第4章 傅里叶变换和系统的频域分析

合集下载

信号与系统——傅里叶变换和系统的频域分析

信号与系统——傅里叶变换和系统的频域分析

[
f1(t)
c12
f
2(t )] 2
dt
令 2 0,则误差能量
c12
2021/4/22 2021/4/22
最2 小
15 15
1
c12
t
2
t1
[t2
t1
f1 (t )
c12
f2 (t )]2
dt
0
1
t2 t1
t2 t1 c12
f12 (t )dt 2
t2 t
f1(t )
2021/4/22 2021/4/22
7 7
书中处理了各种边界条件下的热传导问题,以系统地运用三
角级数和三角积分而著称,他的学生以后把它们称为傅里叶级
数和傅里叶积分,这个名称一直沿用至今。傅里叶在书中断言
:“任意”函数(实际上要满足 一定的条件,例如分段单调)都
可以展开成三角级数,他列举大量函数并运用图形来说明函数的
直流系数
1 a0 T
t0 T f (t )dt
t0
余弦分量系数
2
an T
t0 T t0
f (t)cos(n1t)dt
正弦分量系数
2
bn T
t0 T t0
f (t)sin(n1t)dt
2021/4/22 2021/4/22
30 30
狄利赫利条件:
在一个周期内只有有限个间断点; 在一个周期内有有限个极值点; 在一个周期内函数绝对可积,即
为“对自然界的深刻研究是数学最富饶的源泉。” 这一见解已
成为数学史上强调通过实际应用发展数学的一种代表性的观点
。 2021/4/22 2021/4/22
8 8
傅立叶的两个最主要的贡献——

傅里叶变换及系统的频域分析

傅里叶变换及系统的频域分析
这样可以由周期信号的频谱推论出非周期信号的 频谱特点。
我们已经知道周期信号的周期T增大,相邻谱线 的间隔Ω变小;若周期T趋于无穷大,谱线的间隔 Ω趋于无穷小,这时离散的频谱就变为连续的频 谱。同时每条谱线的幅度也趋于无穷小。
因此我们可以初步推断出,非周期信号的频谱特 点为:连续的频谱,每条谱线的幅度接近于零。


| F ( j) | R 2 () X 2 ()

()

arctan

X () R()

R(ω)是ω的偶函数,X(ω)是ω的奇函数,
|F(j ω)|是ω的偶函数,ϕ(ω)是ω的奇函数
1 F ( j) e d j(t ())
2
1
F ( j) cos(t ())d j 1

F ( j) sin(t ())d
2
2
1
F ( j) cos(t ())d 1

F ( j) cos(t ())d
2
0
一个非周期信号f(t)可以分解为无穷多个余弦分量 cos(ωt+ϕ(ω))之和,每个分量的幅度为
由于每个函数的周期性,上面展开式在 区间上都成立。
含义:任意周期信号f(t)可以分解为无穷多个具有不同
频率的复指数信号
之和,各分量的幅度为Fn
将例题4-1中f(t)展开为指数形式的傅里叶级 数
首先求出傅里叶系数Fn
傅里叶级数:
利用欧拉公式
a 可以建立Fn与 n、bn、An的关系
a a a 1= 3= 5=……=b1=b3=……=0
我们已经知道了傅里叶级数的物理含义:周期信号是由

信号与系统 吴大正 第四章 傅立叶变换和系统的频域分析

信号与系统 吴大正 第四章 傅立叶变换和系统的频域分析

4.2 傅里叶级数
3 .f(t)为奇谐函数—f(t) = –f(t±T/2) 此时 其傅里叶级数中只含奇次谐波分量,而不含偶 次谐波分量即 a0=a2=…=b2=b4=…=0
f(t) 0 T/2 T t
4.3 周期信号(Periodic Signal)的频谱
周期信号的频谱 周期矩形脉冲的频谱 从广义上说,信号的某种特征量随信号频率变化的关 系,称为信号的频谱,所画出的图形称为信号的频谱图。 周期信号的频谱是指周期信号中各次谐波幅值、相位 随频率的变化关系,即将An~ω和n~ω的关系分别画在以ω 为横轴的平面上得到的两个图,分别称为振幅频谱图和相 位频谱图。因为n≥0,所以称这种频谱为单边谱。 也可画|Fn|~ω和n~ω的关系,称为双边谱。若Fn为实 数,也可直接画Fn 。
“非周期信号都可用正弦信号的加权积分表示”
——傅里叶的第二个主要论点
4.2 傅里叶级数
周期信号展开的无穷级数成为傅里叶级数,分“三角型傅里 叶级数”和“指数型傅里叶级数”,只有当周期信号满足狄 里赫利条件时,才能展开成傅里叶级数。 狄利赫利条件(Dirichlet condition)

t 0 T
2 T bn 2T f (t )sin(nt ) d t T 2
任意函数f(t)都可分解为奇函数和偶函数两部分, 由于f(-t) = -fod(t) + fev(t) ,所以 f (t ) f (t ) f (t ) f (t ) f e v (t ) f od (t ) 2 2
4.2 傅里叶级数
三角形式 指数形式 奇偶函数的傅里叶级数
e jx e jx 由于 cos x 2
A0 f (t ) An cos( n t n ) 2 n 1

第章_傅里叶变换和系统的频谱分析

第章_傅里叶变换和系统的频谱分析

2019/7/26
3
第四章 傅里叶变换和系统频域分析 4.1 信号分解为正交函数
信号的分量和信号的分解
正交信号空间
设n个函数 1(t),2(t), n (t) 构成一函数集,如在区间 (t1, t2 )
内满足下列特性:
t2 t1
i
(t)
j
(t)dt

0
t2 t1
i2
(t
)dt

Ki
(i j)
——常数
则称此函数集为正交函数集,这n

i
(t
)
构成一个n维
正交信号空间。
任意一个代表信号的函数 f(t),在区间
(t ,t ) 内可以用 12
组成信号空间的这n个正交函数的线性组合来近似。
n
f (t) c (t) ii
i 1
2019/7/26
4
第四章 傅里叶变换和系统频域分析 4.1 信号分解为正交函数
1822年法国数学家傅里叶(1768-1830)在研究 热传导理论时发表了“热的分析理论”著作,提出 并证明了将周期函数展开为三角函数的无穷级数的 原理。
2019/7/26
9
第四章 傅里叶变换和系统频域分析 4.2 傅里叶级数
1829年, Dirichlet给出了补充,只有当周期信号 f (t) 满足Dirichlet条件时,才能展开为傅立叶级数。 (电子技术中的周期信号大都满足条件。)
t0
cos
mt

cos
nt
d
t

T

2
,
mn0
T , m n 0
Sin 0=0 不包含在 三角函数

傅里叶变换的性质课件

傅里叶变换的性质课件

c n
1 T0
T0
2 T0
2
f ( t ) e j d0 t t d
c n
1 2
f ( t ) e j td td
F ( ) f ( t ) e j t d t
cn
1 2
F ( )d
(4―22) (4―23) (4―24) (4―25)
现将信号f(t)的傅里叶级数展开式重写如下
1sin2ft]
n
n1,3,5,
4.2 信号的频谱
4.2.1 信号频谱 上一节我们指出,信号可分解为傅里叶级数,即信号
可由系列复数指数函数加权之和构成。一般我们称这 里的复数指数函数ejnΩt为n次谐波,在该函数上所加的权 为谐波的振幅,nΩ为谐波的角频率,可以说所有的信号均 是由系列角频率不同的谐波叠加而成的(角频率可简称 为频率)。
0
t
(a)
F()
2
1
- 0
(b)
图4.8 双边指数信号及其频谱
例4―6 求单位直流信号的频谱。
解 幅度为1的单位直流信号可表示为
f(t)=1,-∞<t<∞
(4―44)
它可以看作是双边指数信号在α取极限趋近0时的 一个特例,即
1limetu(t), 0 0
[1]
[limet 0
u(t)]
lim[et
4.2.4 常见信号的频谱分析举例 例4―2求冲激信号δ(t)的频谱。 解 由频谱函数的定义式(4―28)有
F() (t)ejtdt 1
(t) 1
(4―34) (4―35)
(t)
(1)
0 (a)
F()
1
t
0
(b)

最新课件-信号与系统教学第四章傅里叶变换和系统的频域分析 推荐

最新课件-信号与系统教学第四章傅里叶变换和系统的频域分析 推荐
t2 t1
t2 t1
f
2 (t) d t
n
C
2 j
K
j
]
0
j 1
4.1 信号分解为正交函数
巴塞瓦尔公式
当 n ,有最小均方误差为零, 2 0 ,则
t2 t1
f
2 (t) d t
C
2 j
K
j
j 1
第j个正交分 量的能量
信号的能量 各正交分量的能量和
Parseval公式表明:在区间(t1,t2)上, f(t)所含能量恒等 于f(t)在完备正交函数集中分解的各正交分量能量的总
n
arctan
bn an
bn An sin n ,
上式表明,周期信号可分解为直流和许多余弦分量。
A0/2为直流分量;A1cos(t+1)称为基波或一次谐波, 它的角频率与原周期信号相同;Ancos(nt+n)称为n 次谐波,其频率是基波的n倍。
频率
1/T
4.2 傅里叶级数
设周期信号f(t),其周期为T,角频率=2/T,当满足
狄里赫利(Dirichlet)条件时,它可分解为如下三角级
数—— 称为f(t)的傅里叶级数三角形式
f
(t)
a0 2
an
n1
cos(nt)
bn
n1
sin(nt)
傅里叶系数
由Ci表达式 确定
an
2 T
T
2 T
2
f (t) cos(nt) d t
A C1v x C2 v y
y C2vy
vx , v y 为二维“正交矢量集”
如三维空间矢量B ,可表示为:
B C1v x C2v y C3v z

信号系统 第四章总结

信号系统  第四章总结

第四章:傅立叶变换和系统的频域一、信号分解为正交函数 (一)、完备正交函数 1正交函数:实正交函数:设φ1(t) φ2(t)是定义在(t 1,t 2)内的两个实函数,若∫φ1(t ),t 2t 1φ2(t)dt =0,则称是函数的正交条件。

若∫φ1(t),t 2t 1φ2*dt =∫φ1*(t),t 2t 1φ2dt =0满足实函数的正交条件,则称φ1(t) φ2(t)在(t1,t 2)内正交。

复函数正交::设φ1(t) φ2(t)是定义在(t 1,t 2)内的两个复函数,若,则称是复函数的共轭条件。

则称φ1(t) φ2(t)在(t 1,t 2)内正交。

2、正交函数集若n 个实函数{φi (t )}(i=1,2,3,…….)在区间(t 1,t 2)内满足实函数正交条件∫φi (t ),t 2t 1φj(t)dt ={0,i ≠jK i ,i =j,则{φi (t )}(i=1,2,3,…….)在(t 1,t 2)内是正交实函数。

≈复正交函数集:若n 个复函数{φi (t )}(i=1,2,3,…….)在区间(t 1,t 2)内满足复函数正交条件∫φi (t ),t 2t 1φj*(t)dt ={0,i ≠jK i ,i =j,则{φi (t )}(i=1,2,3,…….)在(t 1,t 2)内是复正交函数集。

3、完备正交函数集:若正交函数集{φi (t )}(i=1,2,3,…….)之外不存在g t (t )与φi (t )正交,则{φi (t )}(i=1,2,3,…….)是完备正交函数集。

4、完备正交函数集举例: a、三角函数集 b 、复指数函数集 c 、沃尔什函数(二)信号正交分解f (t )≈C 1φ1(t )+ C 2φ2(t )+……..+ C n φn (t )=∑C j n j=1φj (t),求系数C j 1、 求误差的均方值最小:2ε= Cj1t 1−t 2∫f (t )−∑C j n j=1φj (t)t 2t 1二、三角傅里叶级数(周期信号在一个周期内展开)1、满足狄利克雷条件f(t)=a02+∑(a n cos nΩt+b n sin nΩt)∞n=1a0 2=1T∫f(t)dt=f(t)π2−π2(f(t)在一个周期内方均值;直流分量)a n=2T∫f(t)cos nΩt dt,n=0,1,2,…T2−T2b n=2T∫f(t)sin nΩt dt,n=0,1,2,…T2−T22、三角傅里叶级数第二种表示方法:3、f(t)=A02+∑(A n cos(nΩt+φn)∞n=1A n=√a n2+b n2(A0=a)φn=tan−1b na nA02直流分量;(A n cos(nΩt+φn)n次谐波分量三角傅里叶级数的特点:A n和a n是nΩ的偶函数;b n和φn是nΩ的奇函数。

频域分析方法

频域分析方法

解为许多个周期性信号之和,然后分别求解,
最后求和(积分)。 在某频率点 ω ,实际(复)振幅是一个无穷
小量:
E&(ω) = lim 1 E( jω) = lim Ω E( jω) = E( jω) dω
T→∞ T
Ω→0 2π

所以其响应为:
∴R& (ω) = H( jω)E&(ω) = H( jω)E( jω) dω 2π
4、系统的频率特性
H ( jω) 在特定 ω 点上的取值实际上表示了系统
对该频率点上的信号的幅度和相位的影响。由
H ( jω ) 可以引出系统的频域特性:
1) 频域特性定义:系统的频率特性是指系统对各 个频率的复正弦信号的影响:包括对复正弦信 号幅度和相位的影响。
2)频率特性曲线 系统的传输特性也可以用图形的方法表示。
如果要在理论上更加严格的话,还可以进一步证
明只有 R( jω ) ⋅ e jωt 可能是系统对 E( jω ) ⋅ e jωt 信
号的响应。
令系统的传输函数为:
H ( jω) = bm ( jω )m + bm−1( jω )m−1 + ... + b1( jω ) + b0
( jω )n + an−1( jω )n + ... + a1( jω ) + a0 它实际上可以将时域中的转移算子 H ( p) 中的算 子 p 用 jω 替代后得到。这里的 H 完全是一个代
E(
jω )
= H ( jω)E( jω)
非周期信号通过线性系统的 rzs 求解公式还 有第三种推导方法: 根据卷积积分公式,有:
r(t) = e(t) ⊗ h(t)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

信号与系统 电子教案
4.1
信号分解为正交函数
代入,得最小均方误差(推导过程见教材)
n t2 1 2 [ f 2 (t ) d t C 2 K j ] 0 j t1 t 2 t1 j 1
在用正交函数去近似f(t)时,所取得项数越,即n越 大,则均方误差越小。当n→∞时(为完备正交函数 集),均方误差为零。此时有
系数an , bn称为傅里叶系数
T 2 T 2
2 2 an f (t ) cos(nt ) d t bn f (t ) sin(nt ) d t T T 可见, an 是n的偶函数, bn是n的奇函数。
第4-9页
T 2 T 2
青岛科技大学信息科学技术学院
信号与系统 电子教案
2 .f(t)为奇函数——对称于原点
an =0,展开为正弦级数。
实际上,任意函数f(t)都可分解为奇函数和偶函数两部 分,即 f(t) = fod(t) + fev(t) 由于f(-t) = fod(-t) + fev(-t) = -fod(t) + fev(t) 所以
第4-11页
青岛科技大学信息科学技术学院
信号与系统 电子教案
f (t ) f (t ) f od (t ) 2
4.2
傅里叶级数
f (t ) f (t ) f e v (t ) 2
f(t) 0
3 .f(t)为奇谐函数——f(t) = –f(t±T/2)
此时 其傅里叶级数中只含奇次 谐波分量,而不含偶次谐波分 量即 a0=a2=…=b2=b4=…=0
第4-14页
1 2 jn t Fn T f (t ) e dt T 2
青岛科技大学信息科学技术学院
信号与系统 电子教案
4.2
傅里叶级数
四、周期信号的功率——Parseval等式
周期信号一般是功率信号,其平均功率为
A0 2 1 2 1 T 2 f (t )dt ( ) An | Fn | 2 T 0 2 n 1 2 n
n
T 2 T 2
1 f (t ) sin(nt ) d t f (t ) e jnt d t T
T
T 2 T 2
f (t )
F

n
e
jnt
n = 0, ±1, ±2,… 表明:任意周期信号f(t)可分解为许多不同频率的虚指 数信号之和。 F0 = A0/2为直流分量。
2 f (t ) i (t ) d t 2Ci i2 (t ) d t 0 即 t1 t1
t2 t2
所以系数
Ci

t2 t1
f (t ) i (t ) d t
t2 t1

i2 (t ) d t
1 Ki

t2 t1
f (t ) i (t ) d t
第4-7页
青岛科技大学信息科学技术学院
第4-5页
青岛科技大学信息科学技术学院
信号与系统 电子教案
4.1
信号分解为正交函数
三、信号的正交分解
设有n个函数 1(t), 2(t),…, n(t)在区间(t1,t2) 构成一个正交函数空间。将任一函数f(t)用这n个正交 函数的线性组合来近似,可表示为 f(t)≈C11+ C22+…+ Cnn
直流和n次谐波分量在1电阻上消耗的平均功率之和。 n≥0时, |Fn| = An/2。
第4-15页
青岛科技大学信息科学技术学院
信号与系统 电子教案
4.3
周期信号的频谱
4.3
周期信号的频谱及特点
一、信号频谱的概念
从广义上说,信号的某种特征量随信号频率变 化的关系,称为信号的频谱,所画出的图形称为信 号的频谱图。 周期信号的频谱是指周期信号中各次谐波幅值、 相位随频率的变化关系,即 将An~ω和n~ω的关系分别画在以ω为横轴的平 面上得到的两个图,分别称为振幅频谱图和相位频 谱图。因为n≥0,所以称这种频谱为单边谱。 也可画|Fn|~ω和n~ω的关系,称为双边谱。若Fn 为实数,也可直接画Fn 。
第4-3页
青岛科技大学信息科学技术学院
信号与系统 电子教案
4.1
信号分解为正交函数
二、信号正交与正交函数集
1. 定义: 定义在(t1,t2)区间的两个函数 1(t)和 2(t),若满足

t2
t1
1 (t ) 2 * (t ) d t 0 (两函数的内积为0)
则称 1(t)和 2(t) 在区间(t1,t2)内正交。
4.2
傅里叶级数
A0 An j ( nt n ) j ( nt n ) [e e ] 2 n1 2 A0 1 1 An e j e jnt An e j e jnt 2 2 n1 2 n1 上式中第三项的n用–n代换,A– n=An,– n= – n, 则上式写为 A 1 1
由两两正交的矢量组成的矢量集合---称为正交矢量集
如三维空间中,以矢量 vx=(2,0,0)、vy=(0,2,0)、vz=(0,0,2) 所组成的集合就是一个正交矢量集。 例如对于一个三维空间的矢量A =(2,5,8),可以 用一个三维正交矢量集{ vx,vy,vz}分量的线性组合 表示。即 A= vx+ 2.5 vy+ 4 vz 矢量空间正交分解的概念可推广到信号空间, 在信号空间找到若干个相互正交的信号作为基本信 号,使得信号空间中任意信号均可表示成它们的线 性组合。
第4-16页
青岛科技大学信息科学技术学院
信号与系统 电子教案
4.3
周期信号的频谱
例:周期信号 f(t) = 试求该周期信号的基波周期T,基波角频率Ω,画 出它的单边频谱图,并求f(t) 的平均功率。 解 首先应用三角公式改写f(t)的表达式,即
1 2 1 f (t ) 1 cos t cos t 2 3 6 2 4 4 3
4.1
信号分解为正交函数
一、矢量正交与正交分解
矢量Vx = ( vx1, vx2, vx3)与Vy = ( vy1, vy2, vy3)正交的定义: 其内积为0。即 3 T Vx Vy vxiv yi 0
i 1
第4-2页
青岛科技大学信息科学技术学院
信号与系统 电子教案
4.1
信号分解为正交函数
信号与系统 电子教案 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8
第四章 连续系统的频域分析
信号分解为正交函数 傅里叶级数 周期信号的频谱 非周期信号的频谱——傅里叶变换 傅里叶变换的性质 周期信号的傅里叶变换 LTI系统的频域分析 取样定理
点击目录
第4-1页
,进入相关章节
青岛科技大学信息科学技术学院
2. 正交函数集: 若n个函数 1(t), 2(t),…, n(t)构成一个函数集, 当这些函数在区间(t1,t2)内满足

第4-4页
t2 t1
i j 0, i (t ) j (t ) d t K i 0, i j
*
则称此函数集为在区间(t1,t2)的正交函数集。
青岛科技大学信息科学技术学院
信号与系统 电子教案 3. 完备正交函数集:
4.1
信号分解为正交函数
如果在正交函数集{1(t), 2(t),…, n(t)}之外, 不存在函数φ(t)(≠0)满足

t2 t1
(t ) i (t ) d t 0
( i =1,2,…,n)
则称此函数集为完备正交函数集。 例如:三角函数集{1,cos(nΩt),sin(nΩt),n=1,2,…} 和 虚指数函数集{ejnΩt,n=0,±1,±2,…}是两组典型的 在区间(t0,t0+T)(T=2π/Ω)上的完备正交函数集。
T/2
T
t
三、傅里叶级数的指数形式
三角形式的傅里叶级数,含义比较明确,但运算常感 不便,因而经常采用指数形式的傅里叶级数。可从三 角形式推出:利用 cosx=(ejx + e–jx)/2
第4-12页
青岛科技大学信息科学技术学院
信号与系统 电子教案
A0 f (t ) An cos(nt n ) 2 n1
4.2
傅里叶级数
将上式同频率项合并,可写为
A0 f (t ) An cos(nt n ) 2 n1
式中,A0 = a0
An a b
2 n
2 n
bn n arctan an
可见An是n的偶函数, n是n的奇函数。 an = Ancosn, bn = –Ansin n,n=1,2,… 上式表明,周期信号可分解为直流和许多余弦分量。 其中, A0/2为直流分量; A1cos(t+1)称为基波或一次谐波,它的角频率与原周 期信号相同; A2cos(2t+2)称为二次谐波,它的频率是基波的2倍; 一般而言,Ancos(nt+n)称为n次谐波。
n n
0
2

2 n1
An e j n e jn t
2 n1
An e j n e jn t
令A0=A0ej0ej0t ,0=0
所以
第4-13页
1 j n jnt f (t ) An e e 2 n
青岛科技大学信息科学技术学院
信号与系统 电子教案
4.2

t2 t1
f 2 (t ) d t C 2 K j j
j 1

上式称为(Parseval)巴塞瓦尔公式,表明:在区间(t1,t2) f(t)所含能量恒等于f(t)在完备正交函数集中分解的各 正交分量能量的总和。 函数f(t)可分解为无穷多项正交函数之和 f (t ) C j j (t )
相关文档
最新文档