振动光纤基本原理

合集下载

光纤结构、波导原理和制造

光纤结构、波导原理和制造
一个频率为n的光子能量为 E = hn
其中h = 6.63 10-34 J·s为普朗克常数
在光的照射下,金属是否发射电子,仅与光的频率相关,而 与光的亮度和照射时间无关。不同的金属材料要求不同的光 照频率。
2 基本的光学定律和定义
光速 c = 3 108 m/s 波长:l = c/v 当光在媒介中传播时,速度cm = c/n 常见物质的折射率:空气 1.00027;
光纤结构、波导原理和制造
主要内容
回顾光的特性、基本的光学定律和定义
介绍光纤结构、分类、特性和射线光学解 释
圆波导模式及其理论简介* 单模光纤的特性、材料以及制造工艺 光纤的几种成缆方式
光的波动性 1 光的基本特性
- 17世纪意大利格里马蒂和英国胡克 观测到光的衍射现象
- 1690年海牙物理学家惠更斯提出光 的波动性学说
光纤的分类
按传输的模式数目分 • 单模光纤 • 多模光纤
按折射率的变化分 • 阶跃光纤 • 梯度光纤
ITU-T官方定义 • G.651光纤 (渐变型多模光纤) • G.652光纤 (常规单模光纤) • G.653光纤 (色散位移光纤) • G.654光纤 (衰减最小光纤) • G.655光纤 (非零色散位移光纤)
光传播的入射角条件 将s1和s2的值代入相位关系式并简化可以得到:
2pn1d sin mp l
假如只考虑波的电场分量垂直于入射面的情况,那么因发射带
来的相移为:
2arctan
cos2
n22 / n12
s in
代入简化式中可以得到:
tan pn1d
s in
kp
n12
cos2
水 1.33; 玻璃 (SiO2) 1.47; 钻石 2.42; 硅 3.5 折射率大的媒介称为光密媒介,反之称为光疏媒介

振动光缆原理

振动光缆原理

振动光缆原理
振动光缆是一种利用光传输信息的设备,它的工作原理基于光的传输和光纤的振动效应。

光信号的传输是通过光纤中的光波导来实现的。

光波导是由材料的折射率差形成的,能够将光信号通过多次反射传输到目标地点。

传统的光纤通信中,光信号是通过调制光的强度或频率来传输信息的。

而振动光缆是通过光纤的振动来传输信息的。

在振动光缆中,光纤的一个端部固定,另一个端部连接到一个振动源,比如声波源或机械振动源。

振动源会产生一系列的振动波,将这些振动波传输到光纤中。

当振动波传输到光纤中时,它会沿着光纤的长度传播,并引起光纤中的模式耦合效应。

这种模式耦合效应使得光纤中的折射率发生微小的变化,进而改变了光波导的传输特性。

这种折射率的变化可以被接收端的光传感器捕捉到,并转化为电信号。

通过适当的信号处理和解调技术,电信号可以还原为原始的信息信号。

这样,通过光纤的振动,信息信号就得以传输到目标地点。

振动光缆具有传输带宽大、抗干扰性强等优点,广泛应用于通信、电力、交通等领域。

它的工作原理简单而有效,通过光纤的振动实现了信息的传输和交流。

总结起来,振动光缆的工作原理是利用光纤的振动效应,通过传输振动波来实现信息的传输。

它具有传输带宽大、抗干扰性强等优点,在实际应用中具有广泛的用途。

振动光纤原理范文

振动光纤原理范文

振动光纤原理范文振动光纤(Vibration Optical Fiber,VOF)是一种新型的光纤传感器,能够利用光纤的振动特性实现对环境振动的实时监测。

它通过光纤的高度灵敏的机械耦合使光信号的强度和相位发生改变,从而实现对振动信号的检测和解码。

振动光纤具有高灵敏度、宽频响范围、不受电磁干扰等特点,因此在军事、工业、民生等领域具有广泛应用前景。

振动光纤的原理主要包括光纤的机械耦合和干涉效应。

首先,振动光纤通过高强度锥形绞合机械耦合的方式,将外部振动的力量引入到光纤中。

当光纤上发生振动时,光纤中的绞合结构会因为受到外部力的作用而发生形变,从而改变光纤的折射率分布,进而影响光信号的传输。

其次,当光信号在光纤中传输时,由于外界振动的影响会改变光信号在光纤中的传输路径,导致光信号的传输时间发生变化,进而产生光沿光纤的重干涉效应。

振动光纤传感器的工作原理和光纤光栅传感器相似。

光纤光栅在其长度方向上周期性变化的折射率会导致光束在光纤中的传输路径改变,进而引起传输光信号的相位变化。

当外界有振动力作用于光纤时,光纤光栅会随之发生形变,导致光信号的相位随之改变。

通过检测光信号进行的差干涉或光谱测量,可以测量出外界的振动幅度和频率。

振动光纤传感器的性能主要由振动光纤的结构和光纤光栅的参数决定。

振动光纤的耦合结构需要在应力集中的位置适当设计,以实现对振动的高效耦合。

光纤光栅的设计要求具有高精度的周期性变化结构,以实现高灵敏度的振动检测。

此外,振动光纤的设计还需要考虑光纤的机械强度和环境适应性等方面的要求。

振动光纤传感器的应用领域非常广泛。

在军事领域,振动光纤传感器可以用于监测飞机、舰船、坦克等重要装备的振动状态,实现对装备健康状况的实时监测和预警。

在工业领域,振动光纤传感器可以用于检测机械设备的振动状态,提供设备状态监测和故障诊断等方面的信息。

此外,振动光纤传感器还可以用于地震预警、结构健康监测、声波检测等领域。

总之,振动光纤传感器以其高灵敏度、宽频响范围、不受电磁干扰等优势,在军事、工业、民生等领域具有广泛的应用前景。

第2章光纤通信的基本原理

第2章光纤通信的基本原理

16、我总是站在顾客的角度看待即将推出的产品或服务,因为我就是顾客。2021年10月21日星期四12时3分57秒00:03:5721 October 2021
17、当有机会获利时,千万不要畏缩不前。当你对一笔交易有把握时,给对方致命一击,即做对还不够,要尽可能多地获取。上午12时3分57秒上午12时3分00:03:5721.10.21
2.1光纤的结构与分类
2.按传输模式的数量分类 按光纤中传输的模式数量,可以将光纤分为多模
光纤(Multi-Mode Fiber,MMF)和单模光纤(Single Mode Fiber,SMF)。
多模光纤和单模光纤是由光纤中传输的模式数目 决定的,判断一根光纤是不是单模传输,除了光纤自身的 结构参数外,还与光纤中传输的光波长有关。
2.1光纤的结构与分类
3.按光纤截面上折射率分布分类 按照截面上折射率分
布的不同可以将光纤分为阶跃 型光纤(Step-Index Fiber, SIF)和渐变型光纤(GradedIndex Fiber,GIF),其折射 率分布如右图所示。
光纤的折射率分布
2.1光纤的结构与分类
阶跃型光纤是由半径为a、折 射率为常数n1的纤芯和折射率 为常数n2的包层组成,并且 n1>n2, n1=1.463~1.467, n2=1.45~1.46。
2n12
n1
2.2光纤传光原理
数值孔径NA是表达光纤接受和传输光的能力的参数,它与 光纤的纤芯、包层折射率有关,而与光纤尺寸无关。
NA或θc越大,光纤接收光的能力越强,从光源到光纤的 耦合效率越高。对于无损耗光纤,在2θc内的入射光都能 在光纤中传输。NA越大,纤芯对光能量的束缚越强,光纤 抗弯曲性能越好。但NA越大,经光纤传输后产生的信号崎 变越大,色散带宽变差,限制了信息传输容量。

振动光纤方案原理

振动光纤方案原理
真正三维立体空间防护 可探测三维立体空间目标的大小、距离、方位、移动速 度等 身份识别 测距,定位,身份识别 多用途 可根据需要扩展多种用途,如站区巡检系统,站场 第三方施工管理,移动布置成要地防护系统等; 抗干扰 不受高温、低温、强光、灰尘、雨、雪、雾、霜等自然气候影响,具有极 低的漏报率;
类型
光纤方式 视频监控
监控范围
呈线形,面广 ,有盲区 广,存在盲区
隐蔽性
不高/ 高(埋 地) 低
安全性
高 高
可靠性
普通
自动化程度
较高
成本
低/较高/高
低,受环境干扰大 低,需要人员 较高 值守
红外对射
智能雷达
有限,存在盲 区
广,无盲区
不高

较高

低,误报率高,受 较高 外部环境影响大
振动光纤方案原理
一、振动光纤原理
振动光纤原理,是当光纤传感器受到外界干扰影响时,光纤中传输光的 部分特性就会改变,通过配置特殊的感测设备,经过信号采集与分析。
二、振动光纤报警原理
当光纤传感器受到外界干扰影 响时,光纤中传输光的部分特 性就会改变,通过配置特殊的 感测设备,经过信号采集与分 析,就能检测光的特性(即衰 减、相位、波长、极化、模场 分布和传播时间)变化。光的 特性变化通过报警控制器的特 殊算法和分析处理,区分第三 方入侵行为与正常干扰,实现 报警及定位功能
三、系统结构:
光缆振动传感报警系统由监 控器、主控仪、传感器、传 感光缆和外部组件这五大部 分组成。其中,系统监控器、 主控仪位于监控室内,引导 光缆、传感光缆和外部组件 安装于室外
四、振动光纤安装方式
四、振动光纤安装方式
四、振动光纤安装方式

振动光纤工作原理

振动光纤工作原理

振动光纤工作原理
嘿,朋友们!今天咱来唠唠振动光纤工作原理这个神奇的玩意儿。

你说这振动光纤啊,就像是一个超级敏感的小卫士。

它呀,就那么安安静静地待在那里,却能时刻感知着周围的一举一动。

想象一下,它就像一条隐形的警戒线,只要有一丁点儿风吹草动,它就能迅速察觉到。

比如说,有个小老鼠偷偷摸摸地跑过去,或者一阵微风轻轻吹过,它都能准确地捕捉到这些细微的振动。

它是怎么做到的呢?其实啊,就好比是我们的耳朵能听到声音一样。

振动光纤里面有一些特殊的结构,能够把外界的振动转化为电信号。

这就厉害啦!然后这些电信号就会被传送到一个地方,让人们知道这里发生了什么事情。

你说这像不像一个神奇的魔法?它能察觉到那些我们肉眼都看不到的微小变化。

那它都能用在哪些地方呢?哎呀,那可多了去了!像一些重要的场所,比如仓库啦、博物馆啦、军事基地啦等等。

有了它在,那些小偷小摸的家伙可就无处遁形了。

它可比我们人厉害多了啊!我们人有时候还会犯困打盹呢,它可是一刻也不松懈。

而且啊,这振动光纤还特别耐用呢。

它不会像我们人一样,今天生病了,明天不舒服了。

它就那么坚强地在那里工作着,默默地守护着我们的安全。

你说这么好的东西,我们是不是应该好好珍惜它呀?要是没有它,那得有多少不安全的因素啊!
所以说啊,这振动光纤工作原理虽然听起来有点复杂,但其实仔细想想,不就是那么回事嘛。

它就是我们的好帮手,帮我们看着那些我们可能注意不到的地方。

朋友们,你们说这振动光纤是不是很了不起啊?反正我觉得是!它就是那个默默守护我们的无名英雄!。

光纤通信原理和技术PPT课件

光纤通信原理和技术PPT课件

波长(µm) 系统类型
0.85
IM/DD
光纤 多模
BL(Gb/s·km) 年代
2
1978
1.3
IM/DD
单模
第1章 绪论
1.1 光通信发展史 1.2 国内外光纤通信技术发展概况 1.3 光纤通信系统的基本构成
第1章 绪论
1.1 光通信发展史
1.1.1 现代通信的发展
人类社会出现后,人与人之间就需要信息交流。原始社会 人们可以靠声音(语言)、肢体动作(肢体语言)或面部表情 等交流信息,这就是原始的通信,是人们面对面的交流。
60年代最好的光纤传输衰减为1000dB/km,即传输1km, 光功率降到原来的1/10100≈0,因而这种光纤不可能用作通 信媒质。当时没有人相信光纤可以用于通信,也没有人从 事光纤用于通信的研究。英藉华人学者高锟博士的贡献在 于理论上证明这样大的传输衰减是由于光纤中杂质吸收和 散射引起的。如将光纤提纯,则传输衰减可以降到可在通 信中实用的程度(最初提出的指标是20dB/km)[1].这一贡 献具有深远意义,完全改变了通信容量不适应社会发展的 需求,推动了信息社会更快地到来。由于这一贡献,高锟 博士获得了2009年诺贝尔物理学奖。
第1章 绪论
2.半导体激光器性能的突破
1960年发明的第一个激光器是红宝石(固体)激光器,不久 (1961年)半导体激光器研制成功,但当时需要在低温(液氮) 下脉冲工作。后来采用异质结技术使激光器可在常温下连续 工作,但开始只有数小时甚至数分钟的寿命,由于寿命极短 不能实用化。经过一段时间的努力,才研制成功可实用的半 导体激光器。现在的半导体激光器的性能有了极大的提高, 其寿命可达106小时,甚至达108小时,功率可达10 毫瓦量级 (泵浦激光器可达几百毫瓦),可调谐范围几百GHz,线宽低到 1―10MHz(外腔激光器能达几十kHz),适用于各种光通信系统, 为光纤通信实用化打下了基础。激光器价格也在不断下降, 干线通信系统所用激光器已降到千美元量级;几十美元,甚 至几美元的半导体激光器可用于接入网系统。

光纤振动原理

光纤振动原理

光纤振动原理“嘿,同学们,今天咱们来讲讲光纤振动原理。

”我站在讲台上对着下面的学生们说道。

那什么是光纤振动原理呢?简单来说,光纤就是利用光在玻璃或塑料制成的纤维中进行全反射从而实现光信号传输的一种工具。

而当光纤受到外界的振动等干扰时,就会产生相应的变化,这就是光纤振动原理。

比如说,在一些安防系统中,就会用到光纤振动传感器。

它可以通过检测光纤中光信号的变化来感知外界的振动情况。

比如在一个仓库周围铺设了光纤振动传感器,如果有小偷试图闯入,他的行动所产生的振动就会被光纤传感器检测到,从而触发报警系统。

再比如在一些桥梁、隧道等大型结构的健康监测中,也会用到光纤振动监测技术。

通过在这些结构中铺设光纤,可以实时监测到结构的微小振动变化。

如果出现异常的振动,就可能意味着结构存在安全隐患,需要及时进行检修和维护。

像之前有个例子,一座重要的大桥,通过在桥身上安装的光纤振动监测系统,及时发现了一处因为长期车辆通行导致的结构松动所产生的异常振动。

这就为及时进行维修提供了重要的依据,避免了可能出现的严重后果。

那么光纤振动原理具体是怎么实现的呢?这就要从光纤的结构和光的传播特性说起了。

光纤一般由纤芯和包层组成,纤芯的折射率高于包层。

当光在纤芯中传播时,会由于全反射的作用而沿着光纤一直传播下去。

而当光纤受到振动时,会导致光纤的形状发生变化,从而影响光在其中的传播,产生光信号的变化。

为了更好地理解这个过程,我们可以想象一下,就好像一条很细的管道,里面有水流在流动。

当我们轻轻晃动这个管道时,水流就会受到影响而产生波动。

同样的道理,光纤中的光也会因为光纤的振动而产生类似的变化。

在实际应用中,为了提高光纤振动监测的准确性和可靠性,还需要采用一些特殊的技术和方法。

比如采用分布式光纤振动监测技术,可以实现对很长一段光纤的同时监测,大大提高了监测的范围和效率。

总之,光纤振动原理在很多领域都有着非常重要的应用,它为我们提供了一种灵敏、准确、可靠的监测手段,对于保障各种设施和结构的安全运行具有非常重要的意义。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

振动光纤
振动光纤,俗称“光纤围栏”,利用对外界振动和压力敏感并具有感测功能的光纤作传感介质,将“传”和“感”合为一体,传感光纤在外界物理因素(如运动、振动和压力) 的作用下,改变光纤中光的传输参数(相位,波长,功率等),从而对外界振动和压力进行探测报警。

铺设方式:
1、挂网布设方式
传感光缆采用U型布缆铺设方式(沿围栏直拉两道振动传感光缆)时,两条光缆之间保持一米的间距,底部一道光缆离围栏底部三十公分处开始绑扎,每隔四十公分绑扎一条专用扎带,这样布设方式增加了单位面积的缆线长度,能够有效地探测到微小的入侵报警信号。

布缆时振动传感光缆弯曲弧度不可小于45度,施工时不可强拉振动传感光缆。

示意图
实际效果
2、地埋布设方式
传感光缆采用地埋型布缆铺设方式,在草地下10cm处铺设振动光缆,在地下呈平行式铺设(具体铺设多少道光缆根据实际入侵者穿越方向宽度计算,如下图:如图所示:
草皮植被传感光缆地埋铺设示意图
将需设防的区域地表抛开约1.5~2米宽、深15公分左右的区域、以无纺布打底、
上铺设栅格网(以钢丝卡固定)、振动传感光缆沿周界长度方向迂回平行铺设多道,间
隔距离≤30cm,用尼龙扎带将其固定绑扎在栅格网上、无纺布覆盖、最后以草皮等植
被绿化。

这样能够确保有效的识别出入侵的振动信号。

振动传感光缆应平直、紧密地附着在栅格网表面。

施工过程中,应注意避免造成振动传感光缆变形、扭曲等损伤。

各个防区的头/终端模块埋置于地表以下,埋深不小于20cm。

其他地埋方式
振动传感光缆埋设在地面下,周界探测区域宽度应不小于1.2米(依据人为跨越时的跨度间距),如须提高警戒级别,可增加周界探测的宽度。

土地应是土质较为硬而紧密的泥土或者其他硬质的地面;如果是水分较多,软而松散的土质会吸收振动,造成探测性能下降。

在土层的表面沿周界长度方向迂回平行铺设多道振动传感光缆,振动传感光缆间隔距离≤30cm,即1.2米宽的区域应平行铺设4道振动传感光缆,如图:
振动传感光缆应平直、紧密地附着在土层表面,可采用Φ5的钢丝折弯成所示的线卡子,每隔50cm用线卡子将振动传感光缆紧压在土层上,但应注意避免因压力过大造成振动传感光缆变形。

如果现场条件允许,还可在围墙下部的墙基处采取竖直的方式进行纵深挖掘、布线,
纵深度为20~50cm,能防止非法挖洞。

沙土地(松散干燥的泥土地)
在沙土地下埋设振动传感光缆时,也采用平行铺设多道传感光缆的方式,由于沙土比较松软,当入侵者进入该区域时,透过沙土层对传感光缆施加压力,传感光缆可探测到微小的挤压变形并产生信号,所以在沙土地埋设传感光缆时,应减小平行振动传感光缆的间距,而且埋设不可过深。

振动传感光缆平行间隔为20至25cm,埋设深度为5至12cm,在进行施工时,首先在需要铺设传感光缆的区域挖出一道宽1.2m,深15cm的凹槽,在凹槽的底部平铺一层厚度为3cm的粗沙,再将振动传感光缆平行铺设于粗沙表面,每隔50cm用钢丝线卡子固定。

传感光缆铺设完成后,在其上面覆盖一层厚度为10cm的粗沙,最后在其表面均匀地覆盖一层1到1cm的地表介质(细沙或松散干燥的泥土),如下图。

砾石
当在砾石地面铺设传感光缆时,同样采用平行铺设多道传感光缆的方式。

通常平行铺设间隔为25至30cm,埋设深度为5至15cm,在施工时,首先在需要铺设传感光缆的区域挖出一道宽1.2m,深18cm的凹槽,在凹槽的底部平铺一层厚度为3cm的砾石,再将传感光缆平行铺设于砾石表面,每隔50cm用钢丝线卡子固定(线卡子可避开砾石固定到底层的泥土上)。

传感光缆铺设完成后,在其上面覆盖一层厚度为15cm的砾石,如下图。

使用的砾石必须光滑,其直径要求大于2厘米,以便有效地探测运动、震动和压力。

砾石必须没有尖锐的边缘,这样可以避免砾石受到挤压时对传感光缆造成损害。

所有的
砾石必须干净,尽量不带灰尘和沙子,在温度会降至冰点以下的地区,必须保持砾石层
不积蓄水层,否则会降低设备的探测性能。

3、嵌墙布设方式
由于周界介质是水泥墙体,为防止开凿与破坏的入侵方式,采用嵌入墙内平铺多道铺设光缆的方法,在周界围墙外围切槽,将光缆铺设在槽内。

如下图所示:
图2.2.2
防范凿墙:振动传感光缆可以采集到入侵者凿墙时产生的微小振动,施工人员可采用平行线型方式在墙面上铺设振动传感光缆,每根缆的探测范围为±1米。

为了保证振动传感光缆能
感应到凿墙时产生的振动,必须保证墙面结实,砖快不能有松动,并且振动传感光缆应敷设在墙体内或紧密地附着在围墙表面。

可使用线卡子每隔50厘米进行固定,可根据安防要求的等级来决定传感光缆铺设的密度。

相关文档
最新文档