201x-201x版高中数学第三章柯西不等式与排序不等式本讲整合新人教A版选修
人教版高中数学选修第三讲--柯西不等式与排序不等式ppt课件

补充例 3:已知 a 1 b2 b 1 a2 1, 求证: a2 b2 1 。
证明:由柯西不等式,得
a 1 b2 b 1 a2 ≤ a2 1 a2 b2 1 b2 1
当且仅当
b
1 b2 时,上式取等号,
分析: 设A
C b12
a12
b22
a
2 2
bn2,an2则 ,B不等a式 1b1就是 a2AbC2 Ba2
n
bn
构造二次函数
f ( x) (a12 a22 an2 ) x 2 2(a1b1 a 2b2 anbn ) x
(b12 b22 bn2 ) 又f ( x) (a1 x b1 )2 (a2 x b2 )2 (an x bn )2 0
思考:阅读课本第 31 页探究内容.
由 a2 b2 ≥ 2ab 两个实数的平方和与乘积 的 大小 关系 ,类 比考 虑与 下面 式子 有关 的有什 么不等关系:
设 a,b, c为, d任意实数.
(a2 b2 )(c2 d 2 )
联想
一、二维形式的柯西不等式
定 理1 (二 维 形 式 的 柯 西 不 等 式) 若a, b, c, d都 是 实 数, 则 当 且 仅 当ad bc时, 等 号 成 立.
小结:
(1)二 维 形 式 的 柯 西 不 等 式 (a2 b2 )(c2 d 2 ) (ac bd )2 (a, b, c, d R) 当且仅当ad bc时, 等号成立.
(2) a 2 b2 c 2 d 2 ac bd (3) a 2 b2 c 2 d 2 ac bd
高中数学 第三讲 柯西不等式与排序不等式 二 一般形式的柯西不等式练习 新人教A版选修4-5-新人教

二 一般形式的柯西不等式,[学生用书P45])[A 基础达标]1.设a ,b ,c 为正数,且a +b +4c =1,则a +b +2c 的最大值为( ) A .102B .10C .210D .310解析:选A.由柯西不等式,得(a +b +2c )2≤⎣⎢⎡⎦⎥⎤12+12+⎝ ⎛⎭⎪⎫222[(a )2+(b )2+(4c )2] =52×1=52, 所以a +b +2c ≤52=102,当且仅当a =b =22c 时,等号成立.故选A. 2.已知a 21+a 22+…+a 2n =1,x 21+x 22+…+x 2n =1,则a 1x 1+a 2x 2+…+a n x n 的最大值为( ) A .1 B .2 C .-1D .不确定解析:选A.因为(a 1x 1+a 2x 2+…+a n x n )2≤(a 21+a 22+…+a 2n )(x 21+x 22+…+x 2n )=1×1=1, 当且仅当a i =kx i (i =1,2,…,n )时,等号成立, 所以a 1x 1+a 2x 2+…+a n x n 的最大值是1.故选A.3.已知x 2+3y 2+4z 2=2,则|x +3y +4z |的最大值为( ) A .2 B .4 C .6D .8解析:选B.由柯西不等式知(x 2+3y 2+4z 2)(1+3+4)≥(x +3y +4z )2, 又x 2+3y 2+4z 2=2所以2×8≥(x +3y +4z )2. 所以|x +3y +4z |≤4. 当且仅当x =3y 3=2z 2,即x =y =z =12时取等号.4.设a ,b ,c ∈R +,a +b +c =6,则1a +4b +9c的最小值为( )A .1B .4C .6D .9解析:选C.由柯西不等式得(a +b +c )⎝ ⎛⎭⎪⎫1a +4b +9c=[(a )2+(b )2+(c )2] ·⎣⎢⎡⎦⎥⎤⎝⎛⎭⎪⎫1a 2+⎝⎛⎭⎪⎫4b 2+⎝⎛⎭⎪⎫9c 2 ≥⎝⎛⎭⎪⎫a ·1a +b ·2b +c ·3c 2=36.即6⎝ ⎛⎭⎪⎫1a +4b +9c ≥36.所以1a +4b +9c≥6.故选C.5.已知实数x ,y ,z 满足2x -y -2z -6=0,x 2+y 2+z 2≤4,则2x +y +z =( ) A .13 B .23 C .53D .2解析:选B.因为实数x ,y ,z 满足2x -y -2z -6=0,所以2x -y -2z =6. 由柯西不等式可得(x 2+y 2+z 2)[22+(-1)2+(-2)2]≥(2x -y -2z )2=36, 所以x 2+y 2+z 2≥4.再根据x 2+y 2+z 2≤4,可得x 2+y 2+z 2=4.故有x 2=y -1=z-2,所以x =-2y ,z =2y .再把x =-2y ,z =2y 代入2x -y -2z -6=0,求得y =-23,则2x +y +z =-4y +y +2y =-y =23.6.已知a ,b ,c ∈R +,a +2b +3c =6,则a 2+4b 2+9c 2的最小值为________. 解析:因为a +2b +3c =6,所以1×a +1×2b +1×3c =6.所以(a 2+4b 2+9c 2)(12+12+12)≥(a +2b +3c )2=36,即a 2+4b 2+9c 2≥12.当且仅当1a=12b =13c ,即a =2,b =1,c =23时取等号. 答案:127.已知2x +3y +z =8,则x 2+y 2+z 2取得最小值时,x ,y ,z 形成的点(x ,y ,z )=________. 解析:由柯西不等式(22+32+12)(x 2+y 2+z 2)≥(2x +3y +z )2,即x 2+y 2+z 2≥8214=327.当且仅当x 2=y3=z 时等号成立.又2x +3y +z =8,解得:x =87,y =127,z =47,所求点为⎝ ⎛⎭⎪⎫87,127,47. 答案:⎝ ⎛⎭⎪⎫87,127,47 8.已知x ,y ,z ∈R +,x +y +z =1,则1x +4y +9z的最小值为________.解析:利用柯西不等式,因为(x +y +z )⎝ ⎛⎭⎪⎫1x +4y +9z ≥⎝ ⎛⎭⎪⎫x ·1x +y ·2y +z ·3z 2=36,所以1x +4y +9z ≥36,当且仅当x =y 2=z 3,即x =16,y =13,z =12时,等号成立.综上可知,1x +4y +9z的最小值为36.答案:369.设x +y +z =1,求H =2x 2+3y 2+z 2的最小值. 解:因为x +y +z =12·2x +13·3y +1·z , 所以由柯西不等式得: (x +y +z )2=⎝ ⎛⎭⎪⎫12·2x +13·3y +1·z 2≤⎝ ⎛⎭⎪⎫12+13+1·(2x 2+3y 2+z 2),即116·H ≥1,解得H ≥611,等号成立的条件为⎩⎪⎨⎪⎧x +y +z =1.2x 12=3y 13=z1,解得x = 311,y =211,z =611.此时,H =611. 综上所述,H 的最小值为611.10.已知|x +2y +3z |≥4(x ,y ,z ∈R ).(1)求x 2+y 2+z 2的最小值;(2)若|a +2|≤72(x 2+y 2+z 2)对满足条件的一切实数x ,y ,z 恒成立,某某数a 的取值X围.解:(1)因为(x +2y +3z )2≤(12+22+32)·(x 2+y 2+z 2),且|x +2y +3z |≥4(x ,y ,z ∈R ),所以x 2+y 2+z 2≥87,当且仅当x 1=y 2=z 3时取等号.即x 2+y 2+z 2的最小值为87.(2)因为x 2+y 2+z 2的最小值为87,所以|a +2|≤72×87=4,所以-4≤a +2≤4, 解得-6≤a ≤2,即a 的取值X 围为[-6,2].[B 能力提升]1.设a ,b ,c ,x ,y ,z 是正数,且a 2+b 2+c 2=10,x 2+y 2+z 2=40,ax +by +cz =20,则a +b +cx +y +z=( )A .14B .13C .12D .34解析:选C.由柯西不等式得,(a 2+b 2+c 2)·⎝ ⎛⎭⎪⎫14x 2+14y 2+14z 2≥⎝ ⎛⎭⎪⎫12ax +12by +12cz 2,当且仅当a 12x =b 12y =c12z 时等号成立.因为a 2+b 2+c 2=10,x 2+y 2+z 2=40,ax +by +cz =20,所以等号成立.所以a 12x =b 12y =c12z . 所以a +b +c x +y +z =12.故选C.2.边长为a ,b ,c 的三角形ABC ,其面积为14,外接圆半径R 为1,若s =a +b +c ,t =1a +1b +1c,则s 与t 的大小关系是________. 解析:由已知得12ab sin C =14,csin C =2R =2.所以abc =1,所以1a +1b +1c=ab +bc +ca ,由柯西不等式得⎝ ⎛⎭⎪⎫1a +1b +1c (ab +bc +ca )≥(b +c +a )2,所以⎝ ⎛⎭⎪⎫1a +1b +1c 2≥(a +b +c )2.即1a +1b +1c≥a +b +c .当且仅当a =b =c =1时等号成立. 当a =b =c 时,三角形ABC 的面积为34,不满足题意,所以s <t . 答案:s <t3.设x 1、x 2、…、x n ∈R +且x 1+x 2+…+x n =1,求证:x 211+x 1+x 221+x 2+…+x 2n1+x n ≥1n +1.证明:(n +1)(x 211+x 1+x 221+x 2+…+x 2n1+x n)=(1+x 1+1+x 2+…+1+x n )(x 211+x 1+x 221+x 2+…+x 2n1+x n)=[(1+x 1)2+(1+x 2)2+…+(1+x n )2]·[(x 11+x 1)2+(x 21+x 2)2+…+(x n1+x n)2]≥(1+x 1·x 11+x 1+1+x 2·x 21+x 2+…+1+x n ·x n1+x n)2=(x 1+x 2+…+x n )2=1,所以x 211+x 1+x 221+x 2+…+x 2n1+x n ≥1n +1.4.已知正数x ,y ,z 满足5x +4y +3z =10. (1)求证:25x 24y +3z +16y 23z +5x +9z 25x +4y ≥5.(2)求9x 2+9y 2+z 2的最小值.解:(1)证明:根据柯西不等式,得[(4y +3z )+(3z +5x )+(5x +4y )]·⎝ ⎛⎭⎪⎫25x 24y +3z +16y 23z +5x +9z 25x +4y ≥(5x +4y +3z )2,当且仅当4y +3z 5x =3z +5x 4y =5x +4y 3z 时,等号成立,因为5x +4y +3z =10,所以25x 24y +3z +16y 23z +5x +9z 25x +4y ≥10220=5.(2)根据基本不等式,得9x 2+9y 2+z 2≥29x 2·9y 2+z 2=2·3x 2+y 2+z 2,当且仅当x 2=y 2+z 2时,等号成立.根据柯西不等式,得(x 2+y 2+z 2)(52+42+32)≥(5x +4y +3z )2=100,即x 2+y 2+z 2≥2,当且仅当x 5=y 4=z 3=15时,等号成立.综上,9x 2+9y 2+z 2≥2×32=18.。
新人教A版高中数学第三讲柯西不等式与排序不等式一般形式的柯西不等式教案选修

一、教学目标1.掌握三维形式和多维形式的柯西不等式.2.会利用一般形式的柯西不等式解决简单问题.二、课时安排1课时三、教学重点1.掌握三维形式和多维形式的柯西不等式.2.会利用一般形式的柯西不等式解决简单问题.四、教学难点1.掌握三维形式和多维形式的柯西不等式.2.会利用一般形式的柯西不等式解决简单问题.五、教学过程(一)导入新课已知实数x,y,z满足x+2y+z=1,求t=x2+4y2+z2的最小值.【解】由柯西不等式得(x2+4y2+z2)(1+1+1)≥(x+2y+z)2.∵x+2y+z=1,∴3(x2+4y2+z2)≥1,即x2+4y2+z2≥错误!.当且仅当x=2y=z=错误!,即x=错误!,y=错误!,z=错误!时等号成立.故x2+4y2+z2的最小值为错误!.(二)讲授新课教材整理1三维形式的柯西不等式设a1,a2,a3,b1,b2,b3∈R,则(a错误!+a错误!+a错误!)·(b错误!+b错误!+b错误!)≥.当且仅当或存在一个数k,使得a i=kb i(i=1,2,3)时,等号成立.我们把该不等式称为三维形式的柯西不等式.教材整理2一般形式的柯西不等式设a1,a2,a3,…,a n,b1,b2,b3,…,b n是实数,则(a错误!+a错误!+…+a错误!)(b错误!+b错误!+…+b错误!)≥ .当且仅当b i=0(i=1,2,…,n)或存在一个数k,使得a i=(i=1,2,…,n)时,等号成立.(三)重难点精讲题型一、利用柯西不等式求最值例1已知a,b,c∈(0,+∞),错误!+错误!+错误!=2,求a+2b+3c的最小值及取得最小值时a,b,c的值.【精彩点拨】由于错误!+错误!+错误!=2,可考虑把已知条件与待求式子结合起来,利用柯西不等式求解.【自主解答】∵a,b,c∈(0,+∞),∴错误!·(a+2b+3c)=[错误!错误!+错误!错误!+错误!错误!][(错误!)2+(错误!)2+(错误!)2]≥错误!错误!=(1+2+3)2=36.又错误!+错误!+错误!=2,∴a+2b+3c≥18,当且仅当a=b=c=3时等号成立,综上,当a=b=c=3时,a+2b+3c取得最小值18.规律总结:利用柯西不等式求最值时,关键是对原目标函数进行配凑,以保证出现常数结果.同时,要注意等号成立的条件.[再练一题]1.已知x+4y+9z=1,求x2+y2+z2的最小值.【解】由柯西不等式,知(x+4y+9z)2≤(12+42+92)(x2+y2+z2)=98(x2+y2+z2).又x+4y+9z=1,∴x2+y2+z2≥错误!,(*)当且仅当x=错误!=错误!时,等号成立,∴x=错误!,y=错误!,z=错误!时,(*)取等号.因此,x2+y2+z2的最小值为错误!.题型二、运用柯西不等式求参数的取值范围例2已知正数x,y,z满足x+y+z=xyz,且不等式错误!+错误!+错误!≤λ恒成立,求λ的取值范围.【精彩点拨】“恒成立”问题需求错误!+错误!+错误!的最大值,设法应用柯西不等式求最值.【自主解答】∵x>0,y>0,z>0.且x+y+z=xyz.∴错误!+错误!+错误!=1.又错误!+错误!+错误!≤错误!错误!=错误!错误!≤错误!当且仅当x=y=z,即x=y=z=错误!时等号成立.∴错误!+错误!+错误!的最大值为错误!.故错误!+错误!+错误!≤λ恒成立时,应有λ≥错误!.因此λ的取值范围是错误!.规律总结:应用柯西不等式,首先要对不等式形式、条件熟练掌握,然后根据题目的特点“创造性”应用定理.[再练一题]2.已知实数a,b,c,d满足a+b+c+d=3,a2+2b2+3c2+6d2=5,试求a的取值范围.【解】由a+b+c+d=3,得b+c+d=3—a,由a2+2b2+3c2+6d2=5,得2b2+3c2+6d2=5—a2,(2b2+3c2+6d2)错误!≥(b+c+d)2,即2b2+3c2+6d2≥(b+c+d)2.由条件可得,5—a2≥(3—a)2,解得1≤a≤2,所以实数a的取值范围是[1,2].题型三、利用柯西不等式证明不等式例3已知a,b,c∈R+,求证:错误!错误!+错误!+错误!≥9.【精彩点拨】对应三维形式的柯西不等式,a1=错误!,a2=错误!,a3=错误!,b1=错误!,b2=错误!,b3=错误!,而a1b1=a2b2=a3b3=1,因而得证.【自主解答】∵a,b,c∈R+,由柯西不等式,知错误!错误!=[错误!错误!+错误!错误!+错误!错误!]×[错误!错误!+错误!错误!+错误!错误!]≥错误!错误!=(1+1+1)2=9,∴错误!错误!≥9.规律总结:1.当a i,b i是正数时,柯西不等式变形为(a1+a2+…+a n)(b1+b2+…+b n)≥(错误!+错误!+…+错误!)2.2.本题证明的关键在于构造两组数,创造使用柯西不等式的条件.在运用柯西不等式时,要善于从整体上把握柯西不等式的结构特征,正确配凑出公式两侧的数组.[再练一题]3.已知函数f(x)=m—|x—2|,m∈R,且f(x+2)≥0的解集为[—1,1].(1)求m的值;(2)若a,b,c∈R+,且错误!+错误!+错误!=m,求证:a+2b+3c≥9.【解】(1)因为f(x+2)=m—|x|,f(x+2)≥0等价于|x|≤m.由|x|≤m有解,得m≥0,且其解集为{x|—m≤x≤m}.又f(x+2)≥0的解集为[—1,1],故m=1.(2)证明:由(1)知错误!+错误!+错误!=1.又a,b,c∈R+,由柯西不等式得a+2b+3c =(a+2b+3c)错误!≥错误!错误!=9.(四)归纳小结一般形式的柯西不等式—错误!(五)随堂检测1.设a=(—2,1,2),|b|=6,则a·b的最小值为()A.18 B.6 C.—18 D.12【解析】|a·b|≤|a||b|,∴|a·b|≤18.∴—18≤a·b≤18,当a,b反向时,a·b最小,最小值为—18.【答案】C2.若a错误!+a错误!+…+a错误!=1,b错误!+b错误!+…+b错误!=4,则a1b1+a2b2+…+a n b n的取值范围是()A.(—∞,2)B.[—2,2] C.(—∞,2] D.[—1,1]【解析】∵(a错误!+a错误!+…+a错误!)(b错误!+b错误!+…+b错误!)≥(a1b1+a2b2+…+a n b n)2,∴(a1b1+a2b2+…+a n b n)2≤4,∴|a1b1+a2b2+…+a n b n|≤2,即—2≤a1b1+a2b2+…+a n b n≤2,当且仅当a i=错误!b i(i=1,2,…,n)时,右边等号成立;当且仅当a i=—错误!b i(i=1,2,…,n)时,左边等号成立,故选B.【答案】B3.设a,b,m,n∈R,且a2+b2=5,ma+nb=5,则错误!的最小值为________.【解析】根据柯西不等式(ma+nb)2≤(a2+b2)(m2+n2),得25≤5(m2+n2),m2+n2≥5,错误!的最小值为错误!.【答案】错误!六、板书设计3.2一般形式的柯西不等式七、作业布置同步练习:3.2一般形式的柯西不等式八、教学反思。
2019版数学人教A版选修4-5课件:第三讲 柯西不等式与排序不等式 本讲整合

aA+bB+cC≥cA+aB+bC.
相加,得3(aA+bB+cC)≥(a+b+c)(A+B+C)=π(a+b+c),
+ + π
得
≥ ,①
3
++
第八页,编辑于星期日:点 四十七分。
-8-
本讲整合
专题一
专题二
知识建构
专题三
综合应用
真题放送
专题四
当且仅当 1 = 1 = 1 时,等号成立.
1
1
故当 xP=yP= 3 时,面积 S 最小,且最小值为 6.
-15-
第十五页,编辑于星期日:点 四十七分。
本讲整合
1
知识建构
综合应用
真题放送
2
1(2018江苏,21D)若x,y,z为实数,且x+2y+2z=6,求x2+y2+z2的最小值.
解:由柯西不等式,得(x2+y2+z2)(12+22+22)≥(x+2y+2z)2.
柯西不等式的形式进行转化.
第三页,编辑于星期日:点 四十七分。
-3-
本讲整合
专题一
专题二
知识建构
专题三
综合应用
真题放送
专题四
应用1已知实数a,b,c,d,e满足a+b+c+d+e=8,a2+b2+c2+d2+e2=16,求e
的取值范围.
提示:由a2+b2+c2+d2+e2联想到应用柯西不等式.
高中数学第三讲柯西不等式与排序不等式二一般形式的柯西不等式讲义含解析新人教A版选修4_5

二 一般形式的柯西不等式与推广,其特点可类比二维形式的柯西不等式来总结,左边是平方和的积,右边是积的和的平方.在使用时,关键是构造出符合柯西不等式的结构形式.[例1] 设x 1,x 2,…,x n 都是正数,求证:x 1+x 2+…+x n ≥x 1+x 2+…+x n.[思路点拨] 根据一般柯西不等式的特点,构造两组数的积的形式,利用柯西不等式证明.[证明] ∵(x 1+x 2+…+x n )⎝ ⎛⎭⎪⎫1x 1+1x 2+…+1x n=[(x 1)2+(x 2)2+…+(x n )2]·⎣⎢⎡⎦⎥⎤⎝⎛⎭⎪⎫1x 12+⎝ ⎛⎭⎪⎫1x 22+…+⎝ ⎛⎭⎪⎫1x n 2≥ ⎝⎛⎭⎪⎫x 1·1x 1+x 2·1x 2+…+x n ·1x n 2=n 2,∴1x 1+1x 2+…+1x n ≥n 2x 1+x 2+…+x n.柯西不等式的结构特征可以记为:(a 1+a 2+…+a n )·(b 1+b 2+…+b n )≥(a 1b 1+a 2b 2+…+a n b n )2.其中a i ,b i ∈R +(i =1,2,…,n ),在使用柯西不等式时要善于从整体上把握柯西不等式的结构特征,正确地配凑出公式两侧的数是解决问题的关键.1.设a ,b ,c 为正数,且不全相等. 求证:2a +b +2b +c +2c +a >9a +b +c. 证明:构造两组数a +b ,b +c ,c +a ;1a +b,1b +c,1c +a,则由柯西不等式得(a +b +b +c +c +a )⎝⎛⎭⎪⎫1a +b +1b +c +1c +a ≥(1+1+1)2,①即2(a +b +c )⎝⎛⎭⎪⎫1a +b +1b +c +1c +a ≥9,于是2a +b +2b +c +2c +a ≥9a +b +c. 由柯西不等式知,①中有等号成立⇔a +b1a +b=b +c1b +c=c +a1c +a⇔a +b =b +c =c +a ⇔a =b =c .因为a ,b ,c 不全相等,故①中等号不成立, 于是2a +b +2b +c +2c +a >9a +b +c.[例2] (1)+求 1x + 4y + 9z的最小值;(2)设2x +3y +5z =29,求函数μ=2x +1+3y +4+5z +6的最大值. [思路点拨] (1)利用1x +4y +9z=⎝ ⎛⎭⎪⎫1x +4y +98(x +y +z ). (2)利用(2x +1+3y +4+5z +6)2= (1×2x +1+1×3y +4+1×5z +6)2. [解] (1)∵x +y +z =1, ∴1x +4y +9z =⎝ ⎛⎭⎪⎫1x +4y +9z (x +y +z );≥⎝⎛⎭⎪⎫1x·x +2y·y +3z·z 2=(1+2+3)2=36. 当且仅当x =y 2=z3,即x =16,y =13,z =12时取等号.所以1x +4y +9z的最小值为36.(2)根据柯西不等式,有(2x +1×1+3y +4×1+5z +6×1)2≤[(2x +1)+(3y +4)+(5z +6)]·(1+1+1) =3×(2x +3y +5z +11) =3×40=120.故2x +1+3y +4+5z +6≤230, 当且仅当2x +1=3y +4=5z +6, 即x =376,y =289,z =2215时等号成立.此时μmax=230.利用柯西不等式求最值时,关键是对原目标函数进行配凑,以保证出现常数结果.同时,要注意等号成立的条件.2.已知x ,y ,z ∈R ,且x -2y +2z =5,则(x +5)2+(y -1)2+(z +3)2的最小值是( ) A .20 B .25 C .36D .47解析:选C ∵[(x +5)2+(y -1)2+(z +3)2][12+(-2)2+22]≥[(x +5)+(-2)(y -1)+2(z +3)]2=324,当且仅当x +51=y -1-2=z +32,即x =-3,y =-3,z =1时取等号.故(x +5)2+(y -1)2+(z +3)2的最小值是36.3.若2x +3y +4z =11,则x 2+y 2+z 2的最小值为________. 解析:∵2x +3y +4z =11,∴由柯西不等式,得 (x 2+y 2+z 2)(4+9+16)≥(2x +3y +4z )2, 故x 2+y 2+z 2≥12129,当且仅当x 2=y 3=z 4,即x =2229,y =3329,z =4429时取等号.答案:121294.把一根长为12 m 的细绳截成三段,各围成三个正方形.问:怎样截法,才能使围成的三个正方形面积之和S 最小,并求此最小值.解:设三段绳子的长分别为x ,y ,z ,则x +y +z =12,三个正方形的边长分别为x 4,y4,z4均为正数,三个正方形面积之和:S =⎝ ⎛⎭⎪⎫x 42+⎝ ⎛⎭⎪⎫y 42+⎝ ⎛⎭⎪⎫z 42=116(x 2+y 2+z 2). ∵(12+12+12)(x 2+y 2+z 2)≥(x +y +z )2=122, 即x 2+y 2+z 2≥48.从而S ≥116×48=3. 当且仅当x 1=y 1=z1时取等号,又x +y +z =12, ∴x =y =z =4时,S min =3.故把绳子三等分时,围成的三个正方形面积之和最小,最小面积为3 m 2.1.已知a 2+b 2+c 2+d 2=5,则ab +bc +cd +ad 的最小值为( ) A .5 B .-5 C .25D .-25解析:选B (ab +bc +cd +ad )2≤(a 2+b 2+c 2+d 2)·(b 2+c 2+d 2+a 2)=25,当且仅当a =b =c =d =±52时,等号成立. ∴ab +bc +cd +bd 的最小值为-5.2.已知a 21+a 22+…+a 2n =1,x 21+x 22+…+x 2n =1,则a 1x 1+a 2x 2+…+a n x n 的最大值是( ) A .1 B .2 C .3D .4解析:选A (a 1x 1+a 2x 2+…+a n x n )2≤(a 21+a 22+…+a 2n )·(x 21+x 22+…+x 2n )=1×1=1,当且仅当x 1a 1=x 2a 2=…=x n a n=1时取等号.∴a 1x 1+a 2x 2+…+a n x n 的最大值是1.3.已知x ,y ,z ∈R +,且1x +2y +3z =1,则x +y 2+z3的最小值是( )A .5B .6C .8D .9解析:选 D x +y 2+z 3=1x +2y +3z ·⎝ ⎛⎭⎪⎫x +y 2+z 3≥1x·x +2y·y2+3z·z 32=9,当且仅当1x =2y =3z =13时等号成立.4.设a ,b ,c ,x ,y ,z 是正数,且a 2+b 2+c 2=10,x 2+y 2+z 2=40,ax +by +cz =20,则a +b +cx +y +z=( )A.14B.13C.12D.34解析:选C 由柯西不等式得,(a 2+b 2+c 2)(x 2+y 2+z 2)≥(ax +by +cz )2=400,当且仅当a x =b y =c z =12时取等号,因此有a +b +c x +y +z =12.5.已知2x +3y +z =8,则x 2+y 2+z 2取得最小值时,x ,y ,z 形成的点(x ,y ,z )=________. 解析:由柯西不等式(22+32+12)(x 2+y 2+z 2)≥(2x +3y +z )2,即x 2+y 2+z 2≥327. 当且仅当x 2=y3=z 时等号成立.又2x +3y +z =8, 解得x =87,y =127,z =47,故所求点为⎝ ⎛⎭⎪⎫87,127,47. 答案:⎝ ⎛⎭⎪⎫87,127,47 6.设a ,b ,c 为正数,则(a +b +c )⎝ ⎛⎭⎪⎫4a +9b+36c 的最小值是________.解析:(a +b +c )⎝ ⎛⎭⎪⎫4a +9b+36c=[(a )2+(b )2+(c )2]⎣⎢⎡⎦⎥⎤⎝⎛⎭⎪⎫2a 2+⎝ ⎛⎭⎪⎫3b 2+⎝ ⎛⎭⎪⎫6c 2 ≥⎝⎛⎭⎪⎫a ·2a +b ·3b +c ·6c 2=(2+3+6)2=121.当且仅当a 2=b 3=c6=k (k 为正实数)时,等号成立.答案:1217.已知实数x ,y ,z 满足3x +2y +z =1,则x 2+2y 2+3z 2的最小值为________. 解析:由柯西不等式,得[x 2+(2y )2+(3z )2]·⎣⎢⎡⎦⎥⎤32+(2)2+⎝ ⎛⎭⎪⎫132≥(3x +2y +z )2=1,所以x 2+2y 2+3z 2≥334,当且仅当x 3=2y 2=3z 13,即x =934,y =334,z =134时,等号成立,所以x 2+2y 2+3z 2的最小值为334.答案:3348.在△ABC 中,设其各边长为a ,b ,c ,外接圆半径为R ,求证:(a 2+b 2+c 2)⎝⎛⎭⎪⎫1sin 2A +1sin 2B +1sin 2C ≥36R 2.证明:∵a sin A =b sin B =csin C =2R ,∴(a 2+b 2+c 2)⎝ ⎛⎭⎪⎫1sin 2A +1sin 2B +1sin 2C≥⎝⎛⎭⎪⎫a sin A +b sin B +c sin C 2=36R 2.9.在直线5x +3y =2上求一点,使(x +2y -1)2+(3x -y +3)2取得最小值. 解:由柯西不等式得(22+12)[(x +2y -1)2+(3x -y +3)2]≥[2(x +2y -1)+(3x -y +3)]2=(5x +3y +1)2=9.∴(x +2y -1)2+(3x -y +3)2≥95.当且仅当x +2y -1=2(3x -y +3) 即5x -4y +7=0时取等号.解方程组⎩⎪⎨⎪⎧5x +3y =2,5x -4y =-7,得⎩⎪⎨⎪⎧x =-1335,y =97.故所求点的坐标为⎝ ⎛⎭⎪⎫-1335,97.10.已知函数f (x )=m -|x -2|,m ∈R ,且f (x +2)≥0的解集为[-1,1]. (1)求m 的值;(2)若a ,b ,c 为正实数,且1a +12b +13c =m ,求证:a +2b +3c ≥9.解:(1)因为f (x +2)=m -|x |, 所以f (x +2)≥0等价于|x |≤m .由|x |≤m 有解,得m ≥0,且其解集为{x |-m ≤x ≤m }, 又f (x +2)≥0的解集为[-1,1],故m =1. (2)证明:由(1)知1a +12b +13c=1,所以a +2b +3c =(a +2b +3c )⎝ ⎛⎭⎪⎫1a +12b +13c ≥⎝⎛⎭⎪⎫a ·1a +2b ·12b +3c ·13c 2=9.。
人教版高中数学选修4-5《第三讲柯西不等式与排序不等式一般形式的柯西不等式》

3 3 =3 ( x 0)
6
复习引入
设<m, n , 则m n | m | | n | cos | m n || m | | n | | cos || m | | n | | m n || m | | n | 当且仅当m // n时,等号成立. m (a, b, c), n (d , e, f ) m n ad be cf
2 2
1 1 2 (1 x 2 y ) 5 5
1 2 (当 x , y ) 5 5
4
复习引入 下面我们来做几个巩固练习: 1 2 3.设 x, y R ,且 x+2y=36,求 的最小值. x y
1 2 1 1 2 ( )( x 2 y) x y 36 x y 1 2 y 2x (1 4 ) 36 x y 1 2 y 2x (5 2 ) 36 x y
(a b c d ) (a b c d )(b c d a )
2 2 2 2 2 2 2 2 2 2 2 2
(ab bc cd da )
2 2 2 2
2
(ab bc cd da )
即 a b c d ab bc cd da
同样这个不等式也有着向量(n维向量)及几何背景, 其应用广泛。
9
一般形式的柯西不等式示例源自例 1 已知 a1 , a2 , , an 都是实数,求证: 1 2 2 2 2 (a1 a2 an ) ≤ a1 a2 an n 1 1 2 2 ( a a a ) (1 a 1 a 1 a ) 证明: 1 2 n 1 2 n n n 1 2 2 2 2 2 (1 1 12 )(a1 a2 an ) n
第3讲2一般形式的柯西不等式课件人教新课标

时等号成立.
题型探究
类型一 利用柯西不等式证明不等式 命题角度1 三维情势的柯西不等式的应用 例1 设a,b,c为正数,且不全相等. 求证:a+2 b+b+2 c+c+2 a>a+9b+c.
证明
反思与感悟 有些问题一般不具备直接应用柯西不等式的条件,可以通过: (1)构造符合柯西不等式的情势及条件,可以巧拆常数. (2)构造符合柯西不等式的情势及条件,可以重新安排各项的次序. (3)构造符合柯西不等式的情势及条件,可以改变式子的结构,从而到达使 用柯西不等式的目的. (4)构造符合柯西不等式的情势及条件,可以添项.
∴a+2b+3c的最小值为9.
1234
解析 答案
3.设 a,b,c,d 均为正实数,则(a+b+c+d)1a+b1+1c +1d的最小值为 __1_6_____.
解析 (a+b+c+d)1a+1b+1c+1d
=[(
a)2+(
b)2+(
c)2+(
d)2]·
1a2+
1b2+
1c2+
1
2
d
≥
a·1a+
a2b2+a3b3)2 ,当且仅当 b1=b2=b3=0或存在一个数 k,使得 ai=kbi
(i=1,2,3)时等号成立.
知识点二 一般情势的柯西不等式
1.一般形式的柯西不等式 设 a1,a2,a3,…,an,b1,b2,b3,…,bn 是实数,则(a21+a22+…+a2n)(b21 +b22+…+b2n)≥ (a1b1+a2b2+…+anbn)2 . 2.柯西不等式等号成立的条件
b·1b+
c·1c+
d·1d2
高中数学第3讲柯西不等式与排序不等式3排序不等式人教A版选修4_5

[自主解答] 不妨设 0<a≤b≤c,则 a3≤b3≤c3, 0<b1c≤c1a≤a1b, 由排序原理:乱序和≤顺序和,得 a3·c1a+b3·a1b+c3·b1c≤a3·b1c+b3·c1a+c3·a1b, a3·a1b+b3·b1c+c3·c1a≤a3·b1c+b3·c1a+c3·a1b.
将上面两式相加得 a2+c b2+b2+a c2+c2+b a2≤2bac3+cba3+acb3 , 将不等式两边除以 2, 得a2+2cb2+b22+ac2+c2+2ba2≤bac3+cba3+acb3 .
在排序不等式的条件中需要限定各数值的大小关系,对于没有给 出大小关系的情况:(1)要根据各字母在不等式中地位的对称性,限 定一种大小关系.(2)若给出的字母不具有对称性,一定不能直接限 定字母的大小顺序,而要根据具体环境分类讨论.
合作探究 提素养
用排序不等式证明不等式(字母大小已定) 【例 1】 已知 a,b,c 为正数,a≥b≥c,求证: (1)b1c≥c1a≥a1b; (2)ba2c22+cb2a22+ac2b2 2≥a12+b12+c12.
[精彩点拨] 由于题目条件中已明确 a≥b≥c,故可以直接构造 两个数组.
[自主解答] (1)∵a≥b>0,于是1a≤1b. 又 c>0,∴1c>0,从而b1c≥c1a, 同理,∵b≥c>0,于是1b≤1c, ∴a>0,∴1a>0,于是得c1a≥a1b, 从而b1c≥c1a≥a1b.
即按注满时间为 4 min,5 min,6 min,8 min,10 min 依次等水,等待 的总时间最少.