人教版八年级数学上册整式乘法与因式分解--整式的乘法同步练习A卷含答案
人教版初中数学八年级上册 第十四章 整式的乘法与因式分解 单元测试题附答案

初中数学人教版八年级上学期第十四章整式的乘法与因式分解一、单选题(共9题;共18分)1.下列运算正确的是:()A. B. C. D.2.下列各式从左到右的变形中,属于因式分解的是()A. m(a+b)=ma+mbB. a2+4a﹣21=a(a+4)﹣21C. x2﹣1=(x+1)(x﹣1)D. x2+16﹣y2=(x+y)(x﹣y)+163.把多项式分解因式,下列结果正确的是( )A. B. C. D.4.若(x+m)与(x+3)的乘积中不含x的一次项,则m的值为()A. -3B. 3C. 0D. 15.小强是一位密码编译爱好者,在他的密码手册中,有这样一条信息:x﹣y,a﹣b,2,x2﹣y2,a,x+y,分别对应下列六个字:华、我、爱、美、游、中,现将2a(x2﹣y2)﹣2b(x2﹣y2)因式分解,结果呈现的密码信息可能是()A. 爱我中华B. 我游中华C. 中华美D. 我爱美6.已知有一个因式为,则另一个因式为()A. B. C. D.7.下列二次三项式在实数范围内不能因式分解的是()A. B. C. D.8.若, ,则ab的值为()A. 1B. -1C. 2D. -2.9.计算(2+1)(22+1)(24+1)(28+1)+1的值是( )A. 1024B. 28+1C. 216+1D. 216二、填空题(共8题;共8分)10.若a3•a m÷a2=a9,则m=________11.若一个正方形的面积是9m2+24mn+16n2,则这个正方形的边长是________.12.因式分解:________.13.已知,则的值________.14.已知,则的值为________.15.如果(2a+2b+1)(2a+2b﹣1)=3,那么a+b 的值为________.16.若是一个完全平方式,则常数k的值为________.17.如果可以因式分解为(其中,均为整数),则的值是________.三、计算题(共3题;共25分)18.因式分解:(1)2a3-12a2+18a(2)a2(x﹣y)+4(y﹣x)19.因式分解(1)(2)20.计算:四、解答题(共5题;共45分)21.已知a= +2012,b= +2013,c= +2014,求a2+b2+c2-ab-bc-ca的值.22.若(x2 +mx-8)(x2-3x+n)的展开式中不含x2和x3项,求m和n的值.23.已知a,b,c是的三边,且满足,试判断的形状,并说明理由.24.(1)计算下列各式,并寻找规律:① =(_+_)(_-_)=② =(_+_)(_-_)=_;(2)运用(1)中所发现的规,计算:;(3)猜想的结果,并写出推理过程.25.请认真观察图形,解答下列问题:(1)根据图中条件,用两种方法表示两个阴影图形的面积的和(只需表示,不必化简);(2)由(1),你能得到怎样的等量关系?请用等式表示;(3)如果图中的a,b(a>b)满足a2+b2=53,ab=14,求:①a+b的值;②a4-b4的值.答案解析部分一、单选题1.【答案】D2.【答案】C3.【答案】B4.【答案】A5.【答案】A6.【答案】C7.【答案】D8.【答案】D9.【答案】D二、填空题10.【答案】811.【答案】3m+4n12.【答案】13.【答案】214.【答案】7515.【答案】±116.【答案】±417.【答案】2或4三、计算题18.【答案】(1)解:(2)19.【答案】(1)解:原式=;(2)原式=.20.【答案】解:四、解答题21.【答案】解:∵a= +2012,b= +2013,c= +2014,∴a-b=-1,b-c=-1,c-a=2,∴a2+b2+c2-ab-bc-ca= (2a2+2b2+2c2-2ab-2bc-2ca)= [(a-b)2+(b-c)2+(c-a)2]= ×(1+1+4)=3.22.【答案】解:(x +mx-8)(x -3x+n)==∵展开式中不含x 和x 项∴解得:23.【答案】解:∵,,是的三边,都大于0∴∴△ABC是等腰三角形.24.【答案】(1)解:① ;② ;(2)解:原式;(3)解:原式. 25.【答案】(1)解:两个阴影图形的面积和可表示为:a2+b2或(a+b)2-2ab(2)解:a2+b2=(a+b)2-2ab(3)解:∵a,b(a>b)满足a2+b2=53,ab=14,∴①(a+b)2=a2+b2+2ab=53+2×14=81∴a+b=±9,又∵a>0,b>0,∴a+b=9.②∵a4-b4=(a2+b2)(a+b)(a-b),且∴a-b=±5又∵a>b>0,∴a-b=5,∴a4﹣b4=(a2+b2)(a+b)(a-b)=53×9×5=2385.。
八年级数学上册第十四章《整式的乘法与因式分解》综合测试卷-人教版(含答案)精选全文完整版

可编辑修改精选全文完整版八年级数学上册第十四章《整式的乘法与因式分解》综合测试卷-人教版(含答案)一、单选题1.下列多项式:①244x x +;②2224x xy y -+;③2214a ab b -+;④224a b -+中,能用公式法分解因式的有( ).A .1个B .2个C .3个D .4个 2.计算()()9910022-+-的结果为( ) A .992- B .992 C .2- D .23.因式分解2x ax b ++,甲看错了a 的值,分解的结果是()()61x x +-,乙看错了b 的值,分解的结果为()()21x x -+,那么x ax b ++分解因式正确的结果为( ).A .()()23x x -+B .()()23x x +-C .()()23x x --D .()()23x x ++4.若a+b=1,则22a b 2b -+的值为( )A .4B .3C .2D .1 5.在边长为a 的正方形中挖去一个边长为b 的小正方形(a b >)(如图甲),把余下的部分拼成一个矩形(如图乙),根据两个图形中阴影部分的面积相等,可以验证( )A .()()22a b a b a b -=+-B .()2222a b a ab b -=-+C .()2222a b a ab b +=++ D .()()2222a b a b a ab b +-=+- 6.如果(x -2)(x+3)=x 2+px+q ,那么p 、q 的值是( )A .p=5,q=6B .p=1,q=6C .p=5,q=-6D .p=1,q=-67.下列各式子的运算,正确的是( )A .(3a +2b )(3a ﹣2b )=3a 2﹣2b 2B .222(2)44x y x xy y -+=-+C .221136222x y xy xy xy x y ⎛⎫⎛⎫-+÷-=-+ ⎪ ⎪⎝⎭⎝⎭ D .(a +2)(a ﹣3)=a 2﹣68.已知(x ﹣2)(x 2+mx +n )的乘积项中不含x 2和x 项,则m ,n 的值分别为( )A .m =2,n =4B .m =3,n =6C .m =﹣2,n =﹣4D .m =﹣3,n =﹣69.图(1)是一个长为2a ,宽为2b (a >b )的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形,则中间空的部分的面积是( )A .aB .2()a b +C . 2()a b -D .22a b -10.观察下列两个多项式相乘的运算过程:根据你发现的规律,若(x +a )(x +b )=x 2-7x +12,则a ,b 的值可能分别是( )A .3-,4-B .3-,4C .3,4-D .3,411.248162(31)(31)(31)(31)(31)⨯+++++的计算结果的个位数字是( )A .8B .6C .2D .0二、填空题12.分解因式:24xy x -=__________.13.边长为m 、n 的长方形的周长为14,面积为10,则33m n mn +的值为_________.14.如图是一个长和宽分别为a 、b 的长方形,它的周长为14、面积为10,则a 2b +ab 2的值为___.15.若多项式225a ka ++是完全平方式,则k 的值是______.16.已知2310a a -+=,求441a a +的值为____.17.若2260x x --=,则()()()22321212x x x x -++--的值为__________.三、解答题18.因式分解(1)229(3)4(32)a b a b +--(2)()()22252732x x x x +++-+ 19.计算:(1)(﹣2a 2b )2•ab 2÷(﹣a 3b );(2)(x ﹣1)(x +1)(x 2+1);(3)20202﹣2022×2018(用乘法公式计算);(4)(a ﹣b ﹣3)(a ﹣b +3).20.(1)已知4 m =a ,8n =b ,用含a 、b 的式子表示下列代数式:①求:22 m+3n 的值;②求:24 m -6n 的值;(2)已知2×8x ×16=226,求x 的值.21.(1)先化简,再求值:x 2﹣3x ﹣5=0,求代数式(x ﹣3)2+(x +y )(x ﹣y )+y 2的值;(2)已知x +y =4,xy =3,求x 2+y 2,(2x ﹣2y )2的值.22.我们知道几个非负数的和等于0,只有这几个数同时等于0才成立,如|x -2|+(y +3)2=0,因为|x -2|,(y +3)2都是非负数,则x -2=0,y +3=0,即可求x =2,y =-3,应用知识解决下列各题:(1)若(x +4)2+(y -3)2=0,求x ,y 的值.(2)若x 2+y 2-2x+4y=-5,求y x .(2)若2x 2+3y 2+8x -6y =-11,求(x +y )2020的值.23.常用的分解因式的方法有提取公因式法、公式法及十字相乘法,但有更多的多项式只用上述方法就无法分解,如22424x y x y --+,我们细心观察这个式子就会发现,前两项符合平方差公式,后两项可提取公因式,前后两部分分别分解因式后会产生公因式,然后提取公因式就可以完成整个式子的分解因式了。
人教版八年级数学上册第十四章《整式乘法与因式分解》测试带答案解析

人教版八年级数学上册第十四章《整式乘法与因式分解》测试学校:___________姓名:___________班级:___________考号:___________一、单选题1.计算3325a a 的结果是( ) A .610aB .910aC .37aD .67a2.下列运算正确的是( ) A .22a a a ⋅=B .824a a a ÷=C .()2242a b a b =D .()325a a =3.下列计算正确的是( ) A .623a a a ÷=B .()326a a =C .248a a a ⋅=D .532a a a -=4.下列计算结果正确的是( ) A .()336a a =B .632a a a ÷=C .()248ab ab =D .()2222a b a ab b +=++5.下列计算正确的是( ) A .25611a a a += B .()235326b b b -⋅= C .623623b a a ÷=D .()()22339b a a b a b +-=-6.已知实数m ,n 满足222+=+m n mn ,则2(23)(2)(2)-++-m n m n m n 的最大值为( ) A .24B .443C .163D .4-7.已知()()2221x x x +--=,则2243x x -+的值为( ) A .13B .8C .-3D .58.若2022202020222022202320222021-=⨯⨯n ,则n 的值是( ) A .2023B .2022C .2021D .20209.如图是一个运算程序的示意图,若开始输入的x 值为81,我们看到第一次输出的结果为27.第二次输出的结果为9,…,第2022次输出的结果为( )A .1B .3C .9D .2710.下列等式从左到右的变形,其中属于因式分解的是( ) A .2221(1)--=-x x x B .22221(1)x y xy xy ++=+ C .2(3)(3)9x x x +-=-D .32822(41)a a a a -=-11.有一台特殊功能计算器,对任意两个整数只能完成求差后再取绝对值的运算,其运算过程是:输入第一个整数1x ,只显示不运算,接着再输入整数2x 后则显示12x x -的结果.比如依次输入1,2,则输出的结果是121-=;此后每输入一个整数都是与前次显示的结果进行求差后再取绝对值的运算.有如下结论:①依次输入1,2,3,4,则最后输出的结果是2;②若将1,2,3,4这4个整数任意地一个一个输入,全部输入完毕后显示的结果的最大值是4;③若将1,2,3,4这4个整数任意地一个一个地输入,全部输入完毕后显示的结果的最小值是0;④若随意地一个一个地输入三个互不相等的正整数2,a ,b ,全部输入完毕后显示的最后结果设为k ,若k 的最大值为10,那么k 的最小值是6.上述结论中,正确的个数是( ) A .1个B .2个C .3个D .4个12.在数学中为了书写简便,18世纪数学家欧拉就引进了求和符号“∑”,如记1nk k =∑=1+2+3+…+(n ﹣1)+n ,()3n k x k =+∑=(x +3)+(x +4)+…+(x +n );已知()3nk x x k =⎡+⎤⎣⎦∑=9x 2+mx ,则m 的值是( ) A .45B .63C .54D .不确定二、填空题13.分解因式:216x y xy -=______.14.因式分解:322242m m n mn -+=________. 15.因式分解:32312x xy -=_________.16.已知2223,15a b b c a b c -=-=++=,则ab bc ca ++的值等于________.三、解答题 17.分解因式: (1)22a ab a ++; (2)()()222m n m n +-+18.化简:()()()482x y x y xy xy xy +---÷.19.先化简,再求值:(1)(1)(2)x x x x +-++,其中12x =. 20.先化简,再求值:22()()(2)34x y x y x y y y ⎡⎤+----÷⎣⎦,其中20201x y ==-,.21.已知有理数a ,b ,c 满足()222434|41|02aa cbc b +-+--+--=∣∣,试求313242n n n a b c +++-的值.22.先化简,再求值()()()22x y x y xy xy x +-+-÷,其中11,2x y ==. 23.已知x +1x =3,求下列各式的值:(1)(x ﹣1x)2;(2)x 4+41x . 24.阅读材料:若2222440m mn n n -+-+=,求m ,n 的值.解:∵2222440m mn n n -+-+=,∴()()2222440m mn n n n -++-+=,∴22()(2)0m n n -+-=,∴2()0m n -=,2(2)0n -=,∴2n =,2m =. 根据你的观察,探究下面的问题:(1)已知22228160x y xy y +-++=,则x =________,y =________;(2)已知ABC 的三边长a 、b 、c 都是正整数,且满足22248180a b a b +--+=,求ABC 的周长.25.如图,长为40,宽为x 的大长方形被分割为9小块,除阴影A ,B 两块外,其余7块是形状、大小完全相同的小长方形,其较短一边长为y .(1)分别用含x,y的代数式表示阴影A,B两块的周长,并计算阴影A,B两块的周长和.(2)分别用含x,y的代数式表示阴影A,B两块的面积,并计算阴影A,B的面积差.(3)当y取何值时,阴影A与阴影B的面积差不会随着x的变化而变化,并求出这个值.参考答案:1.A【分析】直接利用单项式乘以单项式运算法则计算得出答案. 【详解】解:6332510a a a =⋅, 故选:A .【点睛】此题主要考查了单项式乘以单项式,正确掌握相关运算法则是解题关键. 2.C【分析】根据同底数幂乘除法、积的乘方和幂的乘方法则进行计算,即可作出判断. 【详解】A :23a a a ⨯=,故A 错误,不符题意; B :826a a a ÷=,故B 错误,不符题意; C :()2242a b a b =,故C 正确,符合题意; D :()326a a =,故B 错误,不符题意; 故选:C.【点睛】此题考查了同底数幂乘除法、积的乘方和幂的乘方运算,熟练掌握运算法则是解本题的关键. 3.B【分析】根据同底数幂的除法法则对A 进行判断;根据幂的乘方法则对B 进行判断;根据同底数幂的乘法法则对C 进行判断;根据合并同类项对D 进行判断. 【详解】A. 624a a a ÷=,所以此项不正确; B. ()326a a =,所以此项正确;C. 246a a a ⋅=,所以此项不正确;D. 53a a -,不能合并,,所以此项不正确; 故选B .【点睛】本题考查了同底数幂的除法:am ÷an =am -n (m 、n 为正整数,m >n ).也考查了同底数幂的乘法、幂的乘方与积的乘方以及合并同类项. 4.D【分析】分别利用幂的乘方法则,同底数幂的除法,积的乘方法则,完全平方公式分别求出即可.【详解】A .()339a a =,故此选项计算错误,不符合题意;B .633a a a ÷=,故此选项计算错误,不符合题意;C .()2428ab a b =,故此选项计算错误,不符合题意;D .()2222a b a ab b +=++,故此选项计算正确,符合题意; 故选:D .【点睛】本题考查幂的乘方法则,同底数幂的除法,积的乘方法则,完全平方公式,熟练掌握相关计算法则是解答本题的关键.幂的乘方,底数不变,指数相乘;同底数幂相除,底数不变,指数相减;积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘;222()2a b a ab b +=++与222()2a b a ab b -=-+都叫做完全平方公式,为了区别,我们把前者叫做两数和的完全平方公式,后者叫做两数差的完全平方公式. 5.D【分析】根据合并同类项法则、同底数幂的乘除法、平方差公式计算即可求解. 【详解】A. 5611a a a +=,计算错误,本选项不符合题意;B. ()235326b b b -⋅=-,计算错误,本选项不符合题意;C. 6622362b b a a÷=,计算错误,本选项不符合题意;B. ()()22339b a a b a b +-=-,计算正确,本选项符合题意;故选:D .【点睛】本题考查整式的混合运算,解题的关键是熟练掌握合并同类项法则、同底数幂的乘除法、平方差公式计算法则. 6.B【分析】先将所求式子化简为107mn -,然后根据()22220m n m n mn +++=≥及222+=+m n mn 求出23mn ≥-,进而可得答案.【详解】解:2(23)(2)(2)-++-m n m n m n 222241294m mn n m n =-++- 225125m mn n =-+()5212mn mn =+- 107mn =-;∵()22220m n m n mn +++=≥,222+=+m n mn , ∴220mn mn ++≥, ∴32mn ≥-, ∴23mn ≥-,∴441073mn -≤, ∴2(23)(2)(2)-++-m n m n m n 的最大值为443, 故选:B .【点睛】本题考查了完全平方公式、平方差公式的应用,不等式的性质,正确对所求式子化简并求出mn 的取值范围是解题的关键. 7.A【分析】先化简已知的式子,再整体代入求值即可. 【详解】∵()()2221x x x +--= ∴225x x -=∴222432(2)313x x x x -+=-+= 故选:A .【点睛】本题考查平方差公式、代数式求值,利用整体思想是解题的关键. 8.D【分析】原式先提取公因式,再运用平方差公式进行计算即可. 【详解】解:2022202020222022- =202022022(20221)- =20202022(20221)(20221)+- =2020202220232021⨯⨯∵2022202020222022202320222021-=⨯⨯n ∴2020202220232021202320222021n ⨯⨯=⨯⨯ ∴202020222022n = ∴2020n =. 故选:D .【点睛】本题主要考查了整式的运算,熟练掌握平方差公式是解答本题的关键. 9.A【分析】依次求出每次输出的结果,根据结果得出规律,即可得出答案. 【详解】解:第1次,181273⨯=,第2次,12793⨯=,第3次,1933⨯=,第4次,1313⨯=,第5次,123+=,第6次,1313⨯=,⋯,依此类推,从第3次开始以3,1循环,(20222)21010-÷=,∴第2022次输出的结果为1.故选:A .【点睛】本题考查了求代数式的值,能根据求出的结果得出规律是解此题的关键. 10.B【分析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案. 【详解】解:2221(1)x x x -+=-,故A 不符合题意; 22221(1)x y xy xy ++=+,故B 符合题意;2(3)(3)9x x x +-=-是整式乘法,故C 不符合题意;32822(41)2(21)(21)a a a a a a a -=-=+-,故D 不符合题意;故选:B【点睛】本题考查了因式分解的意义,因式分解是把一个多项式转化成几个整式积的形式,注意因式分解与整式乘法的区别. 11.D【分析】根据输入数据与输出结果的规则进行计算,判断①②③;只有三个数字时,当最后输入最大数时得到的结果取最大值,当最先输入最大数时得到的结果取最小值,由此通过计算判断④.【详解】解:根据题意,依次输入1,2,3,4时,1211-=-=, 1322-=-=,2422-=-=,故①正确;按照1,3,4,2的顺序输入时,1322-=-=, 2422-=-=,220-=,为最小值,故③正确; 按照1,3,2,4的顺序输入时,1322-=-=,220-=,0444-=-=,为最大值,故②正确;若随意地一个一个地输入三个互不相等的正整数2,a ,b ,全部输入完毕后显示的最后结果设为k , k 的最大值为10, 设b 为较大数字,当1a =时,2110a b b --=-=, 解得11b =,故此时任意输入后得到的最小数是:11128--=,设b 为较大数字,当2b a >>时,2210a b a b --=--=, 则210a b --=-,即8b a -= 故此时任意输入后得到的最小数是:2826b a --=-=,综上可知,k 的最小值是6,故④正确; 故选D .【点睛】此题考查绝对值有关的问题,解题的关键是要有试验观察和分情况讨论的能力. 12.B【分析】根据条件和新定义列出方程,化简即可得出答案.【详解】解:根据题意得:x (x +3)+x (x +4)+…+x (x +n )=x (9x +m ), ∴x (x +3+x +4+…+x +n )=x (9x +m ), ∴x [(n ﹣3+1)x +(31)(3)2n n -++]=x (9x +m ),∴n ﹣2=9,m =(31)(3)2n n -++,∴n =11,m =63. 故选:B .【点睛】本题考查了新定义,根据条件和新定义列出方程是解题的关键. 13.(16)xy x -【分析】利用提公因式法进行分解即可. 【详解】解:216(16)x y xy xy x -=-, 故答案为:(16)xy x -.【点睛】本题考查了因式分解-提公因式法,解题的关键是熟练掌握因式分解-提公因式法. 14.()22m m n -【分析】首先提取公因式2m ,再利用完全平方公式即可分解因式. 【详解】解:322242m m n mn -+()2222m m mn n =-+ ()22m m n =-故答案为:()22m m n -【点睛】本题考查了提公因式法和公式法分解因式,熟练掌握和运用分解因式的方法是解决本题的关键.15.()()322x x y x y +-【分析】先提取公因式3x ,然后根据平方差公式因式分解即可求解.【详解】解:原式=()()()2234322x x y x x y x y -=+-.故答案为:()()322x x y x y +-.【点睛】本题考查了因式分解,正确的计算是解题的关键.16.225- 【分析】利用完全平方公式求出(a −b ),(b −c ),(a −c )的平方和,然后代入数据计算即可求解.【详解】解:∵35a b b c -=-=, ∴65a c -=()()()2225425a b b c a c -+-+-= ∴()()222542225a b c ab bc ac ++-++=, ∵2221a b c ++=,∴()27125ab bc ac -++=, ∴225ab bc ca ++=-, 故答案为:225- 【点睛】本题考查了完全平方公式,解题的关键是分别把35a b -=,35b c -=,相加凑出,65a c -=三个式子两边平方后相加,化简求解. 17.(1)()2.a a b ++(2)()32.m m n +【分析】(1)提取公因式a 即可;(2)按照平方差公式进行因式分解即可.【详解】(1)解:22a ab a ++()2.a a b =++(2)()()222m n m n +-+()()22m n m n m n m n =++++--()32.m m n =+【点睛】本题考查的是多项式的因式分解,掌握“提公因式法与公式法分解因式”是解本题的关键.18.222x y -+【分析】根据整式的混合运算法则计算即可.【详解】解:原式()()2222224222x y xy xy x y x y =---÷=---=-+【点睛】本题考查整式的混合运算,熟练掌握该知识点是解题关键.19.12x + ;2 【分析】先利用平方差公式,单项式与多项式乘法化简,然后代入12x =即可求解. 【详解】(1)(1)(2)x x x x +-++2212x x x =-++ 12x =+ 当12x =时, 原式12x =+11222=+⨯=. 【点睛】本题考查了整式的化简求值,正确地把代数式化简是解题的关键.20.2,2022x y -【分析】根据平方差公式,完全平方公式,先计算括号内的,然后根据多项式除以单项式进行计算,最后将20201x y ==-,代入即可求解.【详解】解:原式=()222224434x y x xy y y y --+--÷()2484xy y y =-÷2x y =-.当20201x y ==-,时,原式=2020-2×(-1)=2022.【点睛】本题考查了整式的化简求值,掌握平方差公式,完全平方公式,多项式除以单项式是解题的关键.21.34-【分析】根据非负数的性质求出a ,b ,c 的值,然后代入计算即可. 【详解】解:由题得:22043404102a cbc a b ⎧⎪+-=⎪--=⎨⎪⎪--=⎩, 解得:4141a b c =⎧⎪⎪=⎨⎪=-⎪⎩, 所以313242n n n a b c +++-()3242311414n n n +++⎛⎫=⨯-- ⎪⎝⎭31114144n +⎛⎫=⨯⨯- ⎪⎝⎭34=-. 【点睛】本题考查了非负数的性质,解三元一次方程,积的乘方法则的逆用等知识,利用代入法或加减法把解三元一次方程组的问题转化为解二元一次方程组的问题是解题的关键.22.x 2-2y ,0【分析】首先运用平方差公式计算,再运用单项式乘以多项式计算,最后合并同类项,即可化简,然后把x 、y 值代入计算即可.【详解】解:()()()22x y x y xy xy x +-+-÷=x 2-y 2+y 2-2y=x 2-2y当x =1,y =12时,原式=12-2×12=0.【点睛】本题考查整式化简求值,熟练掌握整式混合运算法则是解题的关键.23.(1)5(2)47【分析】(1)由21()x x +=22112x x x x +⋅⋅+、21()x x -=22112x x x x -⋅⋅+,进而得到21()x x+﹣4x •1x即可解答; (2)由21()x x -=2212x x -+可得221x x +=7,又2221()x x +=4412x x ++,进而得到441x x+=2221()x x +﹣2即可解答. (1)解:∵21()x x +=22112x x x x +⋅⋅+∴21()x x -=22112x x x x -⋅⋅+=2211124x x x x x x+⋅+-⋅=21()x x +﹣4x •1x=32﹣4=5. (2)解:∵21()x x -=2212x x -+,∴221x x +=21()x x -+2=5+2=7,∵2221()x x +=4412x x++,∴441x x +=2221()x x +﹣2=49﹣2=47. 【点睛】本题主要考查通过对完全平方公式的变形求值.熟练掌握完全平方公式并能灵活运用是解答本题的关键.24.(1)-4,-4;(2)ABC 的周长为9.【分析】(1)利用完全平方公式配方,再根据非负数的性质即可得出x 和y 的值;(2)利用完全平方公式配方,再根据非负数的性质即可得出a 和b 的值,从而得出c 的取值范围,根据c 为整数即可得出c 的值,从而求得三角形的周长.【详解】解:(1)由22228160x y xy y +-++=得222)((2816)0x xy y y y -+++=+,22()(4)0x y y -++=,∴0x y -=,40y +=,∴4x y ==-,故答案为:-4,-4;(2)由22248180a b a b +--+=得:222428160a a b b -++-+=,222(1)(4)0a b -+-=,∴a -1=0,b -4=0,∴a =1,b =4,∴3<c <5,∵△ABC 的三边长a 、b 、c 都是正整数,∴c =4,∴ABC 的周长为9.【点睛】本题主要考查了配方法的应用及偶次方的非负性,同时考查了三角形的三边关系,本题难度中等.25.(1)阴影A 的周长为:21480x y -+,∴阴影B 的周长为:21680x y +-,则其周长和为:42x y +;(2)阴影A 的面积为:240120412x y xy y --+,阴影B 的面积为:2416016xy y y -+,阴影A ,B 的面积差为:2404084x y xy y +-- ; (3)当y =5时,阴影A 与阴影B 的面积差不会随着x 的变化而变化,这个值是100.【分析】(1)由图可知阴影A 的长为(404y -),宽为(3x y -),阴影B 的长为4y ,宽为()404x y --⎡⎤⎣⎦,从而可求解;(2)结合(1),利用长方形的面积公式进行求解即可;(3)根据题意,使含x 的项提公因式x ,再令另一个因式的系数为0,从而可求解.(1)解:(1)由题意得:阴影A 的长为(404y -),宽为(3x y -),∴阴影A 的周长为:()()()240432404321480y x y y x y x y -+-=-+-=-+⎡⎤⎣⎦∵阴影B 的长为4y ,宽为()404404x y x y --=-+⎡⎤⎣⎦,∴阴影B 的周长为:()()240424042168044y y x y x y x y +-+=+-+=+-⎡⎤⎣⎦,∴其周长和为:()()214802168042x y x y x y -+++-=+;(2)∵阴影A 的长为(404y -),宽为(3x y -),∴阴影A 的面积为:()()2404340120412y x y x y xy y --=--+. ∵阴影B 的长为4y ,宽为404x y -+,∴阴影B 的面积为:()24404416016y x y xy y y -+=-+, ∴阴影A ,B 的面积差为:()()22240120412416016404084x y xy y xy y y x y xy y --+--+=+--.(3)∵阴影A 与阴影B 的面积差不会随着x 的变化而变化,阴影A ,B 的面积差()22404084408404x y xy y y x y y =+--=-+-.∴当4080y -=,即5y =时,阴影A 与阴影B 的面积差不会随着x 的变化而变化.此时:阴影A ,B 的面积差()2408540545100x =-⨯+⨯-⨯=.【点睛】本题主要考查列代数式,代数式求值,与某个字母无关型问题,解答的关键是根据图表示出两个长方形的长与宽.。
8年级数学人教版上册同步练习-整式的乘法(含答案解析)

第十四章 整式的乘法与因式分解14.1整式的乘法专题一 幂的性质1.下列运算中,正确的是( )A .3a 2-a 2=2B .(a 2)3=a 9C .a 3•a 6=a 9D .(2a 2)2=2a 4 2.下列计算正确的是( )A .3x ·622x x = B .4x ·82x x = C .632)(x x -=- D .523)(x x =3.下列计算正确的是( )A .2a 2+a 2=3a 4B .a 6÷a 2=a 3C .a 6·a 2=a 12D .( -a 6)2=a 12 专题二 幂的性质的逆用4.若2a =3,2b =4,则23a+2b 等于( ) A .7 B .12 C .432 D .1085.若2m=5,2n=3,求23m+2n的值.专题三 整式的乘法7.下列运算中正确的是( )A .2325a a a +=B .22(2)()2a b a b a ab b +-=--C .23622a a a ⋅=D .222(2)4a b a b +=+8.若(3x 2-2x +1)(x +b )中不含x 2项,求b 的值,并求(3x 2-2x +1)(x +b )的值.9.先阅读,再填空解题: (x +5)(x +6)=x 2+11x +30; (x -5)(x -6)=x 2-11x +30; (x -5)(x +6)=x 2+x -30; (x +5)(x -6)=x 2-x -30.(1)观察积中的一次项系数、常数项与两因式中的常数项有何关系?答:________. (2)根据以上的规律,用公式表示出来:________. (3)根据规律,直接写出下列各式的结果:(a +99)(a -100)=________;(y -80)(y -81)=________.专题四 整式的除法 10.计算:(3x 3y -18x 2y 2+x 2y )÷(-6x 2y )=________. 11.计算:236274319132)()(ab b a b a -÷-.12.计算:(a -b )3÷(b -a )2+(-a -b )5÷(a +b )4.状元笔记【知识要点】 1.幂的性质(1)同底数幂的乘法:nm n m a a a +=⋅ (m ,n 都是正整数),即同底数幂相乘,底数不变,指数相加.(2)幂的乘方:()m nmna a=(m ,n 都是正整数),即幂的乘方,底数不变,指数相乘.(3)积的乘方:()n n nab a b =(n 都是正整数),即积的乘方,等于把积中的每一个因式分别乘方,再把所得的幂相乘. 2.整式的乘法(1)单项式与单项式相乘:把它们的系数、同底数幂分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.(2)单项式与多项式相乘:就是用单项式去乘单项式的每一项,再把所得的积相加. (3)多项式与多项式相乘:先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.3.整式的除法(1)同底数幂相除:m n m na a a -÷=(m ,n 都是正整数,并且m >n ),即同底数幂相除,底数不变,指数相减.(2)0a =1(a ≠0),即任何不等于0的数的0次幂都等于1.(3)单项式除以单项式:单项式相除,把系数与同底数幂分别相除作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式.(4)多项式除以单项式:先把这个多项式的每一项除以这个单项式,再把所得的商相加. 【温馨提示】1.同底数幂乘法法则与合并同类项法则相混淆.同底数幂相乘,应是“底数不变,指数相加”;而合并同类项法则是“系数相加,字母及字母的指数不变”.2.同底数幂相乘与幂的乘方相混淆.同底数幂相乘,应是“底数不变,指数相加”;幂的乘方,应是“底数不变,指数相乘”.3.运用同底数幂的乘法(除法)法则时,必须化成同底数的幂后才能运用上述法则进行计算. 4.在单项式(多项式)除以单项式中,系数都包括前面的符号,多项式各项之间的“加、减”符号也可以看成系数的符号来参与运算. 【方法技巧】1.在幂的性质中,公式中的字母可以表示任意有理数,也可以表示单项式或多项式. 2.单项式与多项式相乘,多项式与多项式相乘时,要按照一定的顺序进行,否则容易造成漏项或增项的错误.3.单项式与多项式相乘,多项式除以单项式中,结果的项数与多项式的项数相同,不要漏项.参考答案:1.C 解析:A 中,3a 2与-a 2是同类项,可以合并,3a 2―a 2=2a 2,故A 错误;B 中,(a 2)3=a 2×3=a 6,故B 错误;C 中,a 3•a 6=a 3+6=a 9,故C 正确;D 中,(2a 2)2=22(a 2)2=4a 4,故D 错误.故选C . 2.C 解析:3x ·2235x xx +==,选项A 错误;4x ·2246x x x +==,选项B 错误;23236()x x x ⨯-=-=-,选项C 正确;32236()x x x ⨯==,选项D 错误. 故选C .3.D 解析:A 中,22223a a a +=,故A 错误;B 中,624a a a ÷=,故B 错误;C 中,628a a a ⋅=,故C 错误. 故选D .4.C 解析:23a+2b =23a ×22b =(2a )3×(2b )2=33×42=432.故选C .5.解:23m+2n=23m·22n=(2m)3·(2n)2 =53·32=1125.7.B 解析:A 中,由合并同类项的法则可得3a+2a=5a ,故A 错误;B 中,由多项式与多项式相乘的法则可得22(2)()22a b a b a ab ab b +-=-+-=222a ab b --,故B 正确;C 中,由单项式与单项式相乘的法则可得232322a a a +⋅==52a ,故C 错误;D 中,由多项式与多项式相乘的法则可得222(2)44a b a ab b +=++,故D 错误. 综上所述,选B . 8.解:原式=3x 3+(3b -2)x 2+(-2b+1)x+b ,∵不含x 2项,∴3b -2=0,得. ∴(3x 2-2x+1)(x+23)=3x 3-2x 2+x+2x 2-43x+23=3x 3-13x+23.9.解:(1)观察积中的一次项系数、常数项与两因式中的常数项的关系是: 一次项系数是两因式中的常数项的和,常数项是两因式中的常数项的积; (2)根据以上的规律,用公式表示出来:(a+b )(a+c )=a 2+(b+c )a+bc ;(3)根据(2)中得出的公式得:(a+99)(a -100)=a 2-a -9900;(y -80)(y -81)=y 2-161y+6480. 10.-12x+3y -16解析:(3x 3y -18x 2y 2+x 2y )÷(-6x 2y )=(3x 3y )÷(-6x 2y )-18x 2y 2÷(-6x 2y )+x 2y÷(-6x 2y )=-12x+3y -16.11.解:原式。
人教版八年级数学上册《整式的乘法与因式分解》测试卷(含答案)

人教版八年级数学上册《整式的乘法与因式分解》测试卷(含答案)一、选择题(每小题3分,共30分)1.下列计算正确的是( )A.x+x²=x³B.x²・x³=x6C.(x³)²=x6D.x9÷x³=x³2.若12x m y2与13x3y n是同类项,则m,n的值为( )A.m=3,n=2B.m=2,n =3C.m=-3.n=2D.m=-2,n=33.下列因式分解不完全的是( )A.a²-2ab+b²=(a-b)²B.a³-a =a (a²-1)C.a²b-ab²=ab(a-b)D.a²-b²=(a+b)(a-b)4.已知(a +b)²=(a-b)²+M,则M为( )A.abB.2abC.-2abD.4ab5.下列多项式乘法中,能运用平方差公式的是()A.(a-b)(a-b)B.(a-b)(-a+b)C.(a+b)(-a+b)D.(a-b)(b-a)6.如果(x+m)与(x+3)的乘积中不含x的一次项,则m的值为( )A.-3B.3C.0D.17.如图的图形面积由以下哪个公式表示( )A.a²-b²=a(a-b)+b(a-b)B.(a-b)²=a²-2ab+b²C.(a+b)²=a²+2ab+b²D.a²-b²=(a+b)(a-b)8.若△ABC的三边a,b,c满足a²+b²+c²-ab-bc-ca=0,则△ABC是( )A.等腰三角形B.等边三角形C.等腰直角三角形D.直角三角形9.下列计算:①3a+2b=5ab;②3x³×(-2x²)=-6x5;③4a³b÷(-2a²b)=-2a;④(-a²)³=a6;⑤(-a)³÷(-a)=-a².其中正确的有( )A.1个B.2个C.3个D.4 个10.已知x+y=6,xy=8,下列结论:①(x+y)²=36;②x²+y²=20;③x-y=2;④x²y²=12.其中正确的是( )A.①②③④B.①②④C.①②D.①③④二、填空题(每小题3分,共18分)11.x平方x²+y²+2x-6y+10=0,则x・y=_________12.当x______时,(x-3)0=1.13.若x²+2(m-3)x+16是一个完全平方式,那么m应为_________.14.若x-1x =1,则x²+1x2的值是__________.15.观察下列关于自然数的等式:①3²-4X1²=5;②5²-4X2²=9;③7²-4X3²=13.根据上述规律解决下列问题:(1)完成第四个等式:____________________;(2)写出你猜想的第n个等式_____________________(用含n的式子表示).16.已知a,b满足等式x=a²+b²+5,y=2(2b-a),则x,y的大小关系为______________.三、解答题(72分)17.(10分)计算下列各题.(1)-2a²bx(−12ab2)x(-abc);(2)(5x-3)(-5x-3)-(5x+3)²+(5x-3)².18.(12分)分解因式。
人教版八年级数学上册第十四章 整式乘法与因式分解练习(含答案)

第十四章 整式乘法与因式分解一、单选题1.计算24x x ⋅的结果是( )A .2xB .10xC .8xD .6x2.若212448m m ++=,则m 的值是( )A .4B .3C .2D .83.若0a ≠,则下列运算正确的是( )A .428a a a ⋅=B .224a a a +=C .()24639a a -=D .()()422a a a -÷-= 4.2ab •a 2的计算结果是( )A .2abB .4abC .2a 3bD .4a 3b5.若代数式2231x x -+的值是3,则代数式2463x x -+的值是( )A .9B .7C .5D .66.为了运用平方差公式计算(x +2y ﹣1)(x ﹣2y +1),下列变形正确的是( ) A .[x ﹣(2y +1)]2B .[x +(2y ﹣1)][x ﹣(2y ﹣1)]C .[(x ﹣2y )+1][(x ﹣2y )﹣1]D .[x +(2y ﹣1)]2 7.若()226x x p x q ++=-则p ,q 的值分别为( )A .6,6B .9,-3C .3,-3D .9,38.下列等 式从左到右的变形是因式分解的是( )A .2632a b a ab =⋅B .2(4)(4)16x x x +-=-C .222()ax ay a x y -=-D .24814(2)1x x x x +-=+-9.已知3xy =,2x y -=-,则代数式22x y xy -的值是( )A .6B .﹣1C .﹣5D .﹣610.甲、乙两农户各有两块地,如图所示,今年,这两个农户决定共同投资搞饲养业.为此,他们准备将这4块土地换成一块地,那块地的宽为(a +b )米,为了使所换土地的面积与原来4块地的总面积相等,交换之后的土地的长应该是( )米.A .a +bB .b +cC .a +cD .a +b +c二、填空题11.计算:23x x ⋅=______;3212a b ⎛⎫-= ⎪⎝⎭______. 12.若()()32x x m -+的计算结果中不含x 的一次项,则m 的值是______.13.分解因式:234x y y -=_____. 14.()()()243232121211++⋯++计算结果的个位数字是______________.三、解答题15.已知a x==2=a y=3.求:(1)a x+y的值=(2)a3x的值=(3)a3x+2y的值=16.计算(1)3x²y∙(-2xy3);(2)(3m-n)(m+2n);(3)(ab-1) ² +a(2b-1).17.计算:(1)(2a ﹣1)2﹣(a +3)(a ﹣7).(2)(a ﹣b )(a +b )(a 2+b 2)(a 4﹣b 4).18.因式分解:(1)2363a a -+(2)432235x x x --(3)()()22m m n n n m -+-19.先化简,再求值.()()()222264ab ab a b ab ⎡⎤+--+÷⎣⎦,其中10a =,125b =-.20.请认真观察图形,解答下列问题:(1)根据图中条件,用两种方法表示两个阴影图形的面积的和(只需表示,不必化简);方法一得_____;方法二得______.(2)由(1)可知,你能得到怎样的等量关系?请用等式表示为_______;。
人教版八年级上册数学第十四章 整式的乘法与因式分解单元测试卷附解析

人教版八年级上册数学第十四章整式的乘法与因式分解单元测试卷附解析一、单选题(共10题;共30分)1.(3分)计算(a3)2•a2的结果是()A.a7B.a8C.a10D.a112.(3分)若x n=2,则x3n的值为()A.6B.8C.9D.123.(3分)计算(-2a2b)3的结果是()A.-6a6b3B.-8a6b3C.8a6b3D.-8a5b34.(3分)如果(a-1)0=1成立,则()A.a≠1B.a=0C.a=2 D.a=0或a=2 5.(3分)计算(2+1)(22+1)(24+1)(28+1)+1的值是()A.1024B.28+1C.216+1D.2166.(3分)已知a+1a=3,则a2+1a2的值为()A.5B.6C.7D.87.(3分)下列由左到右的变形,属于因式分解的是()A.(x+2)(x-2)=x2-4B.x2+4x-2=x(x+4)-2C.x2-4=(x+2)(x-2)D.x2-4+3x=(x+2)(x-2)+3x8.(3分)若4x2+5x+k有一个因式为(x−3),则k的值为()A.17B.51C.-51D.-579.(3分)如图,在边长为a的正方形中挖掉一个边长为b的小正方形(a>b),把余下的部分剪拼成一个矩形,通过计算两个图形阴影部分的面积,验证了一个等式,则这个等式是()A.a2−ab=a(a−b)B.(a+b)2=a2+2ab+b2C.(a−b)2=a2−2ab+b2D.a2−b2=(a+b)(a−b)10.(3分)如图,大正方形与小正方形的面积之差为S,则图中阴影部分的面积是()A.2S B.S C.12S D.14S 二、填空题(共5题;共15分)11.(3分)已知2n=3,则4n+1的值是.12.(3分)设4x2+mx+121是一个完全平方式,则m=13.(3分)计算(x−y)(−y−x)的结果是.14.(3分)已知a+10=b+12=c+15,则a2+b2+c2﹣ab﹣bc﹣ac=.15.(3分)若√a2−3a+1+b2+2b+1=0,则a2+1a2−|b|=.三、计算题(共3题;共21分)16.(8分)计算:(1)(2分)(5ab-3x)(-3x-5ab).(2)(2分)(-y2+x)(x+y2).(3)(2分)x(x+5)-(x-3)(x+3).(4)(2分)(-1+a)(-1-a)(1+b2).17.(8分)因式分解:(1)(2分)am−an+ap(2)(2分)2a(b+c)−3(b+c)(3)(2分)4x4−4x3+x2(4)(2分)x4−1618.(5分)已知(x+a)(x 2﹣x+c)的乘积中不含x 2和x 项,求a ,c 的值.四、解答题(共7题;共54分)19.(6分)仔细阅读下面例题,解答问题:例题:已知二次三项式 x 2 - 4x + m 有一个因式是(x+3),求另一个因式以及 m 的值. 解:设另一个因式为(x+n),得 x 2 - 4x + m = ( x + 3)( x + n) 则 x 2 - 4x + m = x 2 + (n + 3) x + 3n ∴{n +3=−4m =3n 解得:n=-7,m=-21∴另一个因式为(x -7),m 的值为-21. 问题:仿照以上方法解答下面问题:已知二次三项式 2x 2 + 3x - k 有一个因式是(2x -3),求另一个因式以及 k 的值.20.(6分)阅读下面解题过程,然后回答问题.分解因式: x 2+2x −3 .解:原式= x 2+2x +1−1−3 = (x 2+2x +1)−4 = (x +1)2−4 = (x +1+2)(x +1−2) = (x +3)(x −1) 上述因式分解的方法称为”配方法”.请你体会”配方法”的特点,用“配方法”分解因式: y 2−4y +3 .21.(6分)已知a,b,c是△ABC的三边长,且满足a2c2−b2c2=a4−b4,试判断△ABC的形状。
人教版八年级数学上册《第十四章 整式的乘法与因式分解》测试卷-带参考答案

人教版八年级数学上册《第十四章整式的乘法与因式分解》测试卷-带参考答案一、选择题1.化简(-x)3·(-x)2的结果正确的是()A.−x6B.x6C.x5D.−x52.计算(2x)3的结果是()A.2x3B.6x C.8x3D.6x33.若4m=a,8n=b则22m+6n的值是()A.ab2B.a+b2C.a2b3D.a2+b34.若(x−3)(x+5)=x2+px+q,则p为()A.-15 B.2 C.8 D.-25.若m>0,m x=3,m y=2则m x−3y的值为()A.32B.−32C.1 D.386.若a+b=3,ab=1则(a−b)2的值为()A.4 B.5 C.6 D.7 7.若x2+mx+n分解因式的结果是(x﹣2)(x+1),则m+n的值为()A.﹣3 B.3 C.1 D.﹣1 8.若a−b=3,ab=1则a3b−2a2b2+ab3的值为()A.3B.4C.9D.12二、填空题9.计算2x⋅5x2的结果等于.10.若10a=3,10b=5则10b−a=.11.若(a−2023)0=1,则a的取值范围是.12.因式分解:1−4m+4m2=.13.如果x2−2kx+16是一个完全平方式,则k=.三、解答题14.计算:(1)7m(4m2p)2÷7m2;(2)(15x2y-10xy2)÷5xy.15.分解因式:(1)x2−9;(2)2x2−20x+50.,b=﹣2.16.先化简,再求值:(2a+b)2﹣(2a+3b)(2a﹣3b),其中a=1217.两个不相等的实数a,b满足a2+b2=5.(1)若ab=2,求a+b的值;(2)若a2-2a=m,b2-2b=m,求a+b和m的值.18.阅读下列材料:常用的分解因式方法有提公因式、公式法等.但有的多项式只用上述方法就无法分解,如x2−4y2+2x−4y,细心观察这个式子会发现前两项符合平方差公式,后两项可提取公因式,分解过程为:这种分解因式的方法叫分组分解法,利用这种方法解决下列问题:(1)分解因式:9x2−9x+3y−y2;(2)已知△ABC的三边a、b、c满足a2−b2−ac+bc=0,判断△ABC的形状并说明理由.1.D2.C3.A4.B5.D6.B7.A8.C9.10x310.5311.a≠202312.(1−2m)213.±414.(1)解:7m(4m2p)2÷7m2=7m×16m4p2÷7m2=112m5p2÷7m2=16m3p2;(2)解:(15x2y-10xy2)÷5xy=15x2y÷5xy−10xy2÷5xy=3x−2y .15.(1)解:原式=(x+3)(x−3)(2)解:原式=2(x2−10x+25)=2(x−5)216.解:原式=4a2+4ab+b2﹣(4a2﹣9b2) =4a2+4ab+b2﹣4a2+9b2=4ab+10b2当a =12,b=﹣2时,原式=4 ×12×(﹣2)+10×(﹣2)2=﹣4+10×4=﹣4+40=36.17.(1)解:∵a2+b2=5,ab=2∴(a+b)2=a2+2ab+b2=5+2×2=9∴a+b=±3(2)解:∵a2-2a=m,b2-2b=m∴a2-2a=b2-2b,a2-2a+b2-2b=2m∴a2-b2-2(a-b)=0∴(a-b)(a+b-2)=0∵a≠b∴a+b-2=0∵a2-2a+b2-2b=2m∴a2+b2-2(a+b)=2m∵a2+b2=5∴5-2×2=2m解得:m=12即a+b=2,m=1218.(1)解:9x2−9x+3y−y2=(9x2−y2)−(9x−3y)=(3x−y)(3x+y)−3(3x−y)=(3x−y)(3x+y−3)(2)解:依据分组分解法,得(a2−b2)−(ac−bc)=0(a−b)(a+b)−c(a−b)=0(a−b)(a+b−c)=0根据三角形三边关系,易得a+b−c>0∴a−b=0∴a=b∴△ABC为等腰三角形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级数学上册整式乘法与因式分解 --整式的乘法A 卷
、选择题
2
(x + px + 2)(x-q )不含x 的二次项,则
A.相等
B. 互为相反数
C. 互为倒数
D. 乘积为-1
12、已知2a =3, 2b =6, 2c =12,贝U a , b , c 的关系为①b=a+1②c=a+2③a+c=2b ④b+c=2a+3,其中正确的个数 有
( )
A. 1个 B . 2个 C . 3个 D . 4个
二、填空题
13、 (— p ) 2? (- p )= __________ .
14、 __________________________________)计算(-2x 3y 2) 3?4xy 2=
15、 若 a — b=1, ab=— 2,则(a + 1)(b —1)=
1、 化简-b?b 3?b 4的正确结果是( )
A. 7
B . b
C . -b 8
2、 F 列运算结果正确的是(
A. 2a+3b=5ab 2 2 =a 3 2 5
4 C . a? (- 2a ) =4a D .(a 2
)
3 5 =a 3、 2
若( x - 5) ( 2x - n ) =2x +mx — n 的值分别是(
A. m=- 7, n=3 B . m=7 n= — 3 C . m=- 7, n= - 3 D . m=7
n=3 4、 F 列计算正确的是(
A.3a 2 •(— 2a 3) =6a 6
B.a (a 2— 1) =a 3— 1
C. (a+b )( a — 2b ) =a 2— ab — 2b 2
D. —2a •( a 2) 3=— 2a 9
5、 F 列计算结果是x 5的为(
A. D . ( x 3) 2
10、 计算( —2a 2)3的结果是( )
—6a 2 B. —8a 5 C
. 8a 5 D. — 8a 6
已知x+y - 4=0,则2y ?2x
的值是( )
16 B . - 16 C . 1
8 D . 8
如果
( a n ?bb 3=a 9b 15,那么( )
m=4, n=3 B . m=4, n=4 C .m=3, n=4 D 若(- 2x+a )( x - 1)中不含 x 的 一次项,则 ( )
a=1 B . a=- 1 C . a=- 2 D . a=2
x y 2x+3y
A 574
B p 与q 的关系是(
11、要使多项式 C . B x 6、 A. 7
、 A. 8 A. .m=3, n=3
9、
A. 577
10 2 x 十x 2?x 3 、575 C 、 576 D
八年级数学上册整式乘法与因式分解--整式的乘法A卷
16、若(x-2 )( x+3 ) = x 2 + mx + n,贝U mn= .
17、若a+3b-2=0,则3a?27b= ________ .
18、如果x+4y - 5=0,那么2x?16y= ____________ .
三、解答题
19、化简求值:(5x- y)( y+2x) -( 3y+2x) ( 3y - x),其中x=1 , y=2
20、已知x3m=2, y2m=3,求(x2m)3+ (y^6- (x 2y)3m• y m的值.
21、规定a*b=2a x 2b, (1)求2*3 ; ( 2)若2* (x+1) =16,求x 的值.
22、已知(x3+mx+n)(x2- x+1)展开式中不含x3和x2项.
(1 )求m n的值;(2 )当m n取第(1)小题的值时,求(m+r)(卅-mn+ri)的值.
23、计算:a2・a4+(a2)324 、计算:a3• a5+ (-a2) 4-3a8
25、计算:(x-3y )( x
+7y)26、计算:(2m-3)(2m+5)
C
C
C
C
D
A
A
C
C
A
D
5
-p -
-32x10y8.
-4、
-6 ;
9
32、
U」〔『,-28
一 5.
(1) 32 或
-1 , -1 ;-2 2?
x<4xy-21y2 4m i+4m-15 参考答案
1、
2、
3、
4、
5、
6、
7、
8
9、
10、
11、
12、
13、
14、
15、
16、
17、
18
19、
20、
21、
22、
23、
24、
25、
26、
(2) x=1。