初一数学重点必考知识点与提分秘籍

合集下载

2024年初一数学必背知识点总结(二篇)

2024年初一数学必背知识点总结(二篇)

2024年初一数学必背知识点总结一、整数的基本运算1. 整数的加法、减法运算规则2. 整数相加、相减时,需要考虑正负号3. 整数的乘法、除法运算规则4. 整数的乘法交换、结合、分配律二、分数的基本概念和运算1. 分数的定义和性质2. 分数的比较大小3. 真分数和假分数的转换4. 分数的加法、减法、乘法、除法运算规则三、小数的基本概念和运算1. 小数的定义和性质2. 小数的读法和写法3. 小数的加法、减法、乘法、除法运算规则四、比例与比例的应用1. 比例的定义和性质2. 比例的相等与比例的倍数3. 比例与分数、百分数之间的转化4. 比例在实际问题中的应用五、百分数的概念和运算1. 百分数的定义和性质2. 百分数与分数、小数之间的转化3. 百分数的加法、减法、乘法、除法运算规则4. 百分数在实际问题中的应用六、图形的基本概念与性质1. 点、线、面的基本概念2. 直线、线段、射线的区别与性质3. 角的定义和性质4. 四边形、三角形、圆的基本概念与性质5. 二维图形的对称性与特性七、长度、面积和体积的单位换算1. 长度、面积和体积的定义和计算2. 长度、面积和体积的单位换算八、平面直角坐标系1. 平面直角坐标系的概念2. 平面直角坐标系中点的坐标表示3. 平面直角坐标系中两点之间的距离公式4. 平面直角坐标系中点关于x轴、y轴的对称点坐标计算九、基本统计1. 数据的调查、整理、统计和分析2. 平均数、中位数、众数的计算3. 极差、频数和频率的计算以上是初一数学的一些必背知识点总结,希望能帮助到你。

2024年初一数学必背知识点总结(二)学数学的小窍门1.1正数与负数在以前学过的0以外的数前面加上负号“-”的数叫负数(negativenumber)。

与负数具有相反意义,即以前学过的0以外的数叫做正数(positivenumber)(根据需要,有时在正数前面也加上“+”)。

1.2有理数正整数、0、负整数统称整数(integer),正分数和负分数统称分数(fraction)。

七年级数学应掌握知识点

七年级数学应掌握知识点

七年级数学应掌握知识点在七年级的数学学习中,有一些知识点是必须要掌握好的。

只有把这些知识点掌握好了,才能够更好地学习数学并应对日后的学习和考试。

以下是七年级数学应掌握的一些重要知识点。

1.小数和分数的相互转换在数学中,小数与分数之间的相互转换是很基础的内容,但也是非常重要的。

具体来说,应掌握将小数转换成分数,并将分数转化成小数,这样才能在题目中随时转换数据,方便计算。

2.平面图形的认识与运算在七年级数学中,平面图形的认识与运算是一个很重要的环节。

需要学习各种平面图形的名称、特点以及计算周长和面积的方法。

在平面图形的计算中,学会使用比较简单的公式和运算方法将会使计算变得更加轻松。

3.二元一次方程式的解解二元一次方程式也是七年级数学中十分重要的一个内容。

在解二元一次方程式的过程中,要掌握将方程进行变形的方法,以及如何通过消元、代入等方法求解方程。

这样才能在解题时做得更加熟练、更加得心应手。

4.数据的收集和整理在七年级数学中,数据的收集和整理也是必须要掌握的一项知识点。

要学习如何从实际生活和工作中收集数据,并学会使用直方图、折线图、饼图等图表将数据整理成可以直观看出的图形化数据。

学会数据收集和整理可以帮助我们更好地认识数据,并用数据来帮助我们解决实际问题。

5.比例与比例运算在学习数学时,比例与比例运算也是必不可少的一项知识点。

要学会理解什么是比例,如何进行比例的计算和比例的应用。

在比例的计算过程中,需要熟练掌握比例式子的推导和解法,才能够顺利解答各类问题。

6.图形的相似性质、判定和运用图形的相似性质、判定和运用也是七年级数学中的重要知识点之一。

要学会理解相似图形的概念、定理和性质,掌握相似图形判定的方法,并学会在实际问题中运用相似图形的性质来解决问题。

学会图形的相似性质可以帮助我们更好地理解数学上的概念,为我们日后的学习和工作打下基础。

7.立体图形的认识和计算在数学中,学习立体图形的认识和计算也是必不可少的。

初一数学重点知识点总结归纳

初一数学重点知识点总结归纳

初一数学重点知识点总结归纳初一数学重点知识点总结相反数(1)相反数的概念:只有符号不同的两个数叫做互为相反数.(2)相反数的意义:掌握相反数是成对出现的,不能单独存在,从数轴上看,除0外,互为相反数的两个数,它们分别在原点两旁且到原点距离相等.(3)多重符号的化简:与“+”个数无关,有奇数个“﹣”号结果为负,有偶数个“﹣”号,结果为正.(4)规律方法总结:求一个数的相反数的方法就是在这个数的前边添加“﹣”,如a的相反数是﹣a,m+n的相反数是﹣(m+n),这时m+n是一个整体,在整体前面添负号时,要用小括号.2代数式求值(1)代数式的:用数值代替代数式里的字母,计算后所得的结果叫做代数式的值.(2)代数式的求值:求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值.题型简单总结以下三种:①已知条件不化简,所给代数式化简;②已知条件化简,所给代数式不化简;③已知条件和所给代数式都要化简.3由三视图判断几何体(1)由三视图想象几何体的形状,首先,应分别根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,然后综合起来考虑整体形状.(2)由物体的三视图想象几何体的形状是有一定难度的,可以从以下途径进行分析:①根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,以及几何体的长、宽、高;②从实线和虚线想象几何体看得见部分和看不见部分的轮廓线;③熟记一些简单的几何体的三视图对复杂几何体的想象会有帮助;④利用由三视图画几何体与有几何体画三视图的互逆过程,反复练习,不断总结方法初一数学重点知识点归纳平面直角坐标系1.定义:平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。

水平的数轴称为x轴或横轴,习惯上取向右为正方向;竖直的数轴称为y轴或纵轴,取向上方向为正方向;两坐标轴的交点为平面直角坐标系的原点。

2.平面上的任意一点都可以用一个有序数对来表示,记为(a,b),a是横坐标,b是纵坐标。

初一数学必考的21个知识点,附考试重难点

初一数学必考的21个知识点,附考试重难点

初一数学必考的21个知识点,附考试重难点知识点一:整数的加减运算包括带符号整数的相加、相减,掌握正负数的加减法规则,注意进位借位等概念。

知识点二:小数的加减运算掌握小数点的对齐,小数的进位和退位规则,注意小数的加减运算要多注意精度。

知识点三:分数的加减运算掌握分数的相加、相减运算方法,注意通分和约分的规则。

知识点四:平方数与平方根了解平方数的概念和性质,掌握求平方数和平方根的方法。

知识点五:计算器的使用了解计算器的基本功能和使用方法,能够使用计算器进行简单的四则运算。

知识点六:倍数和公约数了解倍数和公约数的概念,能够求一个数的倍数和公约数。

知识点七:分数的乘除运算掌握分数的乘法和除法运算方法,注意化简分数和约分的规则。

知识点八:比例与比例关系了解比例和比例关系的概念,能够根据已知的比例关系求解未知量。

知识点九:几何图形的认识了解常见的几何图形,如直线、尖角、直角、钝角、平行线等,并能够辨认不同的几何图形。

知识点十:面积与周长的计算掌握常见几何图形的面积和周长的计算方法,如矩形、正方形、三角形等。

知识点十一:三角形的性质了解三角形的性质,包括三角形的内角和为180度等。

知识点十二:百分数的计算掌握百分数的转化和计算方法,能够将百分数转化为小数和分数,并进行相关运算。

知识点十三:二次根式的运算了解二次根式的概念和运算方法,包括二次根式的加减运算和化简。

知识点十四:代数式的计算能够进行代数式的加减乘除运算,了解代数式的计算规则。

知识点十五:一元一次方程掌握一元一次方程的基本概念和解法,能够根据题意列方程并求解。

知识点十六:数据的收集与整理了解数据的收集方法和整理方法,能够根据已有的数据绘制图表。

知识点十七:统计与概率了解统计与概率的基本概念,能够进行简单的统计和概率计算。

知识点十八:商与余数的计算掌握除法的基本概念和计算方法,能够计算商和余数。

知识点十九:直角坐标系与图形了解直角坐标系的概念和特点,能够根据已知的坐标绘制图形。

初一数学上册 常考要点技巧整理

初一数学上册 常考要点技巧整理

初一数学上册常考要点技巧整理1. 整数的概念整数包括正整数、负整数和零,表示数轴上的整数点。

2. 整数的相反数一个整数的相反数与它的绝对值相等,符号相反。

3. 整数的加法和减法整数的加法和减法遵循以下原则:- 同号相加减,取绝对值相加减,结果符号不变。

- 异号相加减,取绝对值相减,结果的符号与绝对值较大的数的符号相同。

4. 整数的乘法整数的乘法遵循以下原则:- 同号相乘得正,异号相乘得负。

- 乘法满足交换律和结合律。

1. 分数的概念分数由分子和分母组成,表示一个数与单位的部分关系。

2. 分数的化简将分子和分母同时除以一个公因数,化简为最简分数。

3. 分数的加法和减法分数的加法和减法需要找到公共分母,然后将分子相加或相减,分母不变。

4. 分数的乘法分数的乘法直接将分子相乘,分母相乘。

5. 分数的除法将除法转化为乘法,把被除数乘以倒数,然后按照分数的乘法进行计算。

1. 代数式的概念代数式由字母和数字以及运算符号组成的式子,可以有一个或多个未知数。

2. 代数式的展开将代数式中的括号去掉,并按照运算顺序进行计算和合并同类项。

3. 代数式的因式分解将代数式拆分为乘积形式,每个因式不能再进行因式分解。

1. 平面图形的命名常见的平面图形包括三角形、四边形、圆、矩形、正方形等,根据边的性质进行命名。

2. 平面图形的性质各种平面图形有不同的性质,如三角形的内角和为180度,矩形的对边相等且对角线相等等。

3. 平面图形的计算根据平面图形的特点和给定的条件,进行面积、周长、边长等计算。

五、比例与相似1. 比例的概念比例是两个相等的比较关系,通常用冒号表示。

2. 比例的性质比例具有传递性、比例恒等等性质。

3. 相似图形的概念相似图形是指形状相同但大小不同的图形。

4. 相似比的计算相似图形的对应边之间的长度比值称为相似比,可以通过计算对应边的长度比值得出。

6. 相似图形的性质相似图形具有对应角度相等、对应边成比例等性质。

七年级数学得满分这些技巧助你轻松实现

七年级数学得满分这些技巧助你轻松实现

七年级数学得满分这些技巧助你轻松实现对于七年级的学生来说,数学想要拿到满分并非易事,但也绝非遥不可及。

只要掌握了正确的学习方法和技巧,并持之以恒地努力,实现满分的目标是完全有可能的。

接下来,我将为大家详细介绍一些实用的技巧,帮助大家在七年级数学学习中脱颖而出。

一、扎实掌握基础知识基础知识是数学学习的基石,只有基石稳固,才能在其上构建起高楼大厦。

七年级数学的基础知识包括有理数、整式、一元一次方程、几何图形初步等。

对于有理数,要理解正数、负数的概念,掌握有理数的加减法、乘除法法则,以及有理数的混合运算顺序。

在学习过程中,要多做练习题,加深对运算法则的理解和运用。

整式这部分,要学会区分单项式和多项式,掌握整式的加减运算。

特别是在合并同类项时,要注意系数的运算和字母及其指数的不变性。

一元一次方程是解决实际问题的重要工具。

要熟练掌握解方程的步骤,即去分母、去括号、移项、合并同类项、系数化为 1 。

同时,要学会通过设未知数,找出等量关系,列出方程并求解。

几何图形初步的学习中,要认识直线、射线、线段的区别和联系,掌握角的度量和角的平分线的性质。

还要学会计算线段的长度和角的度数。

二、养成良好的学习习惯1、认真听讲课堂是学习的主阵地,一定要集中注意力,紧跟老师的思路,积极思考,回答问题。

对于老师讲解的重点和难点,要做好笔记,以便课后复习。

2、做好预习预习可以让我们在课堂上更有针对性地听讲。

预习时,要通读教材,了解将要学习的内容,找出自己不理解的地方,带着问题去上课。

3、及时复习每天课后要及时复习当天所学的知识,通过做练习题来巩固。

每周要进行一次总结复习,将本周所学的知识点进行梳理,形成知识体系。

4、独立完成作业做作业时要独立思考,不抄袭、不依赖他人。

遇到难题时,可以先自己思考,实在不会再请教老师或同学。

完成作业后,要认真检查,确保答案的准确性。

三、多做练习题数学是一门需要大量练习的学科,只有通过做题,才能熟练掌握各种题型和解题方法。

初一数学重点知识点及学习方法与提分技巧

初一数学重点知识点及学习方法与提分技巧

初一数学重点知识点及学习方法与提分技巧1.数轴(1)数轴的概念:规定了原点、正方向、单位长度的直线叫做数轴.数轴的三要素:原点,单位长度,正方向。

(2)数轴上的点:所有的有理数都可以用数轴上的点表示,但数轴上的点不都表示有理数.(一般取右方向为正方向,数轴上的点对应任意实数,包括无理数.)(3)用数轴比较大小:一般来说,当数轴方向朝右时,右边的数总比左边的数大。

2.相反数(1)相反数的概念:只有符号不同的两个数叫做互为相反数.(2)相反数的意义:掌握相反数是成对出现的,不能单独存在,从数轴上看,除0外,互为相反数的两个数,它们分别在原点两旁且到原点距离相等。

(3)多重符号的化简:与“+”个数无关,有奇数个“﹣”号结果为负,有偶数个“﹣”号,结果为正。

(4)规律方法总结:求一个数的相反数的方法就是在这个数的前边添加“﹣”,如a的相反数是﹣a,m+n的相反数是﹣(m+n),这时m+n是一个整体,在整体前面添负号时,要用小括号。

3.绝对值1.概念:数轴上某个数与原点的距离叫做这个数的绝对值。

①互为相反数的两个数绝对值相等;②绝对值等于一个正数的数有两个,绝对值等于0的数有一个,没有绝对值等于负数的数.③有理数的绝对值都是非负数.2.如果用字母a表示有理数,则数a 绝对值要由字母a本身的取值来确定:①当a是正有理数时,a的绝对值是它本身a;②当a是负有理数时,a的绝对值是它的相反数﹣a;③当a是零时,a的绝对值是零.即|a|={a(a>0)0(a=0)﹣a(a<0)4.有理数大小比较1.有理数的大小比较比较有理数的大小可以利用数轴,他们从左到有的顺序,即从大到小的顺序(在数轴上表示的两个有理数,右边的数总比左边的数大);也可以利用数的性质比较异号两数及0的大小,利用绝对值比较两个负数的大小。

2.有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小。

规律方法·有理数大小比较的三种方法:(1)法则比较:正数都大于0,负数都小于0,正数大于一切负数.两个负数比较大小,绝对值大的反而小.(2)数轴比较:在数轴上右边的点表示的数大于左边的点表示的数.(3)作差比较:若a﹣b>0,则a>b;若a﹣b<0,则a<b;若a﹣b=0,则a=b.5.有理数的减法有理数减法法则减去一个数,等于加上这个数的相反数。

初一数学必考的21个知识点,附考试重难点

初一数学必考的21个知识点,附考试重难点

初一数学必考的21个知识点对于初一学生而言,数学是必修科目之一,而要想在考试中取得好成绩,就需要掌握一些重要的知识点。

下面是初一数学必考的21个知识点:1. 整数的概念和表示法初一数学的核心是整数,因此掌握整数的概念以及表示方法是非常重要的。

在这个知识点中,学生需要了解正整数、负整数、零等概念,同时还需要熟悉整数的表示方法。

2. 数轴和有理数的概念数轴是一种用于表示整数以及有理数的工具,掌握数轴的概念是初一数学学习的重点之一。

学生不仅需要知道如何在数轴上表示整数,还需要掌握有理数的概念以及在数轴上如何表示有理数。

3. 数的基本性质数的基本性质是初一数学学习的基础。

学生需要了解加法、减法、乘法和除法运算的基本规律,同时还需要掌握数学中常见的分数等概念。

4. 分数的基本概念和运算分数是初一数学中非常重要的一个知识点,学生需要了解分数的基本概念和运算法则,以及如何将分数化为最简形式。

5. 百分数的基本概念和运用百分数是初一数学学习的另一个重点,学生需要了解百分数的基本概念以及如何将百分数转化为小数或分数,同时还需要学习在实际生活中如何使用百分数。

6. 比的基本概念和运用比是初一数学中另一个重要的知识点,学生需要了解比的基本概念和运算法则,同时还需要学习在实际生活中如何应用比的知识。

7. 表达式的基本概念和运算法则表达式是初一数学中的另一个重要知识点,学生需要了解表达式的基本概念以及如何进行简单的表达式运算。

8. 线段的基本概念和长度的计算线段是初一数学学习中的另一个重点,学生需要了解线段的长度计算方法以及如何进行简单的线段运算。

9. 直角三角形的基本概念和特征直角三角形是初一数学学习中重要的一个知识点,学生需要了解直角三角形的定义、特征以及勾股定理等内容。

10. 平行四边形的基本概念和性质平行四边形是初一数学中的另一个重点知识点,学生需要了解平行四边形的定义和性质,以及如何进行简单的平行四边形运算。

11. 长方形的基本概念和性质长方形是初一数学学习中重要的一个知识点,学生需要了解长方形的基本概念和性质,同时还需要学习如何进行长方形的面积和周长计算等运算。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初一数学重点必考知识点与提分秘籍1.数轴(1)数轴的概念:规定了原点、正方向、单位长度的直线叫做数轴.数轴的三要素:原点,单位长度,正方向。

(2)数轴上的点:所有的有理数都可以用数轴上的点表示,但数轴上的点不都表示有理数.(一般取右方向为正方向,数轴上的点对应任意实数,包括无理数.)(3)用数轴比较大小:一般来说,当数轴方向朝右时,右边的数总比左边的数大。

2.相反数(1)相反数的概念:只有符号不同的两个数叫做互为相反数.(2)相反数的意义:掌握相反数是成对出现的,不能单独存在,从数轴上看,除0外,互为相反数的两个数,它们分别在原点两旁且到原点距离相等。

(3)多重符号的化简:与“+”个数无关,有奇数个“﹣”号结果为负,有偶数个“﹣”号,结果为正。

(4)规律方法总结:求一个数的相反数的方法就是在这个数的前边添加“﹣”,如a的相反数是﹣a,m+n的相反数是﹣(m+n),这时m+n是一个整体,在整体前面添负号时,要用小括号。

3.绝对值(1)概念:数轴上某个数与原点的距离叫做这个数的绝对值。

①互为相反数的两个数绝对值相等;②绝对值等于一个正数的数有两个,绝对值等于0的数有一个,没有绝对值等于负数的数.③有理数的绝对值都是非负数.(2)如果用字母a表示有理数,则数a 绝对值要由字母a本身的取值来确定:①当a是正有理数时,a的绝对值是它本身a;②当a是负有理数时,a的绝对值是它的相反数﹣a;③当a是零时,a的绝对值是零.即|a|={a(a>0)0(a=0)﹣a(a<0)4.有理数大小比较(1)有理数的大小比较比较有理数的大小可以利用数轴,他们从左到有的顺序,即从大到小的顺序(在数轴上表示的两个有理数,右边的数总比左边的数大);也可以利用数的性质比较异号两数及0的大小,利用绝对值比较两个负数的大小。

(2)有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小。

有理数大小比较的三种方法:(1)法则比较:正数都大于0,负数都小于0,正数大于一切负数.两个负数比较大小,绝对值大的反而小.(2)数轴比较:在数轴上右边的点表示的数大于左边的点表示的数.(3)作差比较:若a﹣b>0,则a>b;若a﹣b<0,则a<b;若a﹣b=0,则a=b.5.有理数的减法有理数减法法则减去一个数,等于加上这个数的相反数。

即:a﹣b=a+(﹣b)方法指引:①在进行减法运算时,首先弄清减数的符号;②将有理数转化为加法时,要同时改变两个符号:一是运算符号(减号变加号);二是减数的性质符号(减数变相反数);注意:在有理数减法运算时,被减数与减数的位置不能随意交换;因为减法没有交换律。

减法法则不能与加法法则类比,0加任何数都不变,0减任何数应依法则进行计算。

6.有理数的乘法(1)有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘。

(2)任何数同零相乘,都得0。

(3)多个有理数相乘的法则:①几个不等于0的数相乘,积的符号由负因数的个数决定,当负因数有奇数个时,积为负;当负因数有偶数个时,积为正.②几个数相乘,有一个因数为0,积就为0。

(4)方法指引①运用乘法法则,先确定符号,再把绝对值相乘.②多个因数相乘,看0因数和积的符号当先,这样做使运算既准确又简单.7.有理数的混合运算1.有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算。

2.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化。

有理数混合运算的四种运算技巧:(1)转化法:一是将除法转化为乘法,二是将乘方转化为乘法,三是在乘除混合运算中,通常将小数转化为分数进行约分计算.(2)凑整法:在加减混合运算中,通常将和为零的两个数,分母相同的两个数,和为整数的两个数,乘积为整数的两个数分别结合为一组求解.(3)分拆法:先将带分数分拆成一个整数与一个真分数的和的形式,然后进行计算.(4)巧用运算律:在计算中巧妙运用加法运算律或乘法运算律往往使计算更简便.8.科学记数法—表示较大的数1.科学记数法:把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,n是正整数,这种记数法叫做科学记数法。

(科学记数法形式:a×10n,其中1≤a<10,n为正整数)2.规律方法总结①科学记数法中a的要求和10的指数n的表示规律为关键,由于10的指数比原来的整数位数少1;按此规律,先数一下原数的整数位数,即可求出10的指数n。

②记数法要求是大于10的数可用科学记数法表示,实质上绝对值大于10的负数同样可用此法表示,只是前面多一个负号.9.代数式求值(1)代数式的值:用数值代替代数式里的字母,计算后所得的结果叫做代数式的值。

(2)代数式的求值:求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值。

题型简单总结以下三种:①已知条件不化简,所给代数式化简;②已知条件化简,所给代数式不化简;③已知条件和所给代数式都要化简.10.规律型:图形的变化类首先应找出图形哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解。

探寻规律要认真观察、仔细思考,善用联想来解决这类问题。

11.等式的性质1.等式的性质性质1 等式两边加同一个数(或式子)结果仍得等式;性质2 等式两边乘同一个数或除以一个不为零的数,结果仍得等式。

2.利用等式的性质解方程利用等式的性质对方程进行变形,使方程的形式向x=a 的形式转化.应用时要注意把握两关:①怎样变形;②依据哪一条,变形时只有做到步步有据,才能保证是正确的.12.一元一次方程的解定义:使一元一次方程左右两边相等的未知数的值叫做一元一次方程的解。

把方程的解代入原方程,等式左右两边相等。

13.解一元一次方程1.解一元一次方程的一般步骤去分母、去括号、移项、合并同类项、系数化为1,这仅是解一元一次方程的一般步骤,针对方程的特点,灵活应用,各种步骤都是为使方程逐渐向x=a形式转化。

2.解一元一次方程时先观察方程的形式和特点,若有分母一般先去分母;若既有分母又有括号,且括号外的项在乘括号内各项后能消去分母,就先去括号。

3.在解类似于“ax+bx=c”的方程时,将方程左边,按合并同类项的方法并为一项即(a+b)x=c。

使方程逐渐转化为ax=b的最简形式体现化归思想。

将ax=b 系数化为1时,要准确计算,一弄清求x时,方程两边除以的是a还是b,尤其a为分数时;二要准确判断符号,a、b同号x为正,a、b异号x为负。

14.一元一次方程的应用1.一元一次方程解应用题的类型(1)探索规律型问题;(2)数字问题;(3)销售问题(利润=售价﹣进价,利润率=利润进价×100%);(4)工程问题(①工作量=人均效率×人数×时间;②如果一件工作分几个阶段完成,那么各阶段的工作量的和=工作总量);(5)行程问题(路程=速度×时间);(6)等值变换问题;(7)和,差,倍,分问题;(8)分配问题;(9)比赛积分问题; (10)水流航行问题(顺水速度=静水速度+水流速度;逆水速度=静水速度﹣水流速度).2.利用方程解决实际问题的基本思路首先审题找出题中的未知量和所有的已知量,直接设要求的未知量或间接设一关键的未知量为x,然后用含x的式子表示相关的量,找出之间的相等关系列方程、求解、作答,即设、列、解、答。

列一元一次方程解应用题的五个步骤(1)审:仔细审题,确定已知量和未知量,找出它们之间的等量关系.(2)设:设未知数(x),根据实际情况,可设直接未知数(问什么设什么),也可设间接未知数.(3)列:根据等量关系列出方程.(4)解:解方程,求得未知数的值.(5)答:检验未知数的值是否正确,是否符合题意,完整地写出答句.15.正方体相对两个面上的文字(1)对于此类问题一般方法是用纸按图的样子折叠后可以解决,或是在对展开图理解的基础上直接想象.(2)从实物出发,结合具体的问题,辨析几何体的展开图,通过结合立体图形与平面图形的转化,建立空间观念,是解决此类问题的关键.(3)正方体的展开图有11种情况,分析平面展开图的各种情况后再认真确定哪两个面的对面.16.直线、射线、线段(1)直线、射线、线段的表示方法①直线:用一个小写字母表示,如:直线l,或用两个大写字母(直线上的)表示,如直线AB.②射线:是直线的一部分,用一个小写字母表示,如:射线l;用两个大写字母表示,端点在前,如:射线OA.注意:用两个字母表示时,端点的字母放在前边.③线段:线段是直线的一部分,用一个小写字母表示,如线段a;用两个表示端点的字母表示,如:线段AB(或线段BA)。

(2)点与直线的位置关系:①点经过直线,说明点在直线上;②点不经过直线,说明点在直线外。

17.两点间的距离(1)两点间的距离:连接两点间的线段的长度叫两点间的距离。

(2)平面上任意两点间都有一定距离,它指的是连接这两点的线段的长度,学习此概念时,注意强调最后的两个字“长度”,也就是说,它是一个量,有大小,区别于线段,线段是图形.线段的长度才是两点的距离.可以说画线段,但不能说画距离。

18.角的概念(1)角的定义:有公共端点是两条射线组成的图形叫做角,其中这个公共端点是角的顶点,这两条射线是角的两条边。

(2)角的表示方法:角可以用一个大写字母表示,也可以用三个大写字母表示.其中顶点字母要写在中间,唯有在顶点处只有一个角的情况,才可用顶点处的一个字母来记这个角,否则分不清这个字母究竟表示哪个角.角还可以用一个希腊字母(如∠α,∠β,∠γ、…)表示,或用阿拉伯数字(∠1,∠2…)表示。

(3)平角、周角:角也可以看作是由一条射线绕它的端点旋转而形成的图形,当始边与终边成一条直线时形成平角,当始边与终边旋转重合时,形成周角。

(4)角的度量:度、分、秒是常用的角的度量单位.1度=60分,即1°=60′,1分=60秒,即1′=60″。

19.角平分线的定义从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线。

①∠AOB是∠AOC和∠BOC的和,记作:∠AOB=∠AOC+∠BOC.∠AOC是∠AOB和∠BOC的差,记作:∠AOC=∠AOB﹣∠BOC。

②若射线OC是∠AOB的三等分线,则∠AOB=3∠BOC或∠BOC=13∠AOB。

20.度分秒的运算(1)度、分、秒的加减运算。

在进行度分秒的加减时,要将度与度,分与分,秒与秒相加减,分秒相加,逢60要进位,相减时,要借1化60。

(2)度、分、秒的乘除运算①乘法:度、分、秒分别相乘,结果逢60要进位。

②除法:度、分、秒分别去除,把每一次的余数化作下一级单位进一步去除。

相关文档
最新文档