我们解题时往往选择的是与题目所述条件或所求结果相关的某两个状态或某几个状态建立方程式.此表达式中E P是相对的.建立方程时必需选择合适的零势能参考面.且每一状态的E P都应是对同一参考面而言的.(2)其他表达方式,ΔE P=一ΔE K,系统重力势能的增量等于系统动能的削减量.(3)ΔE a=一ΔE b,将系统分为a、b两部分,a部分机械能的增量等于另一部分b的机械能的削减量,三、推断机械能是否守恒首先应特殊提示留意的是,机械能守恒的条件绝不是合外力的功等于零,更不是合外力等于零,例如水平飞来的子弹打入静止在光滑水平面上的木块内的过程中,合外力的功及合外力都是零,但系统在克服内部阻力做功,将部分机械能转化为内能,因而机械能的总量在削减.(1)用做功来推断:分析物体或物体受力状况(包括内力和外力),明确各力做功的状况,若对物体或系统只有重力或弹力做功,没有其他力做功或其他力做功的代数和为零,则机械能守恒;(2)用能量转化来判定:若物体系中只有动能和势能的相互转化而无机械能与其他形式的能的转化,则物体系机械能守恒.(3)对一些绳子突然绷紧,物体间非弹性碰撞等除非题目的特殊说明,机械能必定不守恒,完全非弹性碰撞过程机械能不守恒说明:1.条件中的重力与弹力做功是指系统内重力弹力做功.对于某个物体系统包括外力和内力,只有重力或弹簧的弹力作功,其他力不做功或者其他力的功的代数和等于零,则该系统的机械能守恒,也就是说重力做功或弹力做功不能引起机械能与其他形式的能的转化,只能使系统内的动能和势能相互转化.如图5-50所示,光滑水平面上,A与L1、L2二弹簧相连,B与弹簧L2相连,外力向左推B使L1、L2被压缩,当撤去外力后,A、L2、B这个系统机械能不守恒,因为L I对A的弹力是这个系统外的弹力,所以A、L2、B这个系统机械能不守恒.但对L I、A、L2、B这个系统机械能就守恒,因为此时L1对A的弹力做功属系统内部弹力做功.2.只有系统内部重力弹力做功,其它力都不做功,这里其它力合外力不为零,只要不做功,机械能仍守恒,即对于物体系统只有动能与势能的相互转化,而无机械能与其他形式转化(如系统无滑动摩擦和介质阻力,无电磁感应过程等等),则系统的机械能守恒,如图5-51所示光滑水平面上A与弹簧相连,当弹簧被压缩后撤去外力弹开的过程,B相对A没有发生相对滑动,A、B之间有相互作用的力,但对弹簧A、B物体组成的系统机械能守恒.3.当除了系统内重力弹力以外的力做了功,但做功的代数和为零,但系统的机械能不肯定守恒.如图5—52所示,物体m在速度为v0时受到外力F作用,经时间t速度变为v t.(v t>v0)撤去外力,由于摩擦力的作用经时间t/速度大小又为v0,这一过程中外力做功代数和为零,但是物体m的机械能不守恒。

正确理解动能定理、机械能守恒定律、能的转化与守恒定律

正确理解动能定理、机械能守恒定律、能的转化与守恒定律

正确理解动能定理、机械能守恒定律、能的转化与守恒定律动能定理、机械能守恒定律、能的转化与守恒定律是中学生最容易混淆的三条规律,只有正确理解三条规律的内容才能在解决问题时正确应用。

分析如下。

一、内容区别动能定理是说物体的动能变化是伴随物体所受外力做功来完成的,这个外力可以是各种性质的力,包括重力;这个功是所有外力所做的总功;且有,外力做的总功等于物体动能的变化,外力对物体做正功,物体的动能积累,外力对物体做负功,物体的动能释放。

机械能守恒定律是说只有机械能中的动能与势能发生转化时的情况。

这种情况要求物体运动过程中只有重力做功。

意为,重力做功只完成了重力势能向动能转化,重力做负功,则是动能向重力势能转化,而机械能的总量是不变的。

能的转化与守恒定律则是从大范围上对功与能的关系进行说明,即各种形式能之间在条件满足时都是可以转化的,且做功的过程是能量转化的过程,做功的多少是能量转化的量度,总的能量是不变的。

也可以说动能定律是能的转化与守恒定律在动能问题上的一个具体表现,而机械能守恒又可以认为是动能定理的一个特殊情况。

然而这三个规律都是描述能量转化时所遵守的规律,只是对象条件不同。

二、各规律的意义及应用注意事项(1)动能定律动能定理表示物体的动能与其它形式能或其它物体的能量之间的转化量度,所以,动能定理中的功为合外力的功或物体所受外力的总功,它是以物体的动能变化为主体研究对象,通过合外力做功的多少来分析说明问题的。

所以在应用动能定理时,首先要选好物体的初末状态,正确表达出物体的初末动能;其次是分析物体在运动过程中都受到哪些力,其中哪些力做功,哪些力不做功,有可能还要分析是变力还是恒力,各力是做正功还是做负功,各功应如何表示。

只有做到了这些才能正确利用动能定理。

(2)机械能守恒定律机械能守恒定律表示物体只有重力做功的情况下的动能与重力势能之间的转化规律,而机械能的总量是不变的。

所以,在利用机械能守恒定律时,首先要判断,物体的运动过程是否满足机械能守恒定律成立的条件,条件成立了,还要选好初末状态及重力势能的零势能面,这样才能正确表示出初末状态的机械能,才能准确的列出方程。

区分动能定理、功能关系、机械能守恒、能量守恒及解题时如何选用(含典例分析)

区分动能定理、功能关系、机械能守恒、能量守恒及解题时如何选用(含典例分析)

区分动能定理、功能关系、机械能守恒、能量守恒及解题时选用技巧(含典例分析)一、动能定理物体所受合外力做的功等于物体动能的变化量,即使用动能定理时应注意以下2个方面的问题:(1)由于作用在物体上的诸多力往往不是同时同步作用,而是存在先后顺序,因此求合外力做的功W 合一般采取先分别求出单个力受力然后代数和相加即可,即:比如一个物体收到了三个F 1、F 2、F 3三个力的作用,三个力所做的功分别为“+10J ”、“-5J ”、“-7J ”,这样以来三个力所做的总功W 合=10+(-5)+(-7)=-2J 。

(2)动能的变化量(或称动能的增量)因此在使用动能定理之前首先要明确对哪一段过程使用,这样才能确定谁是初始,谁是末尾,下面举例说明:图1例1:如图1所示,AB 为粗糙的水平地面,AB 段的长度为L ,右侧为光滑的竖直半圆弧BC 与水平地面在B 点相切,圆弧的半径为R ,一个质量为m 的小物块放置在A 点,初速度为V 0水平向右,物块受到水平向右恒力F 的作用,但水平恒力F 在物块向右运动L 1距离时撤去(L 1<L ),物块恰好通过C 点,重力加速度为g。

求:小物块与地面之间的动摩擦因数u。

思路梳理:物块恰好通过C点,意味着小物块在C点时对轨道无压力,物块的重力恰好提供物块转弯所需的向心力,可据此求出物块在C点的速度V c,剩下的问题就变成了到底选哪一段过程使用动能定理进行解题的问题,大多数同学习惯一段一段分析,即先分析A至B段,再分析B至C段,也有同学指出可以直接分析A至C全过程即可,到底哪种比较简单,这其实要看题目有没有在B点设定问题,下面详细解答:解法一:对A至B过程运用动能定理,设小物块在B点的速度为V B再对B至C过程运用动能定理,设小物体在C点的速度为V C小物块恰好通过C点,则联立(1)(2)(3)式即可求出u。

解法二:对A至C过程运用动能定理,设小物块在C点的速度为V C小物块恰好通过C点,则联立(1)(2)式即可求出u。

动能定理与机械能守恒

动能定理与机械能守恒

动能定理和机械能及其守恒定律1.动能定理:(合外力的功等于物体动能的变化量)(1)“221mv ”是一个新的物理量(2)2221mv 是物体末状态的一个物理量,2121mv 是物体初状态的一个物理量。

其差值正好等于合力对物体做的功。

(3)物理量221mv 定为动能,其符号用E K表示,即当物体质量为m ,速度为V 时,其动能:E K=221mv (4)动能是标量,单位焦耳(J )(5)含义:动能是标量,同时也是一个状态量(6)动能具有瞬时性,是个状态量:对应一个物体的质量和速度就有一个动能的值。

①当合力做正功时,物体动能增加。

②当合力做负功时,物体动能减小。

③当物体受变力作用,可把过程分解成许多小段每一段按照恒力运动是直线分段求解。

④当物体做曲线运动时,可把过程分解成许多小段每一段按照恒力运动是直线分段求解。

2. 机械能及其守恒定律(关键是把握什么能转化为什么能,在不守恒情况下一般都是有摩擦力做功即产生热能)1、机械能(1)定义:物体的动能和势能之和称为物体的机械能。

机械能包括动能、重力势能、弹性势能。

(2)表达式:E=EK+EP这些不同形式的能是可以相互转化的,那么在相互转化的过程中,他们的总量是否发生变化?这节课我们就来探究这方面的问题。

2、机械能守恒定律推导:质量为m 的物体自由下落过程中,经过高度h 1的A 点时速度为v 1,下落至高度h 2的B 点处速度为v 2,不计空气阻力,取地面为参考平面,试写出物体在A 点时的机械能和B 点时的机械能,并找到这两个机械能之间的数量关系。

A 点 12121mgh mv E E E PA kA A+=+= B 点 22221mgh mv E E E PB kB B +=+=根据动能定理,有21222121mv mv W G -=重力做功在数值上等于物体重力势能的减少量。

21mgh mgh W G -=由以上两式可以得到121222mgh mv 21mgh mv 21+=+ 即 1122p k p k E E E E +=+即 12E E =可见:在只有重力做功的物体系统内,动能和重力势能可以相互转化,而总的机械能保持不变。

高中物理必修二第七章-机械能守恒定律知识点总结

高中物理必修二第七章-机械能守恒定律知识点总结

机械能知识点总结一、功1概念:一个物体受到力的作用,并在力的方向上发生了一段位移,这个力就对物体做了功。

功是能量转化的量度。

2条件:. 力和力的方向上位移的乘积3公式:W=F S cos θW ——某力功,单位为焦耳(J )F ——某力(要为恒力),单位为牛顿(N ) S ——物体运动的位移,一般为对地位移,单位为米(m )θ——力与位移的夹角4功是标量,但它有正功、负功。

某力对物体做负功,也可说成“物体克服某力做功”。

当)2,0[πθ∈时,即力与位移成锐角,功为正;动力做功; 当2πθ=时,即力与位移垂直功为零,力不做功; 当],2(ππθ∈时,即力与位移成钝角,功为负,阻力做功; 5功是一个过程所对应的量,因此功是过程量。

6功仅与F 、S 、θ有关,与物体所受的其它外力、速度、加速度无关。

7几个力对一个物体做功的代数和等于这几个力的合力对物体所做的功。

即W 总=W 1+W 2+…+Wn 或W 总= F 合Scos θ8 合外力的功的求法:方法1:先求出合外力,再利用W =Fl cos α求出合外力的功。

方法2:先求出各个分力的功,合外力的功等于物体所受各力功的代数和。

二、功率1概念:功跟完成功所用时间的比值,表示力(或物体)做功的快慢。

2公式:tW P =(平均功率) θυc o s F P =(平均功率或瞬时功率)3单位:瓦特W4分类:额定功率:指发动机正常工作时最大输出功率实际功率:指发动机实际输出的功率即发动机产生牵引力的功率,P 实≤P 额。

5分析汽车沿水平面行驶时各物理量的变化,采用的基本公式是P =Fv 和F-f = ma6 应用:(1)机车以恒定功率启动时,由υF P =(P 为机车输出功率,F 为机车牵引力,υ为机车前进速度)机车速度不断增加则牵引力不断减小,当牵引力f F =时,速度不再增大达到最大值m ax υ,则f P /max =υ。

(2)机车以恒定加速度启动时,在匀加速阶段汽车牵引力F 恒定为f ma +,速度不断增加汽车输出功率υF P =随之增加,当额定P P =时,F 开始减小但仍大于f 因此机车速度继续增大,直至f F =时,汽车便达到最大速度m ax υ,则f P /max =υ。

高中物理必修2动能定理和机械能守恒定律复习

高中物理必修2动能定理和机械能守恒定律复习

高中物理必修2动能定理、机械能守恒定律复习考纲要求1、动能定理 (Ⅱ)2、做功与动能改变的关系 (Ⅱ)3、机械能守恒定律 (Ⅱ)知识归纳1、动能定理(1)推导:设一个物体的质量为m ,初速度为V 1,在与运动方向相同的恒力F 作用下,发生了一段位移S ,速度增加到V 2,如图所示。

在这一过程中,力F 所做的功W=F ·S ,根据牛顿第二定律有F=ma ;根据匀加速直线运动的规律,有:V 22-V 13=2aS ,即aV V S 22122-=。

可得:W=F ·S=ma ·2122212221212mV mV a V V -=- (2)定理:①表达式 W=E K2-E K1 或 W 1+W 2+……W n =21222121mV mV - ②意义 做功可以改变物体的能量—所有外力对物体所做的总功等于物体动能的变化。

ⅰ、如果合外力对物体做正功,则E K2>E K1 ,物体的动能增加;ⅱ、如果合外力对物体做负功,则E K2<E K1 ,物体的动能减少;ⅱ、如果合外力对物体不做功,则物体的动能不发生变化。

(3)理解:①外力对物体做的总功等于物体动能的变化。

W 总=△E K =E K2-E K1 。

它反映了物体动能变化与引起变化的原因——力对物体做功的因果关系。

可以理解为外力对物体做功等于物体动能增加,物体克服外力做功等于物体动能减少。

外力可以是重力、弹力、摩擦力,也可以是任何其他力,但物体动能的变化对应合外力的功,而不是某一个力的功。

②注意的动能的变化,指末动能减初动能。

用△E K 表示动能的变化,△E K >0,表示动能增加;△E K <0,表示动能减少。

③动能定理是标量式,功和动能都是标量,不能利用矢量法则分解,故动能定理无分量式。

(4)应用:①动能定理的表达式是在恒力作用且做匀加速直线运动的情况下得出的,但它也适用于减速运动、曲线运动和变力对物体做功的情况。

②动能定理对应的是一个过程,并且它只涉及到物体初末态的动能和整个过程中合外力的功,它不涉及物体运动过程中的加速度、时间和中间状态的速度、动能,因此用它处理问题比较方便。

动能定理与机械能守恒定律的区别

动能定理与机械能守恒定律的区别

动能定理和机械能守恒的区别:
1、定义不同:动能定理是描述物体动能变化的量与合外力对物体所做的功的关系,机械能守恒定理表示的是若物体只受到重力或弹力做功,则物体的动能和势能相互转化,而总的机械能保持不变。

2、表达式不同:动能定理的表达式为:W=(1/2)mv1²-(1/2)mv0²,机械能守恒定理的表达式为:Ek0+Ep0=Ek1+Ep1。

3、适用范围不同:动能定理适用于各种情况下的做功,机械能守恒定理只使用于重力或弹力做功时。

机械能守恒定律:在只有重力或弹力做功的物体系统内(或者不受其他外力的作用下),物体系统的动能和势能(包括重力势能和弹性势能)发生相互转化,但机械能的总能量保持不变。

这个规律叫做机械能守恒定律。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

机械能守恒定律
1.由物体间的相互作用和物体间的相对位置决定的能叫做势能.如重力势能、弹性势能、分子势能、电势能等.
(1)物体由于受到重力作用而具有重力势能,表达式为 E P=一mgh.式中h是物体到零重力势能面的高度.(2)重力势能是物体与地球系统共有的.只有在零势能参考面确定之后,物体的重力势能才有确定的值,若物体在零势能参考面上方高 h处其重力势能为 E P=一mgh,若物体在零势能参考面下方低h处其重力势能为 E P=一mgh,“一”不表示方向,表示比零势能参考面的势能小,显然零势能参考面选择的不同,同一物体在同一位置的重力势能的多少也就不同,所以重力势能是相对的.通常在不明确指出的情况下,都是以地面为零势面的.但应特别注意的是,当物体的位置改变时,其重力势能的变化量与零势面如何选取无关.在实际问题中我们更会关心的是重力势能的变化量.
(3)弹性势能,发生弹性形变的物体而具有的势能.高中阶段不要求具体利用公式计算弹性势能,但往往要根据功能关系利用其他形式能量的变化来求得弹性势能的变化或某位置的弹性势能.
2.重力做功与重力势能的关系:重力做功等于重力势能的减少量W G=ΔE P减=E P初一E P末,克服重力做功等于重力势能的增加量W克=ΔE P增=E P末—E P初
特别应注意:重力做功只能使重力势能与动能相互转化,不能引起物体机械能的变化.
3、动能和势能(重力势能与弹性势能)统称为机械能.
二、机械能守恒定律
1、内容:在只有重力(和弹簧的弹力)做功的情况下,物体的动能和势能发生相互转化,但机械能的总量保持不变.
2.机械能守恒的条件
(1)做功角度:对某一物体,若只有重力(或弹簧弹力)做功,其他力不做功(或其他力做功的代数和为零),则该物体机械能守恒.
(2)能转化角度:对某一系统,物体间只有动能和重力势能及弹性势能的相互转化,系统和外界没有发生机械能的传递,机械能也没有转变为其他形式的能,则系统机械能守恒.
3.表达形式:E K1+E pl=E k2+E P2
(1)我们解题时往往选择的是与题目所述条件或所求结果相关的某两个状态或某几个状态建立方程式.此表达式中E P是相对的.建立方程时必须选择合适的零势能参考面.且每一状态的E P都应是对同一参考面而言的.(2)其他表达方式,ΔE P=一ΔE K,系统重力势能的增量等于系统动能的减少量.
(3)ΔE a=一ΔE b,将系统分为a、b两部分,a部分机械能的增量等于另一部分b的机械能的减少量,
三、判断机械能是否守恒
首先应特别提醒注意的是,机械能守恒的条件绝不是合外力的功等于零,更不是合外力等于零,例如
水平飞来的子弹打入静止在光滑水平面上的木块内的过程中,合外力的功及合外力都是零,但系统在克服内部阻力做功,将部分机械能转化为内能,因而机械能的总量在减少.
(1)用做功来判断:分析物体或物体受力情况(包括内力和外力),明确各力做功的情况,若对物体或系统只有重力或弹力做功,没有其他力做功或其他力做功的代数和为零,则机械能守恒;
(2)用能量转化来判定:若物体系中只有动能和势能的相互转化而无机械能与其他形式的能的转化,则物体系机械能守恒.
(3)对一些绳子突然绷紧,物体间非弹性碰撞等除非题目的特别说明,机械能必定不守恒,完全非弹性碰撞过程机械能不守恒
说明:1.条件中的重力与弹力做功是指系统内重力弹力做功.对于某个物体系统包括外力和内力,只有重力或弹簧的弹力作功,其他力不做功或者其他力的功的代数和等于零,则该系统的机械能守恒,也就是说重力做功或弹力做功不能引起机械能与其他形式的能的转化,只能使系统内的动能和势能相互转化.如图5-50所示,光滑水平面上,
A与L1、L2二弹簧相连,B与弹簧L2相连,外力向左推B使L1、L2被压缩,当撤去外力后,A、L2、B
这个系统机械能不守恒,因为L I对A的弹力是这个系统外的弹力,所以A、L2、B这个系统机械能不
守恒.但对L I、A、L2、B这个系统机械能就守恒,因为此时L1对A的弹力做功属系统内部弹力做功.
2.只有系统内部重力弹力做功,其它力都不做功,这里其它力合外力不为零,只要不做功,机械能仍
守恒,即对于物体系统只有动能与势能的相互转化,而无机械能与其他形式转化(如系统无滑动摩擦和
介质阻力,无电磁感应过程等等),则系统的机械能守恒,如图5-51所示光滑水平面上A与弹簧相连,
当弹簧被压缩后撤去外力弹开的过程,B相对A没有发生相对滑动,A、B之间有相互作用的力,但对弹簧A、B物体组成的系统机械能守恒.
3.当除了系统内重力弹力以外的力做了功,但做功的代数和为零,但系统的机械能不一定守恒.如图
5—52所示,物体m在速度为v0时受到外力F作用,经时间t速度变为v t.(v t>v0)撤去外力,由于
摩擦力的作用经时间t/速度大小又为v0,这一过程中外力做功代数和为零,但是物体m的机械能不守
恒。

四.机械能守恒定律与动量守恒定律的区别:
动量守恒是矢量守恒,守恒条件是从力的角度,即不受外力或外力的和为零。

机械能守恒是标量守恒,守恒条件是从功的角度,即除重力、弹力做功外其他力不做功。

确定动量是否守恒应分析外力的和是否为零,确定系统机械能是否守恒应分析外力和内力做功,看是否只有重力、系统内弹力做功。

还应注意,外力的和为零和外力不做功是两个不同的概念。

所以,系统机械能守恒时动量不一定守恒;动量守恒时机械能也不一定守恒。

判定系统动量,机械能是否守恒的关键是明确守恒条件和确定哪个过程,
五.机械能守恒定律与动能定理的区别
机械能守恒定律反映的是物体初、末状态的机械能间关系,且守恒是有条件的,而动能定理揭示的是物体动能的变化跟引起这种变化的合外力的功间关系,既关心初末状态的动能,也必须认真分析对应这两个状态间经历的过程中做功情况.
1、单个物体在变速运动中的机械能守恒问题
2、系统机械能守恒问题
点评(1)对绳索、链条这类的物体,由于在考查过程中常发生形变,其重心位置对物体来说,不是固定不变的,能否确定其重心的位里则是解决这类问题的关键,顺便指出的是均匀质量分布的规则物体常以重心的位置来确定物体的重力势能.此题初态的重心位置不在滑轮的顶点,由于滑轮很小,可视作对折来求重心,也可分段考虑求出各部分的重力势能后求出代数和作为总的重力势能.至于零势能参考面可任意选取,但以系统初末态重力势能便于表示为宜.
(2)此题也可以用等效法求解,铁链脱离滑轮时重力势能减少,等效为一半铁链至另一半下端时重力势能的减少,然后利用ΔE P=-ΔE K求解,留给同学们思考.。

相关文档
最新文档