平面向量的应用举例
平面向量的数量积与平面向量应用举例_图文_图文

三、向量数量积的性质
1.如果e是单位向量,则a·e=e·a. 2.a⊥b⇔ a·b=0 .
|a|2
4.cos θ=
.(θ为a与b的夹角)
5.|a·b| ≤ |a||b|.
四、数量积的运算律
1.交换律:a·b= b·a . 2.分配律:(a+b)·c= a·c+b·c . 3.对λ∈R,λ(a·b)= (λa)·b= a·(λb.) 五、数量积的坐标运算
∴a与c的夹角为90°. (2)∵a与b是不共线的单位向量,∴|a|=|b|=1. 又ka-b与a+b垂直,∴(a+b)·(ka-b)=0, 即ka2+ka·b-a·b-b2=0. ∴k-1+ka·b-a·b=0. 即k-1+kcos θ-cos θ=0(θ为a与b的夹角). ∴(k-1)(1+cos θ)=0.又a与b不共线, ∴cos θ≠-1.∴k=1. [答案] (1)B (2)1
解析:(1) a=(x-1,1),a-b=(x-1,1)-(-x+1,3)= (2x-2,-2),故a⊥(a-b)⇔2(x-1)2-2=0⇔x=0或2 ,故x=2是a⊥(a-b)的一个充分不必要条件.
答案: (1)B (2)D
平面向量的模 [答案] B
[答案] D
[典例总结]
利用数量积求长度问题是数量积的重要应用,要掌 握此类问题的处理方法:
[巩固练习]
2.(1)设向量a=(x-1,1),b=(-x+1,3),则a⊥(a-b)
的一个充分不必要条件是
()
A.x=0或2
B.x=2
C.x=1
D.x=±2
(2)已知向量a=(1,0),b=(0,1),c=a+λb(λ∈R),
向量d如图所示,则
()
A.存在λ>0,使得向量c与向量d垂直 B.存在λ>0,使得向量c与向量d夹角为60° C.存在λ<0,使得向量c与向量d夹角为30° D.存在λ>0,使得向量c与向量d共线
平面向量的应用

平面向量的应用平面向量是解决空间内几何问题的重要工具之一,具有广泛的应用。
它们可以用来描述物体的位移、速度、加速度等物理量,帮助我们解决各种实际问题。
本文将介绍平面向量的应用,包括力的作用、力的分解、面积计算以及平衡条件等方面。
1. 力的作用平面向量可以用来描述力的作用。
在物体上施加力可以使其发生位移。
假设有两个力F1和F2作用在物体上,它们的大小和方向可以用平面向量表示。
若这两个力的向量分别为A和B,它们的合力可以表示为A + B。
通过求解合力向量的大小和方向,可以确定物体所受的合力。
2. 力的分解平面向量还可以用来对力进行分解。
在力的分析中,我们常常需要将一个力分解为两个或多个分力,以便更好地理解和研究物体受力情况。
将一个力F进行分解,可以得到两个力F1和F2,它们的合力等于F。
通过适当地选择分解方向和大小,可以使得问题的处理更加简单。
3. 面积计算平面向量可以用来计算平面上的面积。
设有三个非共线的向量A、B和C,它们的起点相同,可以构成一个三角形。
这个三角形的面积可以用向量的叉乘来计算,即:面积 = 1/2 * |A × B|其中,|A × B|表示叉乘的模。
通过面积计算公式,我们可以快速准确地计算出平面上各种形状的面积,如矩形、梯形、圆等。
4. 平衡条件平面向量还可以应用于力系统的平衡条件。
对于一个物体受到多个力的作用,若物体保持平衡,则所有作用力的合力必须为零。
可以将每个力表示为一个平面向量,然后将它们相加得到合力向量。
若合力向量为零,则说明物体处于平衡状态。
在实际问题中,通过平面向量的分析和计算,可以解决许多与平面运动、平衡、受力分析等相关的问题。
例如,在建筑物的结构设计中,我们可以利用平面向量对各个支点受力进行分析,保证建筑物结构的稳定性。
总结平面向量的应用广泛且重要,它们可以用于描述力的作用、力的分解、面积计算以及平衡条件的分析等方面。
通过适当地选择和计算向量,可以解决各种实际问题,并提高问题处理的准确性和效率。
平面向量应用举例

平面向量应用举例一周强化一、一周知识概述向量是区别于数量的一种量,是中学数学中的一个重要概念.向量具有两重性,一是代数属性,二是几何属性,使得数与形的结合体现到极致.向量作为一种重要的数学工具,除在数学中有广泛的应用外,在物理学、工程技术中也有广泛的应用.二、重难点知识归纳讲解1、解决平面几何问题由于平面向量的线性运算和数量积运算具有鲜明的几何背景,利用向量可以表示出平面几何的许多性质,如平移,平行,垂直、全等、相似以及夹角等,利用向量可以方便地解决平面几何中的一些问题,思路清晰,运算简单.例1、已知任意凸四边形ABCD中,E、F分别是AD、BC中点,如图所示.求证:.解析:向量的加法,减法的运算并不困难,但运算的途径很多,十分灵活,如平面任一向量都可以写成两个或多个向量的和.同样任一向量都可以分成两个向量的差等,本题证法较多,这里选取五种.证法一:证法二:在平面上任取一点O,由中线公式得证法三:过点C在平面内作,则四边形ABGC是平行四边形,故F为AG中点. ∴ EF是△ADG的中位线,∴ EF DG,∴证法四:如图所示,连EB、EC,则有又∵ E是AD的中点,以为邻边作平行四边形EBGC,则由F是BC之中点,可得F也是EG之中点.证法五:例2、如图所示,正方形ABCD中,P为线段BD上任一点,PECF为矩形,求证:(1)PA=EF;(2)PA⊥EF.解析:平面几何问题,有的用向量的方法来处理,会有简洁的解法.此题可设坐标,利用坐标运算.证明:以D为坐标原点,DC所在直线为x轴建立坐标系.设C(1,0),A(0,1),P(x,x),则E(x,0),F(1,x)2、解决函数问题结合函数的图象,利用向量解决函数有关问题.例3、过原点O的直线与函数y=log8x的图象交于A、B两点,过A、B分别作x轴的垂线交函数y=log2x的图象于C,D两点.求证:O,C,D三点在一条直线上.分析:将共线证明转化为论证向量共线的关系式.证明:如图,设A(x1,log8x1),B(x2,log8x2),根据已知共线,∴x1log8x2-x2log8x1=0.又根据已知C(x1,log2x1),D(x2,log2x2),∴∵x1log2x2-x2log2x1=x1log8x23-x2log8x13=3(x1log8x2-x2log8x1)=0,∴共线,即O,C,D三点在一条直线上.三、向量在物理中的应用运用向量解决物理问题时,必须清楚哪些物理量是向量,可以从以下几方面理解:1、力,速度,加速度都是向量;2、力,速度,加速度,位移的合成与分解就是向量的加减法,运动的叠加亦用到向量的合成;3、动量是数乘向量;4、功定义即力与所产生位移的内积.例4、如图,重力为的均匀小球放在倾角为α的斜面上,球被与斜面夹角为θ的木板挡住,球面、木板均光滑,若使球对木板压力最小,则木板与斜面间的夹角θ应为多大?分析:本题可以通过把球对木板的压力N表示为关于木板夹角θ的函数,再去求N的最小值.解:小球受力如图:重力,斜面弹力(垂直于斜面),木板弹力(垂直于木板),其中与合力大小恒为︱︱,方向向上,方向始终不变,随着木板的转动,的大小均在变化.=,当sinθ取最大值1时,︱︱min=︱︱sinα,此时θ=.点评:对于本题的解答,要结合到物理知识即会对物理进行受力分析,才能探讨出N1与θ的函数关系式.例5、今有一小船位于d=60m宽的河边P处,从这里起,在下游L=80m处河流变成“飞流直下三千尺”的瀑布.若河水流速方向由上游指向下游(与河岸平行),水速大小5m/s为,如图所示,为了小船能安全渡河,船的划速不能小于多少?当划速最小时,划速方向如何?分析:本题可分别从数学和物理两个方面进行剖析,因而可以给出以下两种解法.解法一:设船的划速为,方向与上游河岸的夹角为,如图,将正交分解为,,则船同时参与两个分运动:一个是沿方向的速度为的匀速直线运动,另一个是沿方向的速度为的匀速直线运动,这两个分运动的时间和必相等,设船到达对岸时,极其靠近河流与瀑布的交界处.由∴令.显见,当时,有最小值为3m/s.此时解法二:在题设条件下,船的临界合速度沿图的PQ方向,设,从A向PQ作垂线,垂足为B,有向线段 AB即表示最小划速的大小和方向,,,可见当时,划速方向与解法一相同.点评:对于本题的两种解法中,分别从速度的分解与合成入手,体现了数形结合的密不可分的关系.。
高中数学第二章平面向量向量应用举例例题与探究(含解析)

2.7 向量应用举例典题精讲例1用向量法证明平行四边形两对角线的平方和等于四条边的平方和。
思路分析:把平行四边形的边和对角线的长看成向量的长度,转化为证明向量长度之间的关系.基向量法和坐标法均可解决.答案:已知:四边形ABCD是平行四边形,求证:|AC|2+|BD|2=2|AB|2+2|AD|2。
证法一:如图2—7—1所示,设AB=a, AD=b,∴AC=AB+AD=a+b,BD=AD-AB=b-a。
图2-7—1∴|AC|2=(a+b)2=a2+2a·b+b2,|BD|2=(b—a)2=a2-2a·b+b2。
∴|AC|2+|BD|2=2a2+2b2.又∵2|AB|2+2|AD|2=2|OB|2+2|OD|2=2a2+2b2,∴|AC|2+|BD|2=2|AB|2+2|AD|2,即平行四边形两对角线的平方和等于四条边的平方和.证法二:如图2—7-2所示,以A为原点,以AB所在直线为x轴,建立直角坐标系.设A(0,0)、D(a,b)、B(c,0),∴AC=AB+AD图2—7-2=OB+OD=(c,0)+(a,b)=(a+c,b),BD=AD—AB=OD—OB=(a,b)-(c,0)=(a-c,b)。
∴|AC|2=(c+a)2+b2,|BD|2=(a-c)2+b2.∴|AC|2+|BD|2=2a2+2c2+2b2。
又∵2|AB|2+2|AD|2=2|OB|2+2|OD|2=2a2+2c2+2b2,∴|AC|2+|BD|2=2|AB|2+2|AD|2,即平行四边形两对角线的平方和等于四条边的平方和。
绿色通道:1。
向量法解决几何问题的步骤:①建立平面几何与向量的联系,用向量表示问题中涉及的几何元素,将平面几何问题转化为向量问题;②通过向量运算(有基向量法和坐标法两种),研究几何元素之间的关系;③把运算结果“翻译”成几何关系。
这是用向量法解决平面几何问题的“三步曲”.又简称为:一建二算三译;也可说成为:捡便宜(建算译)。
2.5 平面向量应用举例

0
三、垂心
三角形三边上的高交于一点, 这一点叫三角形的垂心。
A
E
F o D
AB OC, BC 3
B
D
C
二、外心
三角形三边的中垂线交于一点, 这一点为三角形外接圆的圆心,称外心。
A
O
A
O
A C
B
C
B
例题2 若 O 为 ABC内一点,OA OB OC
则 O 是 ABC 的( B ) A.内心 B.外心 解析:由向量模的定义知 O 到 C.垂心 D.重心
一、向量四种运算总结:
运算类型 代数式运算 几何运算
a
b
坐标运算
运算性质
ab ba (a b) c a (b c) AB BC AC
a b a (b) AB BA OB OA AB
加 法 减 法
ab
a b
ab ( x1 x2 , y1 y2 )
a b ( x1 x2 , y1 y 2 )
a
b
数 乘
a
ab 数量积 a b cos
0 0 0
a
a (x1, y1 )
a
b
a· b=|b|·(向量a在b方向上的投影)
a b x1 x2 y1 y2
a∥b a∥ b x1 y2 x2 y1 0
O是 ABC 的垂心
B
C
O A O B O B O C O C O A
例3. 点O是Δ ABC所在平面上一点, 若 OA OB OB OC OC OA, 则点O是Δ ABC的( D ) (A)三个内角的角平分线的交点 (B)三条边的垂直平分线的交点 B (C)三条中线的交点 (D)三条高线的交点
平面向量在物理问题中的应用

平面向量在物理问题中的应用平面向量是解决物理问题的重要工具之一,它能够描述物体在平面内的位移、速度和加速度等性质,广泛应用于力学、电磁学、动力学等物理学领域。
本文将从力学、电磁学和动力学三个方面介绍平面向量在物理问题中的应用。
一、力学中的平面向量应用力学是研究物体运动和受力情况的学科,平面向量在力学问题中扮演着重要的角色。
1. 位移和速度:位移是物体从一个位置到另一个位置的变化,速度是物体在单位时间内位移的变化率。
在力学问题中,我们可以利用平面向量来表示位移和速度。
假设一个物体位于平面上的点P,其位移向量为r,那么P点的速度向量v就是位移向量r对时间的导数。
2. 力和加速度:力是物体所受的作用,而加速度是物体单位时间内速度的改变量。
根据牛顿第二定律,力的大小等于物体质量乘以加速度的大小。
在力学问题中,我们可以使用平面向量来描述力和加速度。
假设一个物体受力F,质量为m,加速度向量为a,则根据牛顿第二定律可以得到F = ma。
二、电磁学中的平面向量应用电磁学是研究电荷和电流、电场和磁场相互作用的学科,平面向量在电磁学问题中也有重要应用。
1. 电场和电势:电场是由电荷产生的一种力场。
在电磁学问题中,平面向量可以用来描述电场的强弱和方向。
假设一个电荷在空间中的位置为点P,电场向量E就是点P处的电场强度对于位置的导数。
而电势则是描述电场能量的标量量,是电场在单位正电荷上的做功。
在电磁学中,我们可以利用平面向量来计算电势。
2. 磁场和磁感应强度:磁场是由电流产生的一种力场。
在电磁学问题中,平面向量可以用来描述磁场的强弱和方向。
假设一个电流在空间中的位置为点P,磁感应强度向量B就是点P处的磁场强度对于位置的导数。
磁场力的大小可以通过安培力定律来计算,利用平面向量可以方便地进行计算。
三、动力学中的平面向量应用动力学是研究物体运动的原因和规律的学科,平面向量在动力学问题中也有广泛应用。
1. 动量和力矩:动量是物体的运动状态的度量,等于质量乘以速度。
平面向量应用举例

① ② ③
B F
a
P
E
b
D
c
C
利用向量的线性运算证明共线、平行、长度等问题
探究: 已知直角三角形的两直角边长为4和 6,试用向量方法求两直角边中线所成钝 角的余弦值。 y
B
B (0,6)
C
C (0,3) O A x (4,0)
O
Hale Waihona Puke DAD (2,0)
探究: 用向量方法证明:等腰三角形底边 上的中线垂直于底边.
已知等腰直角三角形ABC,D为BC边上的 中点.
设M 、N 分别是四边形ABCD对边AB、CD的中点, 1 求证: MN ( AD BC ). 2
例1.如图,在正方形ABCD中,E、F分别是BC、 CD的中点,求 cos EAF的值.
例1.如图,在正方形ABCD中,E、F分别是BC、 CD的中点,求 cos EAF的值.
例2.已知直角梯形ABCD中,AB//CD,CDA=DAB=90 , 1 CD DA AB, 求证:AC BC. 2
o
向量在几何中的应用(三部曲):
用基底表示
向量运算
翻译几何结果
建立坐标系
坐标运算
翻译几何结果
O 为中线 AM 上的一个动点,若 在 ABC 中, AM =2,求 OA (OB OC) 的最小值
已知:如图,AC为⊙O的一条直径,∠ABC是圆周角 求证: ∠ABC=90°
B O A
图 2.5-4
C
利用向量的数量积可解决长度、角度、垂直等问题
向量是一个有利的“工具”
用向量法证明三角形三条高交于一点.
如图:AD、BE、CF是 ABC的三条高. 求证:AD、BE、CF 相交于一点.
平面向量的应用向量的投影与反射

平面向量的应用向量的投影与反射平面向量的应用:向量的投影与反射在数学中,向量是用来描述方向和大小的量。
平面向量是二维空间中的向量,广泛应用于各个领域,包括物理、工程和计算机科学等。
本文将重点介绍平面向量的应用之一:向量的投影与反射。
一、向量的投影向量的投影是指将一个向量在另一个向量方向上的分量。
在平面向量中,投影可以用于求解某个向量在另一个向量上的分解,从而简化计算过程。
设有两个非零向量a和b,我们将向量a在向量b上的投影表示为proj<sub>b</sub>a。
1. 向量的投影定义设向量a和b不平行,向量a在向量b上的投影proj<sub>b</sub>a 的大小为a在b方向上的分量,方向与b相同。
可以用下列公式来计算向量的投影:proj<sub>b</sub>a = (a·b / |b|²) * b其中,a·b表示向量a和b的点积,|b|表示向量b的长度。
投影的计算结果是一个向量,其大小为标量a·b与b长度的比例,方向与向量b 相同。
2. 向量的投影应用向量的投影在实际问题中有广泛的应用。
例如,在力学中,我们可以将一个力的大小和方向表示为一个力向量。
在求解斜面上物体的自由体图时,我们可以将物体的重力向量进行投影,分解为沿斜面方向和垂直斜面方向的分量,以便更好地分析问题。
二、向量的反射向量的反射是指一个向量在另一个向量上的镜像反射。
通过向量的反射,我们可以研究光线的传播和折射等现象。
1. 向量的反射定义设向量a和b不平行,向量a关于向量b的反射表示为reflect<sub>b</sub>a。
向量a关于向量b的反射可以通过以下公式计算:reflect<sub>b</sub>a = a - 2 * proj<sub>b</sub>a其中,proj<sub>b</sub>a表示向量a在向量b上的投影。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平面向量应用举例
课型:新课 设计人: 设计时间:2011.3.2 使用时间: 学习目标:
1.通过应用举例,学会用平面向量知识解决几何问题的两种方法-----向量法和坐标法,可以用向量知识研究物理中的相关问题的“四环节” 和生活中的实际问题
2.通过本节的学习,体验向量在解决几何和物理问题中的工具作用,增强积极主动的探究意识,培养创新精神。
重点:理解并能灵活运用向量加减法与向量数量积的法则解决几
何和物理问题.
难点:选择适当的方法,将几何问题或者物理问题转化为向量问
题加以解决. 学习过程:
例1.证明:平行四边形两条对角线的平方和等于四条边的平方和.已知:平行四边形ABCD .
求证:2
2
2
2
2
2
AC BD AB BC CD DA +=+++.
利用向量的方法解决平面几何问题的“三步曲”? (1) 建立平面几何与向量的联系,
(2) 通过向量运算,研究几何元素之间的关系, (3) 把运算结果“翻译”成几何关系。
变式训练:ABC ∆中,D 、E 、F 分别是AB 、BC 、CA 的中点,BF 与CD 交于点O ,设,.AB a AC b ==
(1)证明A 、O 、E 三点共线;
(2)用,.a b 表示向量AO 。
例2,如图,平行四边形ABCD 中,点E 、F 分别是AD 、DC 边的中点,BE 、BF 分别与AC 交于R 、T 两点,你能发现AR 、RT 、TC 之间的关系吗?
例3.如图,一条河的两岸平行,河的宽度500d =m ,一艘船从A 处出发到河对岸.已知船的速度|v 1|=10km/h ,水流的速度|v 2|=2km/h ,问行驶航程最短时,所用的时间是多少(精确到
0.1min)?
变式训练:两个粒子A 、B 从同一源发射出来,在某一时刻,它们的位移分别为(4,3),(2,10)A B s s ==,
(1)写出此时粒子B 相对粒子A 的位移s; (2)计算s 在A s 方向上的投影。
当堂检测
1.已知0
60,3,2===∆C b a ABC 中,,求边长c 。
2.在平行四边形ABCD 中,已知AD=1,AB=2,对角线BD=2,求对角线AC 的长。
3.在平面上的三个力321,,F F F 作用于一点且处于平衡状态,
2121,2
2
6,1F F N F N F 与+=
=的夹角为o 45, 求:(1)3F 的大小;(2)1F 与3F 夹角的大小。
课后练习与提高
一、选择题
1.给出下面四个结论:
① 若线段AC=AB+BC ,则向量AC AB BC =+; ② 若向量AC AB BC =+,则线段AC=AB+BC ; ③ 若向量AB 与BC 共线,则线段AC=AB+BC; ④ 若向量AB
与BC 反向共线,则
BC AB BC AB +=+.其中正确的结论有 ( )
A. 0个
B.1个
C.2个
D.3个 2.河水的流速为2s m
,一艘小船想以垂直于河岸方向10s
m
的
速度驶向对岸,则小船的静止速度大小为 ( )
A.10s
m
B. 262s m
C. 64s
m
D.12s
m
3.在ABC ∆中,若)()(CB CA CB CA -•+=0,则ABC ∆为 ( )
A.正三角形
B.直角三角形
C.等腰三角形
D.无法确定 二、填空题 4.已知ABC ∆两边的向量21,e AC e AB ==,则BC 边上的中线向量AM 用1e 、2e 表示为
5.已知10321321=++=++OP OP OP ,OP OP OP ,则1OP 、
2OP 、3OP 两两夹角是
反思总结:。