高中数学概率章节知识点总结
高中概率知识点总结

高中概率知识点总结概率,又称或然率、机会率、机率(几率)或可能性,它是概率论的基本概念。
概率是对随机事件发生的可能性的度量,一般以一个在0到1之间的实数表示一个事件发生的可能性大小。
以下是小编整理的高中概率知识点总结,希望能够帮助到大家!高中概率知识点总结篇1一.算法,概率和统计1.算法初步(约12课时)(1)算法的含义、程序框图①通过对解决具体问题过程与步骤的分析(如,二元一次方程组求解等问题),体会算法的思想,了解算法的含义。
②通过模仿、操作、探索,经历通过设计程序框图表达解决问题的过程。
在具体问题的解决过程中(如,三元一次方程组求解等问题),理解程序框图的三种基本逻辑结构:顺序、条件分支、循环。
(2)基本算法语句经历将具体问题的程序框图转化为程序语句的过程,理解几种基本算法语句--输入语句、输出语句、赋值语句、条件语句、循环语句,进一步体会算法的基本思想。
(3)通过阅读中国古代中的算法案例,体会中国古代对世界发展的贡献。
3.概率(约8课时)(1)在具体情境中,了解随机事件发生的不确定性和频率的稳定性,进一步了解概率的意义以及频率与概率的区别。
(2)通过实例,了解两个互斥事件的概率加法公式。
(3)通过实例,理解古典概型及其概率计算公式,会用列举法计算一些随机事件所含的基本事件数及事件发生的概率。
(4)了解随机数的意义,能运用模拟(包括计算器产生随机数来进行模拟)估计概率,初步体会几何概型的意义(参见例3)。
(5)通过阅读材料,了解人类认识随机现象的过程。
2.统计(约16课时)(1)随机抽样①能从现实生活或其他学科中提出具有一定价值的统计问题。
②结合具体的实际问题情境,理解随机抽样的必要性和重要性。
③在参与解决统计问题的过程中,学会用简单随机抽样方法从总体中抽取样本;通过对实例的分析,了解分层抽样和系统抽样方法。
④能通过试验、查阅、设计调查问卷等方法收集数据。
(2)用样本估计总体①通过实例体会分布的意义和作用,在表示样本数据的过程中,学会列频率分布表、画频率分布直方图、频率折线图、茎叶图(参见例1),体会他们各自的特点。
概率知识点归纳总结高中

概率知识点归纳总结高中概率是数学中一个重要的分支,它研究的是随机事件发生的可能性。
概率在日常生活中也有着广泛的应用,比如天气预报、赌博、金融投资等领域都离不开概率的运用。
在高中数学课程中,概率也是一个重要的内容,我们主要学习了基本概率、条件概率、独立事件、贝叶斯定理等知识点。
下面我们将对这些内容进行详细的归纳总结。
一、基本概率1.概率的定义和性质:概率是指一个随机实验的结果符合某种条件的可能性大小。
概率的性质包括非负性、规范性和可列可加性。
2.概率的计算:对于一个随机实验的样本空间S,如果事件A包含n个基本事件,那么事件A的概率P(A)可以用公式P(A)=n/N来计算,其中N为样本空间S中基本事件的总数。
3.事件的互斥与对立事件:互斥事件指两个事件不可能同时发生;对立事件指两个事件中至少有一个发生。
二、条件概率1.条件概率的定义:当事件B已经发生时,事件A发生的概率称为条件概率,记作P(A|B)。
条件概率的计算公式为P(A|B)=P(AB)/P(B)。
2.乘法定理:P(AB)=P(B)P(A|B)=P(A)P(B|A)。
3.全概率公式和贝叶斯定理:全概率公式用于求解事件A的概率,贝叶斯定理用于求解事件B发生的条件下,事件A发生的概率。
三、独立事件1.独立事件的定义和性质:事件A和事件B互相独立的条件是P(A|B)=P(A),P(B|A)=P(B),即事件A的发生与事件B的发生没有任何影响。
2.独立事件的乘法公式:若事件A和事件B是独立事件,则P(AB)=P(A)P(B)。
3.重复独立实验的概率:重复独立实验指多次独立且相同的实验,对于n次独立实验,事件A发生k次的概率为C(n,k)P(A)^k[1-P(A)]^(n-k),其中C(n,k)表示组合数。
四、随机变量及其分布1.随机变量的概念:随机变量是对随机事件结果的数学描述,它可以是离散型随机变量也可以是连续型随机变量。
2.离散型随机变量的分布:包括伯努利分布、二项分布、泊松分布等,每种分布都有其对应的概率质量函数和概率分布函数。
高中概率知识点总结文库

高中概率知识点总结文库高中概率知识是数学课程中的重要内容,也是数学应用领域中不可或缺的一部分。
掌握概率知识不仅有助于理论研究,还能够应用于真实生活中的各种问题中。
因此,掌握高中概率知识对学生来说非常重要。
高中概率知识主要包括基本概率原理、古典概率、条件概率、独立事件、贝叶斯定理等内容。
以下将逐一对这些内容进行详细介绍。
1.基本概率原理概率是指某一随机现象在相同条件下发生的可能性大小。
基本概率原理是概率论的基础,它包括等可能原理和相加原理。
等可能原理:如果一个随机试验总共有n个等可能结果,而事件A包含m个结果,那么事件A发生的概率P(A)等于m/n。
相加原理:如果随机试验的样本空间S可以被划分为互不相容的事件A1、A2、…An,那么事件B发生的概率P(B)等于各事件发生概率之和,即P(B) = P(A1) + P(A2) + … + P(An)。
基本概率原理是概率论的基础,它为概率的计算提供了基本操作方法。
2.古典概率古典概率是指在等可能情况下,通过统计方法计算某一事件发生的概率。
古典概率主要适用于有限事件和等可能事件的情况。
古典概率计算公式为:P(A) = n(A)/n(S),其中n(A)表示事件A发生的结果数,n(S)表示样本空间S中结果总数。
古典概率的计算方法简单直观,但是只适用于特定的情况。
在实际应用中,往往需要考虑更为复杂的情况,因此需要更高级的概率方法进行计算。
3.条件概率条件概率是指在事件B已经发生的条件下,事件A发生的概率。
条件概率的计算公式为P(A|B) = P(AB)/P(B),其中P(AB)表示事件A和事件B同时发生的概率,P(B)表示事件B发生的概率。
条件概率的概念是概率论中的重要内容,它在实际应用中有着广泛的应用。
比如在医学诊断中,就需要根据已知的病情条件来计算患病的概率,这就是一个典型的条件概率问题。
4.独立事件独立事件是指两个事件A和B,如果它们的发生不相互影响,即P(AB) = P(A)P(B),那么就称事件A和事件B是独立事件。
(完整版)(最全)高中数学概率统计知识点总结

(完整版)(最全)高中数学概率统计知识点总结-CAL-FENGHAI.-(YICAI)-Company One1概率与统计一、普通的众数、平均数、中位数及方差1、 众数:一组数据中,出现次数最多的数。
2、平均数:①、常规平均数:12nx x x x n++⋅⋅⋅+=②、加权平均数:112212n n n x x x x ωωωωωω++⋅⋅⋅+=++⋅⋅⋅+3、中位数:从大到小或者从小到大排列,最中间或最中间两个数的平均数。
4、方差:2222121[()()()]n s x x x x x x n=-+-+⋅⋅⋅+-二、频率直方分布图下的频率1、频率 =小长方形面积:f S y d ==⨯距;频率=频数/总数2、频率之和:121n f f f ++⋅⋅⋅+=;同时 121n S S S ++⋅⋅⋅+=; 三、频率直方分布图下的众数、平均数、中位数及方差 1、众数:最高小矩形底边的中点。
2、平均数: 112233n nx x f x f x f x f =+++⋅⋅⋅+ 112233n n x x S x S x S x S =+++⋅⋅⋅+3、中位数:从左到右或者从右到左累加,面积等于0.5时x 的值。
4、方差:22221122()()()n n s x x f x x f x x f =-+-+⋅⋅⋅+-四、线性回归直线方程:ˆˆˆybx a =+ 其中:1122211()()ˆ()nni i i i i i nni i i i x x y y x y nxybx x x nx ====---∑∑==--∑∑ , ˆˆay bx =- 1、线性回归直线方程必过样本中心(,)x y ;2、ˆ0:b>正相关;ˆ0:b <负相关。
3、线性回归直线方程:ˆˆˆy bx a =+的斜率ˆb 中,两个公式中分子、分母对应也相等;中间可以推导得到。
五、回归分析1、残差:ˆˆi i i ey y =-(残差=真实值—预报值)。
高中数学概率知识点总结

高中数学概率知识点总结一、概率的基本概念1.1 概率的定义在日常生活中,我们经常会遇到很多不确定的事件,比如掷骰子的结果、抽奖的中奖情况等等。
而概率就是用来描述这些不确定事件发生的可能性的。
概率可以理解为某件事情发生的可能性大小,通常用一个介于0和1之间的数值来表示,其中0表示不可能发生,1表示一定会发生。
1.2 样本空间和事件在进行概率计算时,通常需要确定一个样本空间,即所有可能发生的结果的集合。
比如掷一枚骰子,样本空间为{1,2,3,4,5,6}。
事件则是样本空间的一个子集,表示我们关心的那部分结果。
比如“出现奇数点数”的事件为{1,3,5}。
1.3 古典概率和频率概率古典概率是指在所有可能结果等可能时,事件发生的概率即为事件发生的次数与样本空间元素总数的比值。
而频率概率是指在实际观察中,某一事件发生的次数与总次数的比值。
古典概率适用于理论计算,而频率概率适用于实际观测。
1.4 概率的性质概率具有以下几个重要性质:(1)非负性:任何事件的概率都大于等于0;(2)规范性:全集事件的概率为1;(3)可列可加性:对于两个互不相容的事件,它们的概率之和等于这两个事件并起来的概率。
二、概率的计算方法2.1 古典概率的计算在古典概率中,当每个事件发生的可能性相等时,概率等于事件发生的次数除以总事件数,即P(A)=n(A)/n(S)。
2.2 几何概率的计算几何概率是通过几何模型中的面积、长度或体积来计算概率的方法。
比如说,在一个正方形的面积中,事件发生的可能性可以表示为事件的面积与总面积的比值。
2.3 频率概率的计算频率概率是通过实验次数和事件发生次数的比值来计算概率的方法,即P(A)=n(A)/n。
2.4 排列和组合排列是指从n个不同元素中取出m个元素,按一定的次序排成一列,不同元素的个数为n!/(n-m)!。
组合是指从n个不同元素中取出m个元素,不考虑次序的情况,不同元素的个数为n!/(m!(n-m)!)。
(最全)高中数学概率统计知识点总结

概率与统计一、普通的众数、平均数、中位数及方差1、众数:一组数据中,出现次数最多的数。
2、平均数:①、常规平均数:x x x x1 2 nn②、加权平均数:xx x x1 12 2 n n1 2 n3、中位数:从大到小或者从小到大排列,最中间或最中间两个数的平均数。
4、方差: 2 2 2 21s [(x x) ( x x)(x x) ]1 2 nn二、频率直方分布图下的频率1、频率=小长方形面积: f S y距 d ;频率=频数/ 总数2、频率之和:f1 f2 f 1;同时n S1 S2 S 1;n三、频率直方分布图下的众数、平均数、中位数及方差1、众数:最高小矩形底边的中点。
2、平均数:x x f x f x f x f1 12 23 3 n n x x S x S x S x S1 12 23 3 n n3、中位数:从左到右或者从右到左累加,面积等于0.5 时x 的值。
4、方差: 2 2 2 2s ( x x) f ( x x) f ( x x) f1 12 2 n n四、线性回归直线方程:y?b?x a?其中:?bn n(x x)( y y)x y nxyi i i ii 1 i 1n n2 2 2(x x)x nxi ii 1 i 1, a?y b?x1、线性回归直线方程必过样本中心( x,y);2、b?0:正相关;b?0:负相关。
3、线性回归直线方程:y?b?x a?的斜率b?中,两个公式中分子、分母对应也相等;中间可以推导得到。
五、回归分析1、残差:? ?e y y (残差=真实值—预报值)。
分析:e?越小越好;i i i i2、残差平方和:i n12 ( ?)y y ,i i分析:①意义:越小越好;②计算:i n12 2 2 2 (y y?) (y y?) ( y y?) (y y?)i i 1 1 2 2 n n3、拟合度(相关指数):n( y y )?2i i2 i 1R 1n2( y y)ii 1,分析:①. 2 0,1R 的常数;②. 越大拟合度越高;4、相关系数:rn n(x x)( y y) x y nx yi i i ii 1 i 1n n n n2 2 2 2 (x x) ( y y) (x x) ( y y)i i i ii 1 i 1 i 1 i 1分析:①. r [ 1,1]的常数;②. r 0: 正相关;r 0: 负相关③. r [0,0.25] ;相关性很弱;r (0.25,0.75) ;相关性一般;r [0.75,1] ;相关性很强;六、独立性检验1、2× 2 列联表:x1 x 合计22 、独立性检验公式n ( a d b c )①.k y a b a b 1ycd c d 2合计a cb dn②.犯错误上界 P 对照表3、独立性检验步骤2n( a d bc)①.计算观察值k : k;(a b )(c d )(a c)( b d)②.查找临界值k:由犯错误概率P,根据上表查找临界值0 k ;③.下结论:k k :即犯错误概率不超过P 的前提下认为:, 有1-P 以上的把握认为:;k k :即犯错误概率超过P的前提认为:, 没有1-P 以上的把握认为:;【经典例题】题型1 与茎叶图的应用例1(2014 全国)某市为考核甲、乙两部门的工作情况,学科网随机访问了50 位市民。
高中数学概率知识点总结

高中数学概率知识点总结概率是数学中的一个重要分支,主要研究随机事件的发生规律以及概率的计算方法。
在高中数学中,我们主要学习了概率的基本概念、概率的计算方法以及概率在实际问题中的应用。
本文将对这些知识点进行总结和归纳。
一、概率的基本概念1. 随机事件和样本空间:在概率中,我们把可能发生的事件称为随机事件,用字母表示。
样本空间是一组可能出现的结果的集合,用S表示。
2. 必然事件和不可能事件:必然事件是指在任何实验中一定会发生的事件,概率为1;不可能事件是指在任何实验中都不会发生的事件,概率为0。
3. 事件的互斥和对立事件:如果两个事件不能同时发生,我们称它们互斥事件;如果两个事件中一个发生,另一个一定不发生,我们称它们为对立事件。
二、概率的计算方法1. 频率法:频率是指某个事件在大量实验中发生的次数与总实验次数的比值。
当实验次数足够大时,频率可以逼近真实概率。
2. 几何法:几何法通过几何图形的面积比来计算概率。
对于等可能的随机事件,可以通过图形的面积比来求得概率。
3. 组合数学方法:对于有限个数的样本空间和等可能的随机事件,我们可以使用组合数学的知识来计算概率,如排列、组合等。
4. 事件的加法原理:如果A和B是两个随机事件,则事件A或事件B发生的概率等于事件A和事件B发生概率之和减去事件A和事件B同时发生的概率。
5. 事件的乘法原理:如果A和B是两个相互独立的随机事件,则事件A和B同时发生的概率等于事件A发生的概率乘以事件B发生的概率。
三、概率在实际问题中的应用1. 古典概率:古典概率是指当样本空间中各个结果发生的概率相等时,事件A发生的概率等于事件A包含的有利结果数除以样本空间中结果的总数。
2. 条件概率:条件概率是指在已知事件B发生的条件下,事件A发生的概率。
条件概率通常用P(A|B)表示,其中P(A|B)表示在事件B发生的前提下事件A发生的概率。
3. 贝叶斯定理:贝叶斯定理是一种根据已知条件下的概率推算出另一事件发生的概率的方法。
关于高中数学概率知识点总结3篇

关于高中数学概率知识点总结3篇关于高中数学概率知识点总结3篇科技的快速发展迅速扩充了人类的知识范围。
知识可以帮助人类更好地理解和解决问题。
学习、传递知识是人类社会发展的重要任务之一。
下面就让小编给大家带来高中数学概率知识点总结,希望大家喜欢!高中数学概率知识点总结1第一部分3.1.1 —3.1.2随机事件的概率及概率的意义1、基本概念:(1)必然事件:在条件S下,一定会发生的事件,叫相对于条件S 的必然事件;(2)不可能事件:在条件S下,一定不会发生的事件,叫相对于条件S的不可能事件;(3)确定事件:必然事件和不可能事件统称为相对于条件S的确定事件;(4)随机事件:在条件S下可能发生也可能不发生的事件,叫相对于条件S的随机事件;(5)频数与频率:在相同的条件S下重复n次试验,观察某一事件A是否出现,称n次试验中事件A出现的次数nA为事nA件A出现的.频数;称事件A出现的比例fn(A)=n为事件A出现的概率:对于给定的随机事件A,如果随着试验次数的增加,事件A发生的频率fn(A)稳定在某个常数上,把这个常数记作P(A),称为事件A的概率。
nA(6)频率与概率的区别与联系:随机事件的频率,指此事件发生的次数nA与试验总次数n的比值n,它具有一定的稳定性,总在某个常数附近摆动,且随着试验次数的不断增多,这种摆动幅度越来越小。
我们把这个常数叫做随机事件的概率,概率从数量上反映了随机事件发生的可能性的大小。
频率在大量重复试验的前提下可以近似地作为这个事件的概率3.1.3 概率的基本性质1、基本概念:(1)事件的包含、并事件、交事件、相等事件(2)若A∩B为不可能事件,即A∩B=ф,那么称事件A与事件B互斥;(3)若A∩B为不可能事件,A∪B为必然事件,那么称事件A与事件B互为对立事件;(4)当事件A与B互斥时,满足加法公式:P(A∪B)= P(A)+ P(B);若事件A与B为对立事件,则A∪B为必然事件,所以P(A ∪B)= P(A)+ P(B)=1,于是有P(A)=1—P(B)2、概率的基本性质:1)必然事件概率为1,不可能事件概率为0,因此0≤P(A)≤1; 2)当事件A与B互斥时,满足加法公式:P(A∪B)= P(A)+ P(B);3)若事件A与B为对立事件,则A∪B为必然事件,所以P(A∪B)= P(A)+ P(B)=1,于是有P(A)=1—P(B);4)互斥事件与对立事件的区别与联系,互斥事件是指事件A与事件B在一次试验中不会同时发生,其具体包括三种不同的情形:(1)事件A发生且事件B不发生;(2)事件A不发生且事件B发生;(3)事件A与事件B同时不发生,而对立事件是指事件A 与事件B有且仅有一个发生,其包括两种情形;(1)事件A发生B不发生;(2)事件B发生事件A不发生,对立事件互斥事件的特殊情形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学概率章节知识点总结
考点1:随机事件、必然事件、不可能事件
1:指出下列事件是必然事件、随机事件还是不可能事件:
(1)中国体操运动员将在下届奥运会上获得全能冠军,是 事件 (2)出租车司机小李驾车通过几个路口都将遇到绿灯,是 事件
(3)若R x ∈,则112≥+x , 是 事件
(4)抛一枚骰子两次,朝上面的数字之和小于2, 是 事件
2:从12个同类产品(其中有10个正品,2个次品)中,任意抽取3个的必然事件是 ( )
A .3个都是正品
B .至少有1个是次品
C .3个都是次品
D .至少有1个是正品
考点2:频率和概率的关系
1:下列说法:① 昨天没有下雨,则说明“昨天气象局的天气预报降水概率为%95”是错误的;② “彩票中奖概率是%1”表示买100张彩票一定有1张会中奖;③ 做10次抛硬币的试验,结果3次正面朝上,因此正面朝上的概率为3.0;④ 某厂产品的次品率为%2,则该厂的50件产品中可能有2件次品。
其中错误说法的序号是 。
2:下列说法:①频率反映事件发生的频繁程度,概率反映事件发生的可能性大小;②做n 次随机试验,事件A 发生m 次,则事件A 发生的频率n
m 就是事件A 发生的概率;③百分率是频率,但不是概率;④频率是不能脱离n 次试验的试验值,而概率是具有确定性的不依赖于试验次数的理论值;⑤频率是概率的近似值,概率是频率的稳定值.其中正确的是 ( )
A .①②③④
B .①④⑤
C .①②③④⑤
D .②③
考点3:并事件,交事件,互斥事件,对立事件
1:从一批产品(其中正品、次品都多于2件)中任取2件,观察正品件数和次品件数,①恰好有1件次品和恰好有两件次品;②至少有1件次品和全是次品;③至少有1件正品和至少有1件次品;④至少1件次品和全是正品.上述事件是互斥事件的是 ( )
A .①②
B .①③
C .③④
D .①④
2:袋中装有白球3个,黑球4个,从中任取3个,下列是对立事件的为 ( )
A .恰有1个白球和全是白球
B .至少有1个白球和全是黑球
C .至少有1个白球和至少有2个白球
D .至少有1个白球和至少有1个黑球
考点4:概率的性质
1:一商店有奖促销活动中,有一等奖与二等奖两个奖项,其中,中一等奖的概率为0.1,中二等奖的概率为0.25,则不中的概率为 。
2:学校篮球队、羽毛球队、乒乓球队的某些队员不止参加了一支球队,
具体情况如上图所示,现从中随机抽取一名队员,则队员只属于一支球队的概率为 ,该队员最多属
于两支球队的概率为 .
考点5:古典概型的概念
1:判断题:
(1)“在适宜条件下,种下一粒种子观察它是否发芽”属于古典概型,基本事件是”发芽与不发芽”( )
(2)掷一枚硬币两次,出现“两个正面”“一正一反”“两个反面”,这三个结果是等可能事件; ( ) 2:袋中有形状大小都相同的4个球,其中1只白1只红2只黄,从中一次随机摸出2只,则这2只球颜色不同的概率是 。
考点6:古典概型的概率的计算
1:在平面直角坐标系中,从五个点:A(0,0),B(2,0),C(1,1),D(0,2),E(2,2)中任取三个,这三点能构成三角形的概率是________
2:为了了解《中华人民共和国道路交通安全法》在学生中的普及情况,调查部门对某校6名学生进行问卷调查,6人得分情况如下:5,6,7,8,9,10.把这6名学生的得分看成一个总体.用简单随机抽样方法从这6名学生中抽取2名,他们的得分组成一个样本.则该样本平均数与总体平均数之差的绝对值不超过0.5的概率是_____
考点7:几何概型的概念
1:在区间[-1,2]上随机取一个数x ,则|x|≤1的概率为________.
2:小波通过做游戏的方式来确定周末活动,他随机地往单位圆内投掷一点,若此点到圆心的距离大于12,则周末去看电影;若此点到圆心的距离小于14,则去打篮球;否则,在家看书.则小波周末不在家看书的概率为________.
考点8:几何概型的概率的计算
1:已知函数b ax x x f -+-=2)(
(1) 若a ,b 都是从0,1,2,3,4五个数中任取的一个数,则上述函数有零点的概率为_______
(2)若a ,b 都是从区间[0,4]任取的一个数,则f(1)>0成立时的概率为_______
2:两人约定在20∶00到21∶00之间相见,并且先到者必须等迟到者40分钟方可离去,如果两人出发是各自独立的,在20∶00至21∶00各时刻相见的可能性是相等的,则两人在约定时间内相见的概率为_______。