三角形的高、中线与角平分线练习题及答案

合集下载

人教版数学八年级上册 第11章 三角形 11.1.2 三角形的高、中线和角平分线 同步练习

人教版数学八年级上册 第11章 三角形  11.1.2 三角形的高、中线和角平分线    同步练习

人教版八年级上册第11章三角形11.1.2三角形的高、中线与角平分线同步检测一.选择题(共10小题,3*10=30)1. 如图,过△ABC的顶点A,作BC边上的高,以下作法正确的是( )2.下列说法正确的是( )A.三角形的三条高都在三角形内B.直角三角形只有一条高C.锐角三角形的三条高都在三角形内D.以上都不对3. 如图,在△ABC中有四条线段DE,BE,EF,FG,其中有一条线段是△ABC的中线,则该线段是( ) A.线段DEB.线段BEC.线段EFD.线段FG4.三角形一边上的中线把原三角形分成两个( )A.形状相同的三角形B.面积相等的三角形C.直角三角形D.周长相等的三角形5. 如图,∠1=∠2,∠3=∠4,下列结论中错误的是( )A.BD是△ABC的角平分线B.CE是△BCD的角平分线C.∠ACB=2∠3D.CE是△ABC的角平分线6. 下列图形具有稳定性的是( )7.如图,在△ABC中,CD是△ABC的角平分线,DE∥BC,交AC于点E,若∠ACB=60°,则∠EDC的度数是( )A.15°B.30°C.45°D.60°8.如图,△ABC中,点E是BC上的一点,EC=2BE,BD是边AC上的中线,若S△ABC=12,则S△ADF-S△BEF=()A.1B.2C.3D.49. 如图,在△ABC中,∠1=∠2,G为AD的中点,延长BG交AC于E.F为AB上一点,CF⊥AD于H,下面判断正确的有()①AD是△ABE的角平分线;②BE是△ABD边AD上的中线;③CH是△ACD边AD上的高;④AH是△ACF的角平分线和高.A. 1个B. 2个C. 3个D. 4个10. 如图,AD是△ABC的角平分线,点O在AD上,且OE⊥BC于点E,∠BAC=60∘,∠C=80∘,则∠EOD的度数为()A. 20∘B. 30∘C. 10∘D. 15∘二.填空题(共8小题,3*8=24)11.如图,在△ABC中,∠AEB=90°,则以AE为高的三角形是_______________________________.12.空调外机安装在墙壁上时,一般都会按如图所示的方法固定在墙壁上,这种方法应用的数学知识是三角形的.13. 已知BD是△ABC的中线,AB=5,BC=3,则△ABD和△BCD的周长的差是____.14.如图,AD是△ABC的角平分线,AE是△ABD的角平分线,若∠BAC=80°,则∠EAD=_____.15. 下列说法:①自行车的三脚架;②三角形房架;③照相机的三角架;④门框的长方形架.其中利用三角形稳定性的有__________.(填序号)16. 如图,在△ABC中,D,E分别是BC,AC边上的中点,已知△ADE的面积为1,则△ABC的面积是_______.17.如果等腰三角形的周长是25 cm,一腰上的中线把三角形分成周长差是4 cm的两个三角形,则这个等腰三角形的腰长为_________.18. 如图,在△ABC中,AD是△ABC边BC上的中线,CE是△ACD边AD上的中线,F是EC的中点.若S△BFC=1,则S△ABC=.三.解答题(共7小题,46分)19. (6分)画出下列三角形三边上的高.20. (6分)如图,D是△ABC中BC边上的一点,DE∥AC交AB于点E.若∠EDA=∠EAD,试说明AD是△ABC的角平分线.21.(6分)如图,在△ABC中,∠ACB=90°,CD是AB边上的高,AB=13,BC=12,AC=5.(1)求△ABC的面积;(2)求CD的长.22.(6分)如图,在△ABC中,已知点D,E,F分别为边BC,AD,CE的中点,且S△ABC=8 cm2,求阴影部分的面积.23. (6分)如图,在△ABC中,AB=AC,AC边上的中线把三角形的周长分为24和30两部分,求△ABC各边的长.24.(6分)如图△ABC中,∠A=20∘,CD是∠BCA的平分线,△CDA中,DE是CA边上的高,又有∠EDA=∠CDB,求∠B的大小.25. (8分)如图,已知AD、AE分别是△ABC的高和中线,AB=9 cm,AC=12 cm,BC=15 cm,∠BAC=90°.试求:(1)△ABE的面积;(2)AD的长度;(3)△ACE与△ABE的周长的差.参考答案:1-5 ACBBD6-10 ABBBA11. △ABE ,△ABC ,△AED ,△AEC ,△ADC12. 稳定性13. 214. 20°15. ①②③16. 417. 7或29318. 419.解:20. 解:∵DE ∥AC ,∴∠EDA =∠CAD ,∵∠EDA =∠EAD ,∴∠CAD =∠EAD ,∴AD 是△ABC 的角平分线21. 解:(1)S △ABC =12AC·BC =30 (2)∵S △ABC =12AB·CD ,∴CD =2S △ABC AB =601322. 解:∵D 是BC 的中点,∴S △ABD =S △ACD =12S △ABC =4 cm 2. ∵E 是AD 的中点,∴S △BED =12S △ABD =2 cm 2,S △DCE =12S △ACD =2 cm 2, ∴S △BCE =S △BED +S △DCE =4 cm 2.∵F 是CE 的中点,∴S 阴影=12S △BCE =2 cm 2 23. 解:设AB =x ,BC =y ,由题意知,分两种情况讨论,即⎩⎨⎧32x =24,12x +y =30或⎩⎨⎧32x =30,12x +y =24,解得⎩⎪⎨⎪⎧x =16,y =22或⎩⎪⎨⎪⎧x =20,y =14, ∴AB =AC =16,BC =22或AB =AC =20,BC =1424. 解:∵DE 是CA 边上的高,∴∠DEA =∠DEC =90∘,∵∠A =20∘,∴∠EDA =90∘−20∘=70∘,∵∠EDA =∠CDB ,∴∠CDE =180∘−70∘×2=40∘,在Rt △CDE 中,∠DCE =90∘−40∘=50∘,∵CD 是∠BCA 的平分线,∴∠BCA =2∠DCE =2×50∘=100∘,在△ABC 中,∠B =180∘−∠BCA −∠A =180∘−100∘−20∘=60∘.故答案为:60∘.25. 解: (1)∵△ABC 是直角三角形,∠BAC=90°,AB=9 cm,AC=12 cm,∴S △ABC =12AB·AC=12×9×12=54(cm 2).∵AE 是边BC 上的中线,∴BE=EC, ∴12BE·AD=12EC·AD,即S △ABE =S △AEC ,∴S △ABE =12S △ABC =27 cm 2.∴△ABE 的面积是27 cm 2. (2)∵∠BAC=90°,AD 是边BC 上的高,∴12AB·AC=12BC·AD,∴AD=AB·AC BC =9×1215=365 (cm),即AD 的长度为365cm. (3)∵AE 为BC 边上的中线,∴BE=CE,∴△ACE 的周长-△ABE 的周长=AC+AE+CE -(AB+BE+AE)=AC -AB=12-9=3(cm),即△ACE 与△ABE 的周长的差是3 cm.。

2021年中考数学复习:三角形的角平分线、中线和高 专项练习题(含答案)

2021年中考数学复习:三角形的角平分线、中线和高 专项练习题(含答案)

2021年中考数学复习:三角形的角平分线、中线和高专项练习题一.选择题1.如图,在△ABC中,AD是高,AE是角平分线,AF是中线,则下列说法中错误的是()A.BF=CF B.∠C+∠CAD=90°C.∠BAF=∠CAF D.S△ABC =2S△ABF2.如图所示,∠1=∠2,∠3=∠4,则下列结论正确的有()①AD平分∠BAF;②AF平分∠BAC;③AE平分∠DAF;④AF平分∠DAC;⑤AE平分∠BAC.A.4个B.3个C.2个D.1个3.钝角三角形三条高所在的直线交于()A.三角形内B.三角形外C.三角形的边上D.不能确定4.画△ABC中AC边上的高,下列四个画法中正确的是()A.B.C.D.5.下列说法错误的是()A.三角形的高、中线、角平分线都是线段B.三角形的三条中线都在三角形内部C.锐角三角形的三条高一定交于同一点D.三角形的三条高、三条中线、三条角平分线都交于同一点6.在下列各图形中,分别画出了△ABC中BC边上的高AD,其中正确的是()A.B.C.D.7.下列四个图形中,线段BE是△ABC的高的图形是()A.B.C.D.8.如图所示,AC⊥BC于C,CD⊥AB于D,图中可以作为三角形“高”的线段有()A.1条B.2条C.3条D.5条9.如图,已知BD=CD,则AD一定是△ABC的()A.角平分线B.高线C.中线D.无法确定10.如图,在△ABC中,AB边上的高是()A.AD B.BE C.BF D.CF二.填空题11.如图,AD⊥BC于D,那么图中以AD为高的三角形有个.12.已知:AD、AE分别是△ABC的高,中线,BE=6,CD=4,则DE的长为.13.若线段AD是△ABC的中线,且BD=3,则BC长为.14.如图,在△ABC中,BC边上的中垂线DE交BC于点D,交AC于点E,AB=5cm,AC=8cm,则△ABE的周长为.15.如图,在△ABC中,AD⊥BC,AE平分∠BAC,若∠1=30°,∠2=20°,则∠B=.16.如图,已知AD是△ABC的中线,且△ABD的周长比△ACD的周长多4cm.若AB=16cm,那么AC=cm.。

八年级上册11.1三角形的中线、高线、角平分线同步测试(人教版含答案解析)

八年级上册11.1三角形的中线、高线、角平分线同步测试(人教版含答案解析)

八年级上册11.1三角形的中线、高线、角平分线同步测试(人教版含答案解析)三角形的中线、高线、角平分线时间:60分钟总分: 100 题号一二三四总分得分一、选择题(本大题共10小题,共30.0分)下列说法错误的是( )A. 三角形三条高交于三角形内一点B. 三角形三条中线交于三角形内一点 C. 三角形三条角平分线交于三角形内一点 D. 三角形的中线、角平分线、高都是线段下面四个图形中,线段BD是△ABC的高的是( ) A. B. C. D. 如图,在△ABC中,若AD⊥BC,点E是BC 边上一点,且不与点B、C、D重合,则AD是几个三角形的高线( ) A. 4个 B. 5个 C. 6个 D. 8个如图,AD⊥BE于D,以AD为高的三角形有( )个. A. 3 B. 4 C. 5 D. 6如图,在△ABC中,∠1=∠2,G为AD的中点,延长BG交AC于E.F为AB上一点,CF⊥AD于H,下面判断正确的有( ) ①AD是△ABE 的角平分线;②BE是△ABD边AD上的中线;③CH是△ACD边AD上的高;④AH是△ACF的角平分线和高.A. 1个B. 2个C. 3个D. 4个如图,兔子的三个洞口A、B、C构成△ABC,猎狗想捕捉兔子,必须到三个洞口的距离都相等,则猎狗应蹲守在( )A. 三条边的垂直平分线的交点B. 三个角的角平分线的交点C. 三角形三条高的交点 D. 三角形三条中线的交点如图,AD是△ABC的中线,DE是△ADC的高线,AB=3,AC=5,DE=2,那么点D到AB的距离是( )A. 10/3B. 5/3C. 6/5D. 2 已知:三角形的两边长分别为3和7,则第三边的中线长x的取值范围是( ) A. 2<x<5 B. 4<x<10 C.3<x<7 D. 无法确定如图,AD是△ABC的角平分线,点O在AD上,且OE⊥BC于点E,∠BAC=〖60〗^∘,∠C=〖80〗^∘,则∠EOD的度数为( )A. 〖20〗^∘B. 〖30〗^∘C. 〖10〗^∘D. 〖15〗^∘一个钝角三角形的三条角平分线所在的直线一定交于一点,这交点一定在( ) A.三角形内部 B. 三角形的一边上 C. 三角形外部 D. 三角形的某个顶点上二、填空题(本大题共10小题,共30.0分)如图,DB是△ABC的高,AE是角平分线,∠BAE=〖26〗^∘,则∠BFE=______.平行四边形ABCD中,∠ABC的角平分线BE将边AD分成长度为5cm和6cm的两部分,则平行四边形ABCD的周长为______cm.如图,在△ABC中,∠B和∠C的平分线交于点O,若∠A=〖50〗^∘,则∠BOC= ______ .如图所示,D是BC的中点,E是AC的中点,若S_(△ADE)=1,则S_(△ABC)= ______ .如图,已知AE是△ABC的边BC上的中线,若AB=8cm,△ACE的周长比△AEB的周长多2cm,则AC=______cm.在画三角形的三条重要线段(角平分线、中线和高线)时,不一定画在三角形内部的是______ .如图,已知△ABC中,∠B=〖65〗^∘,∠C=〖45〗^∘,AD是∠ABC的高线,AE是∠BAC的平分线,则∠DAE= ______ .如图,在△ABC中,∠A=α.∠ABC与∠ACD的平分线交于点A_1,得∠A_1;∠A_1 BC与∠A_1 CD的平分线相交于点A_2,得∠A_2;…;∠A_2011 BC与∠A_2011 CD的平分线相交于点A_2012,得∠A_2012,则∠A_2012= ______ .如图,在△ABC中,AB=13,AC=10,AD为中线,则△ABD与△ACD的周长之差= ______ .如图,在△ABC中,AD是高,AE,BF是角平分线,它们相交于点G,AD与BF相交于点H,∠BAC=〖50〗^∘,∠C=〖70〗^∘,则∠AHB= ______ .三、计算题(本大题共4小题,共24.0分)如图,△ABC中,AD⊥BC,AE平分∠BAC,∠B=〖40〗^∘,∠C=〖60〗^∘,求∠DAE的度数.如图所示,在△ABC中,AB=5,AC=13,BC边上的中线AD=6,求BC的长.如图所示:△ABC中,AD是高,AE、BF是角平分线,它们相交于点O,∠BAC=〖60〗^∘,∠C=〖70〗^∘,求∠CAD,∠BOA的度数是多少?如图△ABC中,∠A=〖20〗^∘,CD是∠BCA的平分线,△CDA中,DE 是CA边上的高,又有∠EDA=∠CDB,求∠B的大小.四、解答题(本大题共2小题,共16.0分)如图,在△ABC中,AE是中线,AD是角平分线,AF是高,则:(1)∵AE是△ABC的中线,∴BE= ______ =1/2 ______ ;(2)∵AD是△ABC的角平分线,∴∠BAD= ______ =1/2 ______ ;(3)∵AF是△ABC的高,∴∠AFB= ______ =〖90〗^∘;(4)∵AE是△ABC的中线,∴BE=CE,又∵S_(△ABE)=1/2 ______ ,S_(△AEC)=1/2 ______ ,∴S_(△ABE)=S_(△ACE)=1/2 ______ .已知,如图,AE是∠BAC的平分线,∠1=∠D.求证:∠1=∠2.答案和解析【答案】 1. A 2. A 3. C 4. D 5. B 6. A 7. A 8.A 9. A 10. A 11. 〖64〗^∘ 12. 32或34 13. 〖115〗^∘ 14. 4 15.10 16. 高线 17. 〖10〗^∘ 18. α/2^2012 19. 3 20. 〖120〗^∘ 21. 解:∵∠B=〖40〗^∘,∠C=〖60〗^∘,∴∠BAC=〖180〗^∘-∠B-∠C=〖80〗^∘,∵AE平分∠BAC,∴∠BAE=1/2∠BAC=〖40〗^∘,∴∠AEC=∠B+∠BAE=〖80〗^∘,∵AD⊥BC,∴∠ADE=〖90〗^∘,∴∠DAE=〖180〗^∘-∠ADE-∠AED=〖10〗^∘.答:∠DAE的度数是〖10〗^∘. 22. 解:延长AD到E使AD=DE,连接CE,在△ABD和△ECD中{■(AD=DE@∠ADB=∠EDC@BD=DC)┤,∴△ABD≌△ECD,∴AB=CE=5,AD=DE=6,AE=12,在△AEC中,AC=13,AE=12,CE=5,∴AC^2=AE^2+CE^2,∴∠E=〖90〗^∘,由勾股定理得:CD=√(DE^2+CE^2 )=√61,∴BC=2CD=2√61,答:BC的长是2√61. 23. 解:∵AD⊥BC,∴∠ADC=〖90〗^∘,∵∠C=〖70〗^∘,∴∠CAD=〖180〗^∘-〖90〗^∘-〖70〗^∘=〖20〗^∘;∵∠BAC=〖60〗^∘,∠C=〖70〗^∘,∴∠BAO=〖30〗^∘,∠ABC=〖50〗^∘,∵BF 是∠ABC的角平分线,∴∠ABO=〖25〗^∘,∴∠BOA=〖180〗^∘-∠BAO-∠ABO=〖180〗^∘-〖30〗^∘-〖25〗^∘=〖125〗^∘.故∠CAD,∠BOA的度数分别是〖20〗^∘,〖125〗^∘. 24. 解:∵DE是CA边上的高,∴∠DEA=∠DEC=〖90〗^∘,∵∠A=〖20〗^∘,∴∠EDA=〖90〗^∘-〖20〗^∘=〖70〗^∘,∵∠EDA=∠CDB,∴∠CDE=〖180〗^∘-〖70〗^∘×2=〖40〗^∘,在Rt△CDE中,∠DCE=〖90〗^∘-〖40〗^∘=〖50〗^∘,∵CD是∠BCA的平分线,∴∠BCA=2∠DCE=2×〖50〗^∘=〖100〗^∘,在△ABC中,∠B=〖180〗^∘-∠BCA-∠A=〖180〗^∘-〖100〗^∘-〖20〗^∘=〖60〗^∘.故答案为:〖60〗^∘. 25. CE;BC;∠CAD;∠BAC;∠AFC;S_(△ABC);S_(△ABC);S_(△ABC) 26. 证明:∵∠1=∠D,∴AE//DC(同位角相等,两直线平行),∴∠EAC=∠2(两直线平行,内错角相等),∵AE是∠BAC的平分线,∴∠1=∠EAC,∴∠1=∠2.【解析】 1. 【分析】本题考查了三角形的角平分线、中线、高线以及三角形的面积和外角性质,熟记概念与性质是解题的关键.根据三角形的高线、外角的性质、角平分线、中线的定义对各选项分析判断后利用排除法求解.【解答】解:A.三角形的三条高所在的直线交于一点,三条高不一定相交,故本选项说法不正确; B.三角形的三条中线交于三角形内一点,故本选项说法正确; C.三角形的三条角平分线交于一点,是三角形的内心,故本选项说法正确;D.三角形的中线,角平分线,高都是线段,因为它们都有两个端点,故本选项说法正确.故选A. 2. 解:线段BD是△ABC的高,则过点B作对边AC的垂线,则垂线段BD为△ABC的高.故选A.根据三角形高的定义进行判断.本题考查了三角形的角平分线、中线和高:三角形有三条中线,有三条高线,有三条角平分线,它们都是线段.锐角三角形的三条高在三角形内部,相交于三角形内一点,直角三角形有两条高与直角边重合,另一条高在三角形内部,它们的交点是直角顶点;钝角三角形有两条高在三角形外部,一条高在三角形内部,三条高所在直线相交于三角形外一点. 3. 解:∵在△ABC中,AD⊥BC,点E是BC边上一点,且不与点B、C、D重合,∴AD是△ABD,△ABE,△ABC,△ADE,△ADC,△AEC的高.故选C.根据三角形高的定义可知,三角形的高可以在三角形内部,可以是三角形的边,还可以在三角形外部,结合图形即可求解.本题考查了三角形的高的定义:从三角形的一个顶点向它的对边作垂线,垂足与顶点之间的线段叫做三角形的高.注意:锐角三角形的三条高在三角形内部,相交于三角形内一点;直角三角形有两条高与直角边重合,另一条高在三角形内部,它们的交点是直角顶点;钝角三角形有两条高在三角形外部,一条高在三角形内部,三条高所在直线相交于三角形外一点. 4. 解:∵AD⊥BC于D,而图中有一边在直线CB上,且以A为顶点的三角形有6个,∴以AD为高的三角形有6个.故选:D.由于AD⊥BC 于D,图中共有6个三角形,它们都有一边在直线CB上,由此即可确定以AD为高的三角形的个数.此题主要考查了三角形的高,三角形的高可以在三角形外,也可以在三角形内,所以确定三角形的高比较灵活. 5. 解:①根据三角形的角平分线的概念,知AG是△ABE的角平分线,故此说法错误;②根据三角形的中线的概念,知BG是△ABD的边AD上的中线,故此说法错误;③根据三角形的高的概念,知CH为△ACD的边AD上的高,故此说法正确;④根据三角形的角平分线和高的概念,知AH是△ACF的角平分线和高线,故此说法正确.故选B.根据三角形的角平分线、三角形的中线、三角形的高的概念进行判断.连接三角形的顶点和对边中点的线段即为三角形的中线;三角形的一个角的角平分线和对边相交,顶点和交点间的线段叫三角形的角平分线;从三角形的一个顶点向对边引垂线,顶点和垂足间的线段叫三角形的高.本题考查了三角形的角平分线、三角形的中线、三角形的高的概念,注意:三角形的角平分线、中线、高都是线段,且都是顶点和三角形的某条边相交的交点之间的线段.透彻理解定义是解题的关键. 6. 解:猎狗到△ABC三个顶点的距离相等,则猎狗应蹲守在△ABC的三条(边垂直平分线)的交点.故选:A.用线段垂直平分线性质判断即可.此题考查了线段垂直平分线的性质,以及三角形的角平分线、中线和高,熟练掌握性质是解本题的关键. 7. 解:∵AC=5,DE=2,∴△ADC的面积为1/2×5×2=5,∵AD是△ABC的中线,∴△ABD的面积为5,∴点D到AB的距离是2×5÷3=10/3.故选A.根据三角形的面积得出△ADC的面积为5,再利用中线的性质得出△ABD的面积为5,进而解答即可.此题考查三角形的面积问题,关键是根据三角形的面积得出△ADC的面积为5. 8. 解:7-3<2x<7+3,即2<x<5.故选A.根据三角形的三边关系:两边之和大于第三边,两边之差小于第三边.倍长中线,构造一个新的三角形.根据三角形的三边关系就可以求解.本题主要考查了三角形的三边关系,注意此题构造了一条常见的辅助线:倍长中线. 9. 解:∵∠BAC=〖60〗^∘,∠C=〖80〗^∘,∴∠B=〖40〗^∘.又∵AD 是∠BAC的角平分线,∴∠BAD=1/2∠BAC=〖30〗^∘,∴∠ADE=〖70〗^∘,又∵OE⊥BC,∴∠EOD=〖20〗^∘.故选A.首先根据三角形的内角和定理求得∠B,再根据角平分线的定义求得∠BAD,再根据三角形的一个外角等于和它不相邻的两个内角和求得∠ADC,最后根据直角三角形的两个锐角互余即可求解.此类题要首先明确思路,考查了三角形的内角和定理及其推论、角平分线的定义. 10. 解:一个钝角三角形的三条角平分线所在的直线一定交于一点,这交点一定在三角形的内部.故选A.根据三角形的高的性质即可判断.本题考查了三角形的高线,锐角三角形的三高线交于三角形内部一点,直角三角形三高线的交点是直角三角形的直角顶点,钝角的三条高所在的直线一定交于一点,这交点一定在三角形的内部. 11. 【分析】本题主要考查了三角形内角和定理以及三角形的高以及角平分线的定义的运用,解决问题的关键是利用角平分线的定义和直角三角形的性质求解.由角平分线的定义可得,∠FAD=∠BAE=〖26〗^∘,而∠AFD 与∠FAD互余,与∠BFE是对顶角,故可求得∠BFE的度数.【解答】解:∵AE是角平分线,∠BAE=〖26〗^∘,∴∠FAD=∠BAE=〖26〗^∘,∵DB是△ABC的高,∴∠AFD=〖90〗^∘-∠FAD=〖90〗^∘-〖26〗^∘=〖64〗^∘,∴∠BFE=∠AFD=〖64〗^∘.故答案为〖64〗^∘. 12. 解:∵四边形ABCD是平行四边形,∴AD=BC,AB=CD,AD//BC,∴∠AEB=∠CBE,∵BE平分∠ABC,∴∠ABE=∠CBE,∴∠ABE=∠AEB,∴AB=AE, (1)当AE=5时,AB=5,平行四边形ABCD的周长是2×(5+5+6)=32; (2)当AE=6时,AB=6,平行四边形ABCD的周长是2×(5+6+6)=34;故答案为:32或34.由平行四边形ABCD推出∠AEB=∠CBE,由已知得到∠ABE=∠CBE,推出AB=AE,分两种情况(1)当AE=5时,求出AB的长;(2)当AE=6时,求出AB的长,进一步求出平行四边形的周长.本题主要考查了平行四边形的性质,等腰三角形的判定,三角形的角平分线等知识点,解此题的关键是求出AE=AB.用的数学思想是分类讨论思想. 13. 解;∵∠A=〖50〗^∘,∴∠ABC+∠ACB=〖180〗^∘-〖50〗^∘=〖130〗^∘,∵∠B和∠C的平分线交于点O,∴∠OBC=1/2∠ABC,∠OCB=1/2∠ACB,∴∠OBC+∠OCB=1/2×(∠ABC+∠ACB)=1/2×〖130〗^∘=〖65〗^∘,∴∠BOC=〖180〗^∘-(∠OBC+∠OCB)=〖115〗^∘,故答案为:〖115〗^∘.求出∠ABC+∠ACB=〖130〗^∘,根据角平分线定义得出∠OBC=1/2∠ABC,∠OCB=1/2∠ACB,求出∠OBC+∠OCB=1/2×(∠ABC+∠ACB)=〖65〗^∘,根据三角形的内角和定理得出∠BOC=〖180〗^∘-(∠OBC+∠OCB),代入求出即可.本题考查了三角形的内角和定理和三角形的角平分线等知识点,关键是求出∠OBC+∠OCB的度数. 14. 解:∵D是BC的中点,E是AC的中点,∴△ADC的面积等于△ABC的面积的一半,△ADE的面积等于△ACD的面积的一半,∴△ADE的面积等于△ABC的面积的四分之一,又∵S_(△ADE)=1,∴S_(△ABC)=4.故答案为:4.先根据D是BC的中点,E是AC的中点,得出△ADE的面积等于△ABC的面积的四分之一,再根据S_(△ADE)=1,得到S_(△ABC)=4.本题主要考查了三角形的面积,解决问题的关键是掌握三角形的中线将三角形分成面积相等的两部分. 15. 解:∵AE是△ABC的边BC上的中线,∴CE=BE,又∵AE=AE,△ACE的周长比△AEB的周长多2cm,∴AC-AB=2cm,即AC-8=2cm,∴AC=10cm,故答案为:10;依据AE是△ABC的边BC上的中线,可得CE=BE,再根据AE=AE,△ACE的周长比△AEB的周长多2cm,即可得到AC的长.本题考查了三角形的角平分线、中线和高,求出两个三角形的周长的差等于两边的差是解题的关键. 16. 解:三角形的角平分线和中线都在三角形内部,而锐角三角形的三条高在三角形内部,直角三角形有两条高与直角边重合,另一条高在三角形内部,钝角三角形有两条高在三角形外部,一条高在三角形内部.故答案为:高线.根据三角形的角平分线、中线和高的定义求解.考查了三角形的角平分线、中线和高:三角形有三条中线,有三条高线,有三条角平分线,它们都是线段.锐角三角形的三条高在三角形内部,相交于三角形内一点,直角三角形有两条高与直角边重合,另一条高在三角形内部,它们的交点是直角顶点;钝角三角形有两条高在三角形外部,一条高在三角形内部,三条高所在直线相交于三角形外一点. 17. 解:在△ABC中,∵∠BAC=〖180〗^∘-∠B-∠C=〖70〗^∘,∵AE是∠BAC的平分线,∴∠BAE=∠CAE=〖35〗^∘.又∵AD是BC边上的高,∴∠ADB=〖90〗^∘,∵在△ABD中∠BAD=〖90〗^∘-∠B=〖25〗^∘,∴∠DAE=∠BAE-∠BAD=〖10〗^∘.由三角形的内角和定理,可求∠BAC=〖70〗^∘,又由AE是∠BAC的平分线,可求∠BAE=〖35〗^∘,再由AD是BC边上的高,可知∠ADB=〖90〗^∘,可求∠BAD=〖25〗^∘,所以∠DAE=∠BAE-∠BAD=〖10〗^∘.本题考查三角形的内角和定理及角平分线的性质,高线的性质,熟知三角形的内角和定理是解答此题的关键. 18. 解:∵∠ABC与∠ACD的平分线交于点A_1,∴∠A_1 BC=1/2∠ABC,∠A_1 CD=1/2∠ACD,根据三角形的外角性质,∠A+∠ABC=∠ACD,∠A_1+∠A_1 BC=∠A_1 CD,∴∠A_1+∠A_1 BC=∠A_1+1/2∠ABC=1/2(∠A+∠ABC),整理得,∠A_1=1/2∠A=α/2,同理可得,∠A_2=1/2∠A_1=1/2×α/2=α/2^2 ,…,∠A_2012=α/2^2012 .故答案为:α/2^2012 .根据角平分线的定义可得∠A_1 BC=1/2∠ABC,∠A_1 CD=1/2∠ACD,再根据三角形的一个外角等于与它不相邻的两个内角的和可得∠A+∠ABC=∠ACD,∠A_1+∠A_1 BC=∠A_1 CD,然后整理即可得到∠A_1与∠A的关系,同理得到∠A_2与∠A_1的关系并依次找出变化规律,从而得解.本题考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,角平分线的定义,求出后一个角是前一个角的一半是解题的关键. 19. 解:∵AD是△ABC中BC边上的中线,∴BD=DC=1/2 BC,∴△ABD与△ACD的周长之差 =(AB+BD+AD)-(AC+DC+AD) =AB-AC =13-10=3.则△ABD与△ACD的周长之差=3.故答案为3.根据三角形的周长的计算方法得到△ABD的周长和△ADC的周长的差就是AB与AC的差.本题考查三角形的中线的定义:三角形一边的中点与此边所对顶点的连线叫做三角形的中线,同时考查了三角形周长的计算方法. 20. 解:∵在△ABC中,∠BAC=〖50〗^∘,∠C=〖70〗^∘,∴∠ABC=〖60〗^∘,∵在△AB C中,AD是高,AE,BF是角平线,∴∠EAD=〖90〗^∘-(〖25〗^∘+〖60〗^∘)=5^∘,∴∠AGH=〖25〗^∘+〖30〗^∘=〖55〗^∘,∴∠AHB=〖180〗^∘-〖55〗^∘-5^∘=〖120〗^∘.故答案为:〖120〗^∘.根据三角形的内角和得出∠ABC=〖60〗^∘,再利用角平分线的定义和高的定义解答即可.此题考查三角形的内角和问题,关键是根据三角形的内角和得出∠ABC=〖60〗^∘. 21. 根据三角形的内角和定理求出∠BAC的度数,根据角平分线的定义求出∠BAE的度数,根据三角形的外角性质得到∠AEC的度数,再根据三角形的内角和定理即可求出答案.本题主要考查了三角形的内角和定理,三角形的外角性质,三角形的角平分线,垂直的定义等知识点,能熟练地运用这些性质进行计算是解此题的关键. 22. 延长AD到E 使AD=DE,连接CE,证△ABD≌△ECD,求出AE和CE的长,根据勾股定理的逆定理求出∠E=〖90〗^∘,根据勾股定理求出CD即可.本题综合考查了勾股定理、勾股定理的逆定理、全等三角形的性质和判定、三角形的中线等知识点的应用,关键是正确地作辅助线,把已知条件转化成一个直角三角形,题型较好. 23. 因为AD是高,所以∠ADC=〖90〗^∘,又因为∠C=〖70〗^∘,所以∠CAD度数可求;因为∠BAC=〖60〗^∘,∠C=〖70〗^∘,所以∠BAO=〖30〗^∘,∠ABC=〖50〗^∘,BF是∠ABC的角平分线,则∠ABO=〖25〗^∘,故∠BOA的度数可求.本题考查了三角形内角和定理、角平分线定义.关键是利用角平分线的性质解出∠ABO、∠BAO,再运用三角形内角和定理求出∠AOB. 24. 根据直角三角形两锐角互余求出∠EDA的度数,再根据平角的定义求出∠CDE的度数,再次利用直角三角形两锐角互余求出∠DCE的度数,从而得到∠BCA的度数,最后利用三角形内角和等于〖180〗^∘计算即可.本题考查了三角形的角平分线的定义,三角形的高以及三角形的内角和定理,稍微复杂,但仔细分析图形也不难解决. 25. 解:(1)根据AE是△ABC的中线,可得BE=CE=1/2 BC; (2)根据AD是△ABC 的角平分线,可得∠BAD=∠CAD=1/2∠BAC; (3)根据AF是△ABC的高,可得∠AFB=∠AFC=〖90〗^∘; (4)根据AE是△ABC的中线,可得BE=CE,所以S_(△ABE)=1/2 S_(△ABC),S_(△AEC)=1/2 S_(△ABC),即S_(△ABE)=S_(△ACE)=1/2 S_(△ABC).故答案为:(1)CE,BC;(2)∠CAD,∠BAC;(3)∠AFC;(4)S_(△ABC),S_(△ABC),S_(△ABC). (1)三角形一边的中点与此边所对顶点的连线叫做三角形的中线; (2)三角形一个内角的平分线与这个内角的对边交于一点,则这个内角的顶点与所交的点间的线段叫做三角形的角平分线; (3)从三角形的一个顶点向底边作垂线,垂足与顶点之间的线段叫做三角形的高; (4)三角形的中线将三角形分成面积相等的两部分.本题主要考查了三角形的中线、高线以及角平分线的概念的运用,解题时注意:三角形有三条中线,有三条高线,有三条角平分线,它们都是线段,三角形的中线将三角形分成面积相等的两部分. 26. 由∠1=∠D,根据同位角相等,两直线平行可证AE//DC,根据两直线平行,内错角相等可证∠EAC=∠2,再根据角平分线的性质即可求解.本题考查了平行线的判定与性质和三角形的角平分线的性质,有一定的综合性,但难度不大.。

三角形中线高角平分线的30题(有答案)ok

三角形中线高角平分线的30题(有答案)ok

三角形中线高角平分线的30题(有答案)ok1.在三角形ABC中,角A为30°,角B为70°,CE为角ACB的平分线,CD垂直于AB于点D,DF垂直于CE于点F。

1) 证明角BCD等于角ECD。

2) 找出所有与角B相等的角。

2.在三角形ABC中,AD为中线,BE为三角形ABD的中线。

1) 已知角ABE为15°,角BAD为35°,求角BED的度数。

2) 在三角形BED中,作BD边上的高。

3) 若三角形ABC的面积为60,BD为5,求点E到BC边的距离。

3.在三角形ABC中,AD是BC边上的中线,已知三角形ABD和三角形ADC的周长之差为4(其中AB>AC),AB与AC的和为14,求AB和AC的长度。

4.在三角形ABC中,角A为20°,CD为角BCA的平分线,DE为CA边上的高,已知角EDA等于角CDB,求角B的度数。

5.在三角形ABC中,AD⊥BC,AE为角BAC的平分线,已知角B为30°,角C为70°。

1) 求角EAD的度数。

2) 若角B小于角C,是否有2倍角EAD等于角C减去角B?请说明理由。

6.在三角形ABC中,AD为高,AE为角平分线,已知角B为20°,角C为60°,求角CAD和角DAE的度数。

7.在三角形ABC中。

1) 若角A为60°,AB和AC边上的高CE和BD交于点O,求角BOC的度数。

2) 若角A为钝角,AB和AC边上的高CE和BD所在直线交于点O,画出图形,并用量角器量一量角BAC加上角BOC的度数,再用已学过的数学知识加以说明。

3) 由(1)和(2)可以得到,无论角A为锐角还是钝角,总有角BAC加上角BOC等于180°。

8.在三角形ABC中,已知角ABC为60°,角ACB为50°,BE为AC上的高,CF为AB上的高,H为BE和CF的交点,求角ABE、角ACF和角BHC的度数。

人教版八年级数学上册《三角形的高、中线与角平分线》拔高练习(1)

人教版八年级数学上册《三角形的高、中线与角平分线》拔高练习(1)

《三角形的高、中线与角平分线》拔高练习一、选择题(本大题共5小题,共25.0分)1.(5分)如图所示,有一条线段是△ABC(AC>AB)的中线,该线段是()A.线段AD B.线段AE C.线段AF D.线段MN2.(5分)在△ABC中,∠A是钝角,下列图中画BC边上的高线正确的是()A.B.C.D.3.(5分)如果一个三角形的三条高的交点恰是三角形的一个顶点,那么这个三角形是()A.锐角三角形B.钝角三角形C.直角三角形D.等边三角形4.(5分)三角形三条高的交点一定在()A.三角形内部B.三角形外部C.三角形内部或外部D.三角形内部、外部或顶点5.(5分)下列四个图形中,线段BE是△ABC的高的是()A.B.C.D.二、填空题(本大题共5小题,共25.0分)6.(5分)如图,在△ABC中,∠ACB=60°,∠BAC=75°,AD⊥BC于D,BE⊥AC于E,AD与BE交于H,则∠CHD=.7.(5分)三角形的三条高线的交点在三角形的一个顶点上,则此三角形是.8.(5分)如图,△ABC中,AB>AC,AD是中线,AB=10,AD=7,∠CAD=45°,则BC=.9.(5分)如果一个三角形有一条边上的高等于这条边的一半,那么我们把这个三角形叫做半高三角形.已知直角三角形ABC是半高三角形,且斜边AB=5,则它的周长等于.10.(5分)如图,BD是△ABC的中线,AB=8,BC=6,△ABD和△BCD的周长的差是.三、解答题(本大题共5小题,共50.0分)11.(10分)如图,D是△ABC中BC上的一点,DE∥AC交AB于点E,DF∥AB交AC于点F,且∠ADE=∠ADF,AD是△ABC的角平分线吗?说明理由.12.(10分)我们知道,三角形三条高所在直线交于一点.规定:三角形三条高所在直线的交点叫做这个三角形的垂心.如图,AD⊥BC于点D,BE⊥AC于点E,CF⊥AB于点F;AD,BE,CF交于点G.(1)图中哪两个不共顶点的锐角一定相等?请写出一组:.(2)点G是△的垂心.(3)点A是△的垂心.13.(10分)已知AD是△ABC的高,∠BAD=70°,∠CAD=20°,求∠BAC的度数.14.(10分)如图,在△ABC中,AD是BC边上的中线,△ADC的周长比△ABD的周长多5cm,AB与AC的和为11cm,求AC的长.15.(10分)如图,△ABC中,AD是高,AE、BF是角平分线,它们相交于点O,∠CAB =50°,∠C=60°,求∠DAE和∠BOA的度数.《三角形的高、中线与角平分线》拔高练习参考答案与试题解析一、选择题(本大题共5小题,共25.0分)1.(5分)如图所示,有一条线段是△ABC(AC>AB)的中线,该线段是()A.线段AD B.线段AE C.线段AF D.线段MN【分析】三角形一边的中点与此边所对顶点的连线叫做三角形的中线,逐一判断各选项即可.【解答】解:由图可得,F是BC的中点,根据三角形中线的定义,可知线段AF是△ABC的中线,故选:C.【点评】本题主要考查了三角形中线,三角形一边的中点与此边所对顶点的连线叫做三角形的中线.2.(5分)在△ABC中,∠A是钝角,下列图中画BC边上的高线正确的是()A.B.C.D.【分析】三角形的高即从三角形的顶点向对边引垂线,顶点和垂足间的线段.根据概念可知.【解答】解:过点A作直线BC的垂线段,即画BC边上的高,所以画法正确的是D.故选:D.【点评】考查了三角形的高的概念,能够正确作三角形一边上的高.3.(5分)如果一个三角形的三条高的交点恰是三角形的一个顶点,那么这个三角形是()A.锐角三角形B.钝角三角形C.直角三角形D.等边三角形【分析】直角三角形有两条高与直角边重合,另一条高在三角形内部,它们的交点是直角顶点;作出一个直角三角形的高线进行判断,就可以得到.【解答】解:一个三角形的三条高的交点恰是三角形的一个顶点,这个三角形是直角三角形.故选:C.【点评】本题主要考查了三角形的高的概念,钝角三角形的三条高所在的直线的交点在三角形的外部;锐角三角形的三条高所在的直线的交点在三角形的内部;直角三角形的三条高所在的直线的交点是三角形的直角顶点.4.(5分)三角形三条高的交点一定在()A.三角形内部B.三角形外部C.三角形内部或外部D.三角形内部、外部或顶点【分析】根据三角形的高线的定义分情况讨论高线的交点,即可得解.【解答】解:锐角三角形,三角形三条高的交点在三角形内部,直角三角形,三角形三条高的交点在三角形直角顶点,钝角三角形,三角形三条高的交点在三角形外部,故选:D.【点评】本题考查了三角形的高线,熟记三种三角形的高线的交点的位置是解题的关键.5.(5分)下列四个图形中,线段BE是△ABC的高的是()A.B.C.D.【分析】根据三角形高的画法知,过点B作AC边上的高,垂足为E,其中线段BE是△ABC的高,再结合图形进行判断.【解答】解:线段BE是△ABC的高的图是选项C.故选:C.【点评】本题主要考查了三角形的高,三角形的高是指从三角形的一个顶点向对边作垂线,连接顶点与垂足之间的线段.熟记定义是解题的关键.二、填空题(本大题共5小题,共25.0分)6.(5分)如图,在△ABC中,∠ACB=60°,∠BAC=75°,AD⊥BC于D,BE⊥AC于E,AD与BE交于H,则∠CHD=45°.【分析】在三角形中,三内角之和等于180°,锐角三角形三个高交于一点.【解答】解:在△ABC中,三边的高交于一点,所以CF⊥AB,∵∠BAC=75°,且CF⊥AB,∴∠ACF=15°,∵∠ACB=60°,∴∠BCF=45°在△CDH中,三内角之和为180°,∴∠CHD=45°,故答案为∠CHD=45°.【点评】考查三角形中,三条边的高交于一点,且内角和为180°.7.(5分)三角形的三条高线的交点在三角形的一个顶点上,则此三角形是直角三角形.【分析】根据直角三角形的高的交点是直角顶点解答.【解答】解:∵三角形的三条高线的交点在三角形的一个顶点上,∴此三角形是直角三角形.故答案为:直角三角形.【点评】本题考查了三角形的高,锐角三角形的三条高在三角形内部,相交于三角形内一点;直角三角形有两条高与直角边重合,另一条高在三角形内部,它们的交点是直角顶点;钝角三角形有两条高在三角形外部,一条高在三角形内部,三条高所在直线相交于三角形外一点.8.(5分)如图,△ABC中,AB>AC,AD是中线,AB=10,AD=7,∠CAD=45°,则BC=2.【分析】作DH⊥AC于H,延长AD到E使DE=AD=7,连接CE,作EF⊥AC于F,作CH⊥AD于H,如图,先证明△ADB≌△EDC得到EC=AB=10,再利用△AEF为等腰直角三角形计算出AF=EF=7,则根据勾股定理可计算出CF=,从而得到AC =6,接着利用△ACH为等腰直角三角形得到AH=CH=6,然后利用勾股定理计算出CD,从而得到BC的长.【解答】解:作DH⊥AC于H,延长AD到E使DE=AD=7,连接CE,作EF⊥AC于F,作CH⊥AD于H,如图,∵AD是中线,∴BD=CD,在△ADB和△EDC中,∴△ADB≌△EDC(SAS),∴EC=AB=10,在RtAEF中,∵∠DAC=45°,AE=14,∴AF=EF=AE=7,在Rt△CEF中,CF==,∴AC=AF﹣CF=6,在Rt△ACH中,∵∠HAC=45°,∴AH=CH=AC=6,∴DH=AD﹣AH=1,在Rt△CDH中,CD==,∴BC=2CD=2.故答案为2.【点评】本题考查了三角形的角平分线、中线和高:熟练掌握三角形高、中线的定义;构造等腰直角三角形是解决此题的关键.9.(5分)如果一个三角形有一条边上的高等于这条边的一半,那么我们把这个三角形叫做半高三角形.已知直角三角形ABC是半高三角形,且斜边AB=5,则它的周长等于5+3或5+5.【分析】分两种情况讨论:①Rt△ABC中,CD⊥AB,CD=AB=;②Rt△ABC中,AC=BC,分别依据勾股定理和三角形的面积公式,即可得到该三角形的周长为5+3或5+5.【解答】解:如图所示,Rt△ABC中,CD⊥AB,CD=AB=,设BC=a,AC=b,则,解得a+b=5,或a+b=﹣5(舍去),∴△AB长度周长为5+5;如图所示,Rt△ABC中,AC=BC,设BC=a,AC=b,则,解得,∴△AB长度周长为3+5;综上所述,该三角形的周长为5+3或5+5.故答案为:5+3或5+5.【点评】本题主要考查了三角形的高线以及勾股定理的运用,解决问题给的关键是利用勾股定理进行推算.10.(5分)如图,BD是△ABC的中线,AB=8,BC=6,△ABD和△BCD的周长的差是2.【分析】根据三角形中线的定义可得AD=CD,然后求出△ABD和△BCD的周长差=AB ﹣BC,代入数据进行计算即可得解.【解答】解:∵BD是△ABC的中线,∴AD=CD,∴△ABD和△BCD的周长差=(AB+AD+BD)﹣(BC+CD+BD),=AB+AD+BD﹣BC﹣CD﹣BD,=AB﹣BC,∵AB=8,BC=6,∴△ABD和△BCD的周长差=8﹣6=2.答:△ABD和△BCD的周长差为2.故答案为:2【点评】本题考查了三角形的中线的定义,是基础题,数据概念并求出△ABD和△BCD 的周长差=AB﹣BC是解题的关键.三、解答题(本大题共5小题,共50.0分)11.(10分)如图,D是△ABC中BC上的一点,DE∥AC交AB于点E,DF∥AB交AC于点F,且∠ADE=∠ADF,AD是△ABC的角平分线吗?说明理由.【分析】依据DE∥AC,DF∥AB,即可得到∠ADE=∠DAF,∠ADF=∠EAD,再根据∠ADE=∠ADF,即可得出∠DAF=∠EAD,进而得到AD是∠BAC的角平分线.【解答】解:AD是△ABC的角平分线.理由:∵DE∥AC,DF∥AB,∴∠ADE=∠DAF,∠ADF=∠EAD,又∵∠ADE=∠ADF,∴∠DAF=∠EAD,又∵∠DAF+∠EAD=∠BAC,∴AD是∠BAC的角平分线.【点评】本题主要考查了角平分线的定义以及平行线的性质,三角形一个内角的平分线与这个内角的对边交于一点,则这个内角的顶点与所交的点间的线段叫做三角形的角平分线.12.(10分)我们知道,三角形三条高所在直线交于一点.规定:三角形三条高所在直线的交点叫做这个三角形的垂心.如图,AD⊥BC于点D,BE⊥AC于点E,CF⊥AB于点F;AD,BE,CF交于点G.(1)图中哪两个不共顶点的锐角一定相等?请写出一组:∠ABE=∠ACF或∠BAD=∠BCF或∠CAD=∠CBE.(2)点G是△ABC的垂心.(3)点A是△BCG的垂心.【分析】(1)依据BE⊥AC,CF⊥AB,可得∠ABE+∠BAE=∠ACF+∠CAF=90°,即可得到∠ABE=∠ACF;(2)三角形三条高所在直线的交点叫做这个三角形的垂心,据此进行判断;(3)三角形三条高所在直线的交点叫做这个三角形的垂心,据此进行判断.【解答】解:(1)∵BE⊥AC,CF⊥AB,∴∠ABE+∠BAE=∠ACF+∠CAF=90°,∴∠ABE=∠ACF,同理可得,∠BAD=∠BCF,∠CAD=∠CBE,故答案为:∠ABE=∠ACF或∠BAD=∠BCF或∠CAD=∠CBE;(2)∵AD⊥BC于点D,BE⊥AC于点E,CF⊥AB于点F;AD,BE,CF交于点G,∴点G是△ABC的垂心,故答案为:△ABC;(3)∵AD⊥BC于点D,BE⊥AC于点E,CF⊥AB于点F;AD,BF,CE交于点A,∴点A是△BCG的垂心,故答案为:△BCG.【点评】本题主要考查了三角形的角平分线高线以及中线,锐角三角形的三条高在三角形内部,相交于三角形内一点,直角三角形有两条高与直角边重合,另一条高在三角形内部,它们的交点是直角顶点;钝角三角形有两条高在三角形外部,一条高在三角形内部,三条高所在直线相交于三角形外一点.13.(10分)已知AD是△ABC的高,∠BAD=70°,∠CAD=20°,求∠BAC的度数.【分析】分高AD在△ABC内部和外部两种情况讨论求解即可.【解答】解:①如图1,当高AD在△ABC的内部时,∠BAC=∠BAD+∠CAD=70°+20°=90°;②如图2,当高AD在△ABC的外部时,∠BAC=∠BAD﹣∠CAD=70°﹣20°=50°,综上所述,∠BAC的度数为90°或50°.【点评】本题考查了三角形的高线,难点在于要分情况讨论.14.(10分)如图,在△ABC中,AD是BC边上的中线,△ADC的周长比△ABD的周长多5cm,AB与AC的和为11cm,求AC的长.【分析】根据中线的定义知CD=BD.结合三角形周长公式知AC﹣AB=5cm;又AC+AB =11cm.易求AC的长度.【解答】解:∵AD是BC边上的中线,∴D为BC的中点,CD=BD.∵△ADC的周长﹣△ABD的周长=5cm.∴AC﹣AB=5cm.又∵AB+AC=11cm,∴AC=8cm.即AC的长度是8cm.【点评】本题考查了三角形的角平分线、中线和高.三角形一边的中点与此边所对顶点的连线叫做三角形的中线.15.(10分)如图,△ABC中,AD是高,AE、BF是角平分线,它们相交于点O,∠CAB =50°,∠C=60°,求∠DAE和∠BOA的度数.【分析】先利用三角形内角和定理可求∠ABC,在直角三角形ACD中,易求∠DAC;再根据角平分线定义可求∠CBF、∠EAF,可得∠DAE的度数;然后利用三角形外角性质,可先求∠AFB,再次利用三角形外角性质,容易求出∠BOA.【解答】解:∵∠CAB=50°,∠C=60°∴∠ABC=180°﹣50°﹣60°=70°,又∵AD是高,∴∠ADC=90°,∴∠DAC=180°﹣90°﹣∠C=30°,∵AE、BF是角平分线,∴∠CBF=∠ABF=35°,∠EAF=25°,∴∠DAE=∠DAC﹣∠EAF=5°,∠AFB=∠C+∠CBF=60°+35°=95°,∴∠BOA=∠EAF+∠AFB=25°+95°=120°,∴∠DAC=30°,∠BOA=120°.故∠DAE=5°,∠BOA=120°.【点评】本题考查了三角形内角和定理、角平分线定义、三角形外角性质.关键是利用角平分线的性质解出∠EAF、∠CBF,再运用三角形外角性质求出∠AFB.。

三角形的高中线与角平分线练习题

三角形的高中线与角平分线练习题

4321EDCBA1CDBA三角形的高、中线与角平分线11 如图,已知△ABC 中,AQ=PQ 、PR=PS 、PR ⊥AB 于R ,PS ⊥AC 于S ,有以下三个结论:①AS=AR ;②QP ∥AR ; ③△BRP ≌△CSP ,其中( ).(A)全部正确 (B)仅①正确 (C)仅①、②正确 (D)仅①、③正确 2、 如图,点E 在BC 的延长线上,则下列条件中,不能判定AB ∥CD 的是( )A. ∠3=∠4B.∠B=∠DCEC.∠1=∠2.D.∠D+∠DAB=180° 3.如图,ΔACB 中,∠ACB=900,∠1=∠B.(1)试说明 CD 是ΔABC 的高;(2)如果AC=8,BC=6,AB=10,求CD 的长。

4如图,直线DE 交△ABC 的边AB 、AC 于D 、E , 交BC 延长线于F ,若∠B =67°,∠ACB =74°, ∠AED =48°,求∠BDF 的度数5、如图:∠1=∠2=∠3,完成说理过程并注明理由: 因为 ∠1=∠2所以 ____∥____ ( ) 因为 ∠1=∠3所以 ____∥____ ( )6.以下列各组线段为边,能组成三角形的是( ) A .2cm ,3cm ,5cm B .5cm ,6cm ,10cm C .1cm ,1cm ,3cm D .3cm ,4cm ,9cm7.等腰三角形的一边长等于4,一边长等于9,则它的周长是( ) A .17 B .22 C .17或22 D .138.适合条件∠A=12∠B=13∠C的△ABC是()A.锐角三角形B.直角三角形C.钝角三角形D.等边三角形9.已知等腰三角形的一个角为75°,则其顶角为()A.30°B.75°C.105°D.30°或75°10.一个多边形的角和比它的外角的和的2倍还大180°,这个多边形的边数是()A.5 B.6 C.7 D.811.三角形的一个外角是锐角,则此三角形的形状是()A.锐角三角形B.钝角三角形C.直角三角形D.无法确定12.三角形的三边长分别为5,1+2x,8,则x的取值围是________.13.如图,BD平分∠ABC,DA⊥AB,∠1=60°,∠BDC=80°,求∠C的度数.初一三角形的高、中线与角平分线21 如图,BC⊥CD,∠1=∠2=∠3,∠4=60°,∠5=∠6.(1)CO是△BCD的高吗?为什么?(2)∠5的度数是多少?(3)求四边形ABCD各角的度数.2.△ABC中,∠A=50°,∠B=60°,则∠A+∠C=________.3 .已知三角形的三个角的度数之比为1:2:3,则这个三角形是()A.锐角三角形B.直角三角形C.钝角三角形D.不能确定4.△ABC中,∠A=∠B+∠C,则∠A=______度.5.如图∠1+∠2+∠3+∠4=______度.6.如图,△ABC中,AD是BC上的高,AE平分∠BAC,∠B=75°,•∠C=45°,求∠DAE与∠AEC的度数.7.以下说法错误的是()6题A.三角形的三条高一定在三角形部交于一点B.三角形的三条中线一定在三角形部交于一点C.三角形的三条角平分线一定在三角形部交于一点D.三角形的三条高可能相交于外部一点8.如果一个三角形的三条高的交点恰好是这个三角形的一个顶点,•那么这个三角形是()A.锐角三角形B.直角三角形C.钝角三角形D.不能确定9.如图,BD=1BC,则BC边上的中线为______,△ABD的面积=_____的面积.2(9)10.如图,△ABC中,高CD、BE、AF相交于点O,则△BOC•的三条高分别为线段________.(10)初一三角形的高、中线与角平分线31.下列图形中具有稳定性的是()A.梯形B.菱形C.三角形D.正方形2.如图3,AD是△ABC的边BC上的中线,已知AB=5cm,AC=3cm,求△ABD•与△ACD的周长之差.3.如图,∠BAD=∠CAD,AD⊥BC,垂足为点D,且BD=CD.•可知哪些线段是哪个三角形的角平分线、中线或高?4.如图5,在等腰三角形ABC中,AB=AC,一腰上的中线BD将这个等腰三角形的周长分为15和6两部分,求该等腰三角形的腰长及底边长.5.有一块三角形优良品种试验基地,如图所示,•由于引进四个优良品种进行对比试验,需将这块土地分成面积相等的四块,请你制定出两种以上的划分方案供选择(画图说明).6.如图,在△ABC中,D、E分别是BC、AD的中点,S△ABC=4cm2,求S△ABE.7.如图,在锐角△ABC中,CD、BE分别是AB、AC上的高,•且CD、BE交于一点P,若∠A=50°,则∠BPC的度数是()8如图7-1-2-9,AD是△ABC的角平分线,DE∥AB,DF∥AC,EF交AD于点O.请问:DO是△DEF的角平分线吗?如果是,请给予证明;如果不是,请说明理由.初一三角形的高、中线与角平分线41.若三角形的外角中有一个是锐角,则这个三角形是________三角形.2.△ABC中,若∠C-∠B=∠A,则△ABC的外角中最小的角是______(填“锐角”、“直角”或“钝角”).3.如图1,x=______.(1) (2) (3) 4.如图2,△ABC中,点D在BC的延长线上,点F是AB边上一点,延长CA到E,连EF,则∠1,∠2,∠3的大小关系是_________.5.如图3,在△ABC中,AE是角平分线,且∠B=52°,∠C=78°,求∠AEB的度数.7.如图所示,在△ABC中,AB=AC,AD=AE,∠BAD=60°,则∠EDC=______.8.一个零件的形状如图7-2-2-6所示,按规定∠A应等于90°,∠B、∠D应分别是30°和20°,叔叔量得∠BCD=142°,就断定这个零件不合格,你能说出道理吗?9.(1)如图(1),求出∠A+∠B+∠C+∠D+∠E+∠F的度数;(2)如图(2),求出∠A+∠B+∠C+∠D+∠E+∠F的度数.11.如图,BD、CD分别是△ABC的两个外角∠CBE、∠BCF•的平分线,试探索∠D与∠A之间的数量关系.12 如图,BD为△ABC的角平分线,CD为△ABC的外角∠ACE的平分线,它们相交于点D,试探索∠BDC与∠A之间的数量关系.7.3 多边形及其角和基础过关作业1.四边形ABCD中,如果∠A+∠C+∠D=280°,则∠B的度数是()A.80°B.90°C.170°D.20°2.一个多边形的角和等于1080°,这个多边形的边数是()A.9 B.8 C.7 D.63.角和等于外角和2倍的多边形是()A.五边形B.六边形C.七边形D.八边形4.六边形的角和等于_______度.5.正十边形的每一个角的度数等于______,每一个外角的度数等于_______.6.如图,你能数出多少个不同的四边形?7.四边形的四个角可以都是锐角吗?可以都是钝角吗?可以都是直角吗?•为什么?8.求下列图形中x的值:综合创新作业9.(综合题)已知:如图,在四边形ABCD中,∠A=∠C=90°,BE平分∠ABC,•DF平分∠ADC.BE与DF有怎样的位置关系?为什么?10.(应用题)有10个城市进行篮球比赛,每个城市均派3个代表队参加比赛,规定同一城市间代表队不进行比赛,其他代表队都要比赛一场,问按此规定,•所有代表队要打多少场比赛?11.(创新题)如图,以五边形的每个顶点为圆心,以1为半径画圆,求圆与五边形重合的面积.12.(1)(2005年,)已知一个多边形的角和为540°,则这个多边形为()A.三角形B.四边形C.五边形D.六边形(2)(2005年,)五边形的角和等于_______度.13.(易错题)一个多边形的每一个顶点处取一个外角,这些外角中最多有钝角(• )A.1个B.2个C.3个D.4个培优作业14.(探究题)(1)四边形有几条对角线?五边形有几条对角线?六边形有几条对角线?……猜想并探索:n边形有几条对角线?(2)一个n边形的边数增加1,对角线增加多少条?15.(开放题)如果一个多边形的边数增加1,•那么这个多边形的角和增加多少度?若将n边形的边数增加1倍,则它的角和增加多少度?数学世界攻其不备壁虎在一座油罐的下底边沿A处.它发现在自己的正上方──油罐上边缘的B•处有一只害虫.壁虎决定捕捉这只害虫.为了不引起害虫的注意,它故意不走直线,而是绕着油罐,沿着一条螺旋路线,从背后对害虫进行突然袭击如图7-3-5.结果,•壁虎的偷袭得到成功,获得了一顿美餐.请问:壁虎沿着螺旋线爬行是最短的路程吗(线段AB除外)?答案:1.A 点拨:∠B=360°-(∠A+∠C+∠D)=360°-280°=80°.故选A.2.B 点拨:设这个多边形的边数为n,则(n-2)·180=1080.解得n=8.故选B.3.B 点拨:设这个多边形的边数为n,根据题意,得(n-2)·180=2×360.解得n=6.故选B.4.7205.144°;36°点拨:正十边形每一个角的度数为:(102)18010-⨯︒=144°,每一个外角的度数为:180°-144°=36°.6.有27个不同的四边形.7.解:四边形的四个角不可以都是锐角,不可以都是钝角,可以都是直角.因为四边形的角和为360°,如果四个角都是锐角或都是钝角,•则角和小于360°或大于360°,与四边形的角和为360°矛盾.•所以四个角不可以都是锐角或都是钝角.若四个角都是直角,则四个角的和等于360°,与角和定理相符,所以四个角可以都是直角.8.解:(1)90+70+150+x=360.解得x=50.(2)90+73+82+(180-x)=360.解得x=65.(3)x+(x+30)+60+x+(x-10)=(5-2)×180.解得x=115.9.解:BE∥DF.理由:∵∠A=∠C=90°,∴∠A+∠C=180°.∴∠ABC+∠ADC=360°-180°=180°.∵∠ABE=12∠ABC,∠ADF=12∠ADC,∴∠ABE+∠ADF=12(∠ABC+∠ADC)=12×180°=90°.又∵∠ABE+∠AEB=90°,∴∠AEB=∠ADF,∴BE∥DF(同位角相等,两直线平行).10.解:12n (n-3)=12×10×(10-3)=12×10×7=35(场).答:按此规定,所有代表队要打35场比赛.点拨:问题类似于求多边形对角线的个数.11.解:(5-2)×180°÷360°×12=1.5.点拨:不能直接求出扇形的度数,用整体法圆与五边形重合部分的角度和正好是五边形的角和.12.(1)C 点拨:设这个多边形的边数为n ,依题意,得(n-2)×180°=540°,解得n=5,故选C .(2)540 点拨:(n-2)×180°=(5-3)×180°=540°.13.C14.解:(1)四边形有2条对角线;五边形有5条对角线;六边形有9条对角线;……n 边形有(3)2n n -条对角线. (2)当n 边形的边数增加1时,对角线增加(n-1)条.点拨:从n 边形的一个顶点出发,向其他顶点共可引(n-3)条对角线,n 个顶点共可引n (n-3)条,但这些对角线每一条都重复了一次,故n 边形的对角线条数为(3)2n n -. 15.180°,n ·180°.数学世界答案:是最短的路程.可用纸板做一个模型,沿AB 剪开便可看出结论.。

七年级7.1.2 三角形的高、中线与角平分线(专题课时练含答案)-

七年级7.1.2 三角形的高、中线与角平分线(专题课时练含答案)-

7.1.2 三角形的高、中线与角平分线◆知能点分类训练知能点1 三角形的高、中线与角平分线1.下列说法正确的是().A.直角三角形只有一条高B.如果一个三角形有两条高与这个三角形的两边重合,•那么这个三角形是直角三角形 C.三角形的三条高,可能都在三角形内部,也可能都在三角形外部D.三角形三条高中,在三角形外部的最多只有1条2.如果一个三角形的三条高的交点恰是三角形的一个顶点,那么这个三角形是().A.锐角三角形 B.钝角三角形 C.直角三角形 D.等边三角形3.如图所示,画△ABC的一边上的高,下列画法正确的是().4.三角形的角平分线是().A.直线 B.射线 C.线段 D.以上都不对5.如图所示,AM是△ABC的中线,那么若用S1表示△ABM的面积,用S1表示△ACM的面积,则S1与S2的大小关系是().A.S1>S2B.S1<S2C.S1=S2D.以上三种情况都可能6.下列说法:①三角形的角平分线、中线、高线都是线段;•②直角三角形只有一条高线;③三角形的中线可能在三角形的外部;④三角形的高线都在三角形的内部,并且相交于一点,其中说法正确的有().A.1个 B.2个 C.3个 D.4个7.如图所示,已知△ABC:(1)过A画出中线AD;(2)画出角平分线CE;(3)作AC边上的高.知能点2 三角形的稳定性8.下列四个图形中,具有不稳定性的图形是().9.照相机的支架是三条腿,这是利用了三角形的_________.•现实生活中还有利用三角形的这个特性的例子吗?如果知道,请写出来:________.10.如图所示,建筑工人在安装门窗时,先要把木头门窗固定好,这样搬运和安装起来才不会变形,请你设计一种方法固定木头门窗,这样做依据的数学道理是什么?◆规律方法应用11.如图所示,在△ABC中,AD⊥BC,BE⊥AC,BC=12,AC=8,AD=6,求BE的长.12.在△ABC中,AB=AC,AC边上的中线BD把三角形的周长分为12cm和15cm两部分,求三角形各边的长.◆开放探索创新13.将一个三角形的三边中点顺次连结可得到一个新的三角形,通常称为“中点三角形”,如图①所示,△DEF是△ABC的中点三角形.(1)画出图中另外两个三角形的中点三角形.(2)用量角器和刻度尺量△DEF和△ABC的三个内角和三条边,看看你有什么发现?并通过三个图的重复度量实验,验证你的发现.(3)你知道S△ABC和S△EDF的关系吗?怎样得出来的?(4)根据(2)中的结论,解答下列问题,如图所示,CD是△ABC的中线,DE是△ACD的中线,EF为△ADE的中线,若△AEF的面积为1cm2,求△ABC的面积.①②③④答案:1.B 2.C 3.C 4.C5.C (点拨:等底等高)6.A 7.略 8.D9.稳定性三条腿的凳子等10.可在门(窗)角上钉一根木条,或用木杆顶在门(窗)角上,•这样做根据的数学道理是三角形的稳定性.11.解:∵S△ABC =12BC·AD=12AC·BE,∴BC·AD=AC·BE,∴BE=1268BC ADAC⨯==9.12.解:设AB=x(cm),则AD=DC=12x(cm).(1)若AB+AD=12,即x+12x=12.所以x=8.即AB=AC=8cm,则DC=4cm,故BC=15-4=11cm,此时AB+AC>BC,所以三边长分别为8cm,8cm,11cm.(2)若AB+AD=15,即x+12x=15,所以x=10,则DC=5cm,故BC=12-5=7cm,显然此时三角形存在,所以三边长分别为10cm,10cm,7cm.综上所述,此三角形的三边长分别为:8cm,8cm,11cm或10cm,10cm,7cm.13.(1)略(2)角度相同,中点三角形各边是原三角形各边长度的一半.(3)经度量知中点三角形与原三角形相比,底和高的长度分别是原三角形的底与高的12,所以面积是原三角形面积的14.(4)△ABC面积为8cm2,解略.。

人教版八年级数学上册《三角形的三边、高线、中线及角平分线》专项练习题-附含答案

人教版八年级数学上册《三角形的三边、高线、中线及角平分线》专项练习题-附含答案

人教版八年级数学上册《三角形的三边、高线、中线及角平分线》专项练习题-附含答案考点一三角形的稳定性考点二三角形的三边关系考点三三角形的高线考点四三角形的中线考点五三角形的角平分线考点一三角形的稳定性例题:(2021·广西·南宁十四中七年级期末)下列图形中没有运用三角形稳定性的是()A.B.C.D.【答案】B【解析】【分析】利用三角形的稳定性解答即可.【详解】解:对于A、C、D选项都含有三角形故利用了三角形的稳定性;而B选项中用到了四边形的不稳定性.故选B.【点睛】本题主要考查了三角形的稳定性需理解稳定性在实际生活中的应用;明确能体现出三角形的稳定性则说明物体中必然存在三角形是解题关键.【变式训练】1.(2022·吉林吉林·二模)如图人字梯中间设计一“拉杆” 在使用梯子时固定拉杆会增加安全性.这样做蕴含的数学道理是()A.三角形具有稳定性B.两点之间线段最短C.经过两点有且只有一条直线D.垂线段最短【答案】A【解析】【分析】人字梯中间设计一“拉杆”后变成一个三角形稳定性提高.【详解】三角形的稳定性如果三角形的三条边固定那么三角形的形状和大小就完全确定了三角形的这个特征叫做三角形的稳定性.故选A【点睛】本题考查三角形的稳定性理解这一点是本题的关键.2.(2022·广东·佛山市惠景中学七年级期中)如图所示的自行车架设计成三角形这样做的依据是三角形具有___.【答案】稳定性【解析】【分析】根据是三角形的稳定性即可求解.【详解】解:自行车的主框架采用了三角形结构这样设计的依据是三角形具有稳定性故答案为:稳定性.【点睛】本题考查的是三角形的性质掌握三角形具有稳定性是解题的关键.考点二三角形的三边关系例题:(2022·黑龙江·哈尔滨市风华中学校七年级期中)下列各组长度的线段为边能构成三角形的是().A.123B.345C.4511D.633【答案】B【解析】【分析】比较三边中两较小边之和与较大边的大小即可得到解答.【详解】解:A、1+2=3不符合题意;B、3+4>5符合题意;C、4+5<11不符合题意;D、3+3=6不符合题意;故选B.【点睛】本题考查构成三角形的条件熟练掌握三角形的三边关系是解题关键.【变式训练】1.(2022·黑龙江·哈尔滨市第六十九中学校七年级期中)下列各组长度的三条线段能够组成三角形的是()A.348B.5611C.5610D.1073【答案】C【解析】【分析】根据三角形三边关系可直接进行排除选项.解:A、3+4<8不符合三角形三边关系故不能构成三角形;B、5+6=11不符合三角形三边关系故不能构成三角形;C、5+6>10符合三角形三边关系故能构成三角形;D、3+7=10不符合三角形三边关系故不能构成三角形;故选C.【点睛】本题主要考查三角形三边关系熟练掌握三角形三边关系是解题的关键.2.(2022·海南·海口市第十四中学七年级阶段练习)在△ABC中三条边长分别为3和6第三边长为奇数那么第三边的长是()A.5或7B.7或9C.3或5D.9【答案】A【解析】【分析】先求出第三边长的取值范围再根据条件具体确定符合条件的值即可.【详解】解:因为三条边长分别为3和6所以6-3<第三边<6+3所以3<第三边<9因为第三边长为奇数∴第三边的长为5或7故选:A.【点睛】本题考查了三角形的三边关系掌握三角形任意两边之和大于第三边任意两边之差小于第三边是解题的关键.3.(2022·江苏·南师附中新城初中七年级期中)已知三角形三边长分别为3x14若x为正整数则这样的三角形个数为()A.4B.5C.6D.7【解析】【分析】直接根据三角形的三边关系求出x的取值范围进而可得出结论.【详解】解:三角形三边长分别为3x14x<<.x143143∴-<<+即1117x为正整数12x=13141516即这样的三角形有5个.故选:B.【点睛】本题考查的是三角形的三边关系熟知三角形两边之和大于第三边两边之差小于第三边是解答此题的关键.考点三三角形的高线例题:(2022·重庆市育才中学七年级阶段练习)下列各组图形中BD是ABC的高的图形是()A.B.C.D.【答案】B【解析】【分析】三角形的高即从三角形的顶点向对边引垂线顶点和垂足间的线段.根据概念即可得到答案.【详解】解:根据三角形高的定义可知只有选项B中的线段BD是∴ABC的高故选:B.【点睛】考查了三角形的高的概念掌握高的作法是解题的关键.【变式训练】1.(2022·浙江杭州·中考真题)如图 CD ∴AB 于点D 已知∴ABC 是钝角 则( )A .线段CD 是ABC 的AC 边上的高线B .线段CD 是ABC 的AB 边上的高线C .线段AD 是ABC 的BC 边上的高线 D .线段AD 是ABC 的AC 边上的高线【答案】B【解析】【分析】根据高线的定义注意判断即可.【详解】∴ 线段CD 是ABC 的AB 边上的高线∴A 错误 不符合题意;∴ 线段CD 是ABC 的AB 边上的高线∴B 正确 符合题意;∴ 线段AD 是ACD 的CD 边上的高线∴C 错误 不符合题意;∴线段AD 是ACD 的CD 边上的高线∴D 错误 不符合题意;故选B .【点睛】本题考查了三角形高线的理解 熟练掌握三角形高线的相关知识是解题的关键.2.(2022·湖南怀化·七年级期末)如图 在直角三角形ABC 中 90ACB ∠=︒ AC =3BC =4 AB =5则点C 到AB 的距离为______.【答案】125【解析】【分析】根据面积相等即可求出点C 到AB 的距离.【详解】解:∴在直角三角形ABC 中 90ACB ∠=︒ ∴1122AC BC AB CD ⨯=⨯ ∴AC =3 BC =4 AB =5 ∴1134522CD ⨯⨯=⨯⨯ ∴CD =125故答案为:125. 【点睛】本题考查求直角三角形斜边上的高 用面积法列出关系式是解题关键.3.(2022·重庆·七年级期中)如图 点A 、点B 是直线l 上两点 10AB = 点M 在直线l 外 6MB = 8MA = 90AMB ∠=︒ 若点P 为直线l 上一动点 连接MP 则线段MP 的最小值是______.【答案】4.8【解析】【分析】根据垂线段最短可知:当MP AB ⊥时 MP 有最小值 再利用三角形的面积可列式计算求解MP 的最小值.【详解】解:当MP AB ⊥时 MP 有最小值10AB = 6MB = 8MA = 90AMB ∠=︒AB MP AM BM ∴⋅=⋅即1068MP =⨯解得 4.8MP =.故答案为:4.8.【点睛】本题主要考查垂线段最短 三角形的面积 找到MP 最小时的P 点位置是解题的关键.考点四 三角形的中线例题:(2021·广西·靖西市教学研究室八年级期中)如图 已知BD 是∴ABC 的中线 AB =5 BC =3 且∴ABD 的周长为12 则∴BCD 的周长是_____.【答案】10【解析】【分析】先根据三角形的中线、线段中点的定义可得AD CD = 再根据三角形的周长公式即可求出结果.【详解】 解:BD 是ABC 的中线 即点D 是线段AC 的中点AD CD ∴=5AB = ABD △的周长为1212AB BD AD ∴++= 即512BD AD ++=解得:7BD AD +=7BD CD ∴+=则BCD △的周长是3710BC BD CD ++=+=.故答案为:10.【点睛】本题主要考查了三角形的中线、线段中点的定义等知识点 掌握线段中点的定义是解题关键.【变式训练】1.(2022·陕西·西安市曲江第一中学七年级期中)在ABC 中 BC 边上的中线AD 将ABC 分成的两个新三角形的周长差为5cm AB 与AC 的和为11cm 则AC 的长为________.【答案】3cm 或8cm【解析】【分析】根据三角形的中线的定义可得BD CD = 然后求出ABD △与ADC 的周长差是AB 与AC 的差或AC 与AB 的差 然后代入数据计算即可得解.【详解】如图1 图2∴AD 是BC 边上的中线∴BD CD =∴中线AD 将ABC 分成的两个新三角形的周长差为5cm∴()()5AB BD AD AC CD AD ++-++=或()()5AC CD AD AB BD AD ++-++=∴5AB AC -=或者5AC AB -=∴AB 与AC 的和为11cm∴11AB AC +=∴83AB AC =⎧⎨=⎩或38AB AC =⎧⎨=⎩故答案为:3cm 或8cm .【点睛】本题考查了三角形的中线熟记概念并求出两个三角形的周长的差等于两边长的差是解题的关键.2.(2022·江苏·泰州市第二中学附属初中七年级阶段练习)如图D E分别是∴ABC边AB BC上的点AD=2BD BE=CE设∴ADF的面积为S1∴FCE的面积为S2若S△ABC=16则S1-S2的值为_________.【答案】8 3【解析】【分析】S△ADF−S△CEF=S△ABE−S△BCD所以求出三角形ABE的面积和三角形BCD的面积即可因为AD=2BD BE=CE且S△ABC=16就可以求出三角形ABE的面积和三角形BCD的面积.【详解】解:∴BE=CE∴BE=12BC∴S△ABC=16∴S△ABE=12S△ABC=8.∴AD=2BD S△ABC=16∴S△BCD=13S△ABC=163∴S△ABE−S△BCD=(S1+S四边形BEFD)−(S2+S四边形BEFD)=S1−S2=8 3故答案为83.【点睛】本题考查三角形的面积关键知道当高相等时面积等于底边的比据此可求出三角形的面积然后求出差.3.(2022·江苏·苏州市相城实验中学七年级期中)如图AD 是∴ABC 的中线BE 是∴ABD 的中线EF ⊥BC 于点F.若24ABCS=BD =4则EF 长为___________.【答案】3【解析】【分析】因为S △ABD =12S △ABC S △BDE =12S △ABD ;所以S △BDE =14S △ABC 再根据三角形的面积公式求得即可. 【详解】解:∴AD 是∴ABC 的中线 S △ABC =24∴S △ABD =12S △ABC =12同理 BE 是∴ABD 的中线 612BDE ABD SS ==∴S △BDE =12BD •EF∴12BD •EF =6 即1462EF ⨯⨯= ∴EF =3.故答案为:3.【点睛】此题考查了三角形的面积 三角形的中线特点 理解三角形高的定义 根据三角形的面积公式求解 是解题的关键.考点五 三角形的角平分线例题:(2022·全国·八年级)如图 在ABC 中 90CAB ∠=︒ AD 是高 CF 是中线 BE 是角平分线 BE 交AD 于G 交CF 于H 下列说法正确的是( )①AEG AGE ∠=∠;②BH CH =;③2EAG EBC ∠=∠;④ACF BCF S S =A.①③B.①②③C.①③④D.②③④【答案】C【解析】【分析】①根据∴CAB=90° AD是高可得∴AEG=90°−∴ABE∴DGB=90°−∴DBG又因为BE是角平分线可得∴ABE=∴DBE故能得到∴AEG=∴DGB再根据对顶角相等即可求证该说法正确;②因为CF是中线BE是角平分线得不到∴HCB=∴HBC故该说法错误;③∴EAG+∴DAB=90° ∴DBA+∴DAB=90° 可得∴EAG=∴DBA因为∴DBA=2∴EBC故能得到该说法正确;④根据中线平分面积可得该说法正确.【详解】解:①∴∴CAB=90° AD是高∴∴AEG=90°−∴ABE∴DGB=90°−∴DBG∴BE是角平分线∴∴ABE=∴DBE∴∴AEG=∴DGB∴∴DGB=∴AGE∴∴AEG=∴AGE故该说法正确;②因为CF是中线BE是角平分线得不到∴HCB=∴HBC故该说法错误;③∴∴EAG+∴DAB=90° ∴DBA+∴DAB=90°∴∴EAG=∴DBA∴∴DBA=2∴EBC∴∴EAG=2∴EBC故该说法正确;④根据中线平分面积可得S△ACF=S△BCF故该说法正确.故选:C.【点睛】本题考查了三角形的高中线角平分线的性质解题的关键是熟练掌握各线的特点和性质.【变式训练】1.(2022·全国·八年级)如图在∴ABC中∴C=90° D E是AC上两点且AE=DE BD平分∴EBC那么下列说法中不正确的是()A.BE是∴ABD的中线B.BD是∴BCE的角平分线C.∴1=∴2=∴3D.S△AEB=S△EDB【答案】C【解析】【分析】根据三角形中线、角平分线的定义逐项判断即可求解.【详解】解:A、∴AE=DE∴BE是∴ABD的中线故本选项不符合题意;B、∴BD平分∴EBC∴BD是∴BCE的角平分线故本选项不符合题意;C、∴BD平分∴EBC∴∴2=∴3但不能推出∴2、∴3和∴1相等故本选项符合题意;D、∴S△AEB=12×AE×BC S△EDB=12×DE×BC AE=DE∴S△AEB=S△EDB故本选项不符合题意;故选:C【点睛】本题主要考查了三角形中线、角平分线的定义熟练掌握三角形中连接一个顶点和它的对边的中点的线段叫做三角形的中线;三角形的一个角的平分线与这个角的对边相交连接这个角的顶点和交点的线段叫三角形的角平分线是解题的关键.2.(2022·全国·八年级)如图AD BE CF依次是ABC的高、中线和角平分线下列表达式中错误的是( )A .AE =CEB .∴ADC =90° C .∴CAD =∴CBE D .∴ACB =2∴ACF【答案】C【解析】【分析】 根据三角形的高、中线和角平分线的定义(1)三角形的角平分线定义:三角形的一个角的平分线与这个角的对边相交 连接这个角的顶点和交点的线段叫做三角形的角平分线;(2)三角形的中线定义:在三角形中 连接一个顶点和它所对边的中点的连线段叫做三角形的中线;(3)三角形的高定义:从三角形一个顶点向它的对边(或对边所在的直线)作垂线 顶点和垂足间的线段叫做三角形的高线 简称为高.求解即可.【详解】解:A 、BE 是△ABC 的中线 所以AE =CE 故本表达式正确;B 、AD 是△ABC 的高 所以∴ADC =90 故本表达式正确;C 、由三角形的高、中线和角平分线的定义无法得出∴CAD =∴CBE 故本表达式错误;D 、CF 是△ABC 的角平分线 所以∴ACB =2∴ACF 故本表达式正确.故选:C .【点睛】本题考查了三角形的高、中线和角平分线的定义 是基础题 熟记定义是解题的关键.3.(2021·全国·八年级课时练习)填空:(1)如图(1),,AD BE CF 是ABC 的三条中线 则2AB =______ BD =______ 12AE =______. (2)如图(2),,AD BE CF 是ABC 的三条角平分线 则1∠=______ 132∠=______ 2ACB ∠=______.【答案】 AF 或BF CD AC 2∠ ABC ∠ 4∠【解析】【分析】(1)根据三角形的中线定义:三角形一边的中点与此边所对顶点的连线叫做三角形的中线可得E 、F 、D 分别是AC 、AB 、BC 上的中点 进而得到答案.(2)根据角平分线定义 从一个角的顶点出发 把这个角分成两个相等的角的射线 叫做这个角的平分线即可解答.【详解】解:(1)∴CF 是AB 边上的中线∴AB =2AF =2BF ;∴AD 是BC 边上的中线∴BD =CD∴BE 是AC 边上的中线∴AE =12AC(2)∴AD 是BAC ∠的角平分线∴12∠=∠∴BE 是ABC ∠的角平分线 ∴132∠=ABC ∠ ∴CF 是ACB ∠的角平分线∴2ACB ∠=4∠.故答案为:AF 或BF ;CD ;AC ;2∠;ABC ∠;4∠【点睛】此题主要考查了三角形的中线、角平分线解题的关键是掌握三角形的中线及角平分线的定义.一、选择题1.(2022·黑龙江·哈尔滨市风华中学校七年级期中)画ABC的BC边上的高正确的是()A.B.C.D.【答案】A【解析】【分析】利用三角形的高线的定义判断即可.【详解】解:画△ABC的BC边上的高即过点A作BC边的垂线.∴只有选项A符合题意故选:A.【点睛】本题考查了三角形高线的画法从三角形的一个顶点向对边作垂线顶点与垂足间的线段叫做三角形的高线锐角三角形的三条高线都在三角形的内部钝角三角形的高有两条在三角形的外部.直角三角形的高线有两条是三角形的直角边.2.(2022·山东潍坊·七年级期末)在数学实践课上小亮经研究发现:在如图所示的ABC中连接点A和BC上的一点D线段AD等分ABC的面积则AD是ABC的().A.高线B.中线C.角平分线D.对角线【答案】B【解析】【分析】直接利用三角形中线的性质即可得出结果.【详解】解:∴线段AD等分∴ABC的面积∴∴ABD的面积等于∴ACD的面积∴两个三角形的高为同一条高∴BD=CD∴AD为∴ABC的中线故选:B.【点睛】题目主要考查三角形中线的性质理解三角形中线将三角形分成两个面积相同的三角形是解题关键.3.(2022·河北保定外国语学校一模)能用三角形的稳定性解释的生活现象是()A.B.C.D.【答案】C【解析】【分析】根据各图所用到的直线、线段有关知识即可一一判定【详解】解:A、利用的是“两点确定一条直线” 故该选项不符合题意;B、利用的是“两点之间线段最短” 故该选项不符合题意;C、窗户的支架是三角形利用的是“三角形的稳定性” 故该选项符合题意;D、利用的是“垂线段最短” 故该选项不符合题意;故选:C【点睛】本题考查了两点确定一条直线、两点之间线段最短、三角形的稳定性、垂线段最短的应用结合题意和图形准确确定所用到的知识是解决本题的关键.4.(2022·山东青岛·七年级期末)如图BD是ABC的边AC上的中线AE是ABD△的边BD上的中线BF是ABE△的边AE上的中线若ABC的面积是32则阴影部分的面积是()A.9B.12C.18D.20【答案】B【解析】【分析】利用中线等分三角形的面积进行求解即可.【详解】∴BD是ABC的边AC上的中线∴11321622ABD BCD ABCS S S===⨯=△△∴AE是ABD△的边BD上的中线∴1116822ABE ADE ABDS S S===⨯=又∴BF 是ABE △的边AE 上的中线 则CF 是ACE 的边AE 上的中线 ∴118422BEF ABF ABE S S S ===⨯= 182CEF ACF ADE CED ACE S S S S S =====则4812BEF CEF S SS =+=+=阴影故选:B .【点睛】 本题考查了中线的性质 清晰明确三角形之间的等量关系 进行等量代换是解题的关键.5.(2021·江苏·无锡市侨谊实验中学三模)如图为一张锐角三角形纸片ABC 小明想要通过折纸的方式折出如下线段:①BC 边上的中线AD ②BC 边上的角平分线AE ③BC 边上的高AF .根据所学知识与相关活动经验可知:上述三条线中 所有能够通过折纸折出的有( )A .①②B .①③C .②③D .①②③【答案】D【解析】【分析】 根据三角形中线 角平分线和高的定义即可判断.【详解】沿着A 点和BC 中点的连线折叠 其折痕即为BC 边上的中线 故①符合题意;折叠后使B 点在AC 边上 且折痕通过A 点 则其折痕即为BC 边上的角平分线 故②符合题意; 折叠后使B 点在BC 边上 且折痕通过A 点 则其折痕即为BC 边上的高 故③符合题意;故选D . 【点睛】本题考查三角形中线 角平分线和高的定义.掌握各定义是解题关键.二、填空题6.(2022·湖南邵阳·八年级期末)若ABC 的三条边长分别为3cm xcm 4cm 则x 的取值范围______.【答案】17x <<##71x >>【解析】【分析】根据三角形的三边关系进行求解即可.【详解】解:根据“三角形任意两边之和大于第三边 任意两边之差小于第三边”可得到4343x -<<+∴17x <<.故答案为:17x <<.【点睛】本题主要考查三角形三边关系 熟记“三角形任意两边之和大于第三边 任意两边之差小于第三边”是解答此类题目的关键.7.(2022·云南红河·八年级期末)已知a b c 、、是ABC ∆的三边长 a b 、满足()2610a b -+-= c 为偶数则c =_______.【答案】6【解析】【分析】根据非负数的性质列式求出a 、b 的值 再根据三角形的任意两边之和大于第三边 两边之差小于第三边求出c 的取值范围 再根据c 是偶数求出c 的值.【详解】解:∴a b 满足()2610a b -+-=∴a -6=0 b -1=0解得a =6 b =1∴6-1=5 6+1=7∴5<c <7又∴c 为偶数∴c =6故答案为:6【点睛】本题考查非负数的性质:偶次方 解题的关键是明确题意 明确三角形三边的关系.8.(2021·北京市陈经纶中学分校八年级期中)随着人们物质生活的提高手机成为一种生活中不可缺少的东西手机很方便携带但唯一的缺点就是没有固定的支点.为了解决这一问题某工厂研制生产了一种如图所示的手机支架.把手机放在上面就可以方便地使用手机这是利用了三角形的______.【答案】三角形的稳定性【解析】【分析】利用三角形的稳定性的性质直接回答即可.【详解】解:把手机放在上面就可以方便地使用手机这是利用了三角形的稳定性故答案为:三角形的稳定性.【点睛】本题考查了三角形的稳定性解题的关键是掌握三角形具有稳定性.9.(2022·北京市师达中学七年级阶段练习)如图AB∴BD 于点B AC∴CD 于点C且AC 与BD 交于点E已知AE=10DE=5CD=4则AB 的长为_________.【答案】8【解析】【分析】根据三角形高的定义可判断出边上的高然后利用三角形面积求解即可.【详解】解:∴AB∴BD AC∴CD∴AB 是∴ADE 的边DE 上的高 CD 是边AE 上的高∴S △AED =1122DE AB AE CD ⋅=⋅ ∴10485AE CD AB DE ⋅⨯=== 故答案为:8.【点睛】本题考查三角形高的定义 三角形的面积等知识 掌握基本概念是解题关键 学会用面积法求线段的长. 10.(2022·全国·八年级专题练习)如图 在ABC 中 2AB AC == P 是BC 边上的任意一点 PE AB ⊥于点E PF AC ⊥于点F .若ABC S = 则PE PF +=______.【解析】【分析】 根据1122ABC ABP APC S S S AB PE AC PF =+=⋅+⋅ 结合已知条件 即可求得PE PF +的值. 【详解】解:如图 连接APPE AB ⊥于点E PF AC ⊥于点F1122ABC ABP APC S S S AB PE AC PF ∴=+=⋅+⋅2AB AC == ABC S =∴1122AB PE AC PF ⋅+⋅PE PF =+=【点睛】本题考查了三角形的高掌握三角形的高的定义是解题的关键.三、解答题11.(2022·全国·八年级)在∴ABC中BC=8AB=1;(1)若AC是整数求AC的长;(2)已知BD是∴ABC的中线若∴ABD的周长为17求∴BCD的周长.【答案】(1)8(2)24【解析】【分析】(1)根据三角形三边关系“两边之和大于第三边两边之差小于第三边”得7<AC<9根据AC是整数得AC=8;(2)根据BD是∴ABC的中线得AD=CD根据∴ABD的周长为17和AB=1得AD+BD=16即可得.(1)解:由题意得:BC﹣AB<AC<BC+AB∴7<AC<9∴AC是整数∴AC=8.(2)解:如图所示∴BD是∴ABC的中线∴AD=CD∴∴ABD的周长为17∴AB +AD +BD =17∴AB =1∴AD +BD =16∴∴BCD 的周长=BC +BD +CD =BC +AD +CD =8+16=24.【点睛】本题考查了三角形 解题的关键是掌握三角形三边的关系和三角形的中线.12.(2022·全国·八年级专题练习)已知:a 、b 、c 满足2(|0a c -=求:(1)a 、b 、c 的值;(2)试问以a 、b 、c 为边能否构成三角形?若能构成三角形 求出三角形的周长;若不能构成三角形 请说明理由.【答案】(1)a = 5b = c =(2)能构成三角形 周长为(51【解析】【分析】(1)根据非负数之和等于零 则每个非负数等于零 分别建立方程求解即可;(2)先比较长三边的大小 再用较小两边之和与最大边比较即可判断能够构成三角形;然后计算三角形的周长即可.(1)解:∴(20a ≥ 0 0c -≥a 、b 、c 满足(20a c -=∴0a = 50b -= 0c -解得a = 5b = c =(2)解:∴81825<<∴5即a c b <<∴5=>∴能构成三角形三角形的周长)5551a b c =++===. 【点睛】本题考查了非负数的性质 二次根式有意义的条件和构成三角形的条件 解题的关键是根据非负数之和等于零的条件分别建立方程和如何判定三边能否构成三角形.13.(2022·四川·威远中学校七年级期中)(1)已知一个三角形的两边长分别是4cm 、7cm 则这个三角形的周长的取值范围是什么?(2)在等腰三角形ABC 中 AB =AC 周长为14cm BD 是AC 边上的中线 △ABD 比△BCD 周长长4cm 求△ABC 各边长.【答案】(1)14<c <22;(2)AB =6 AC =6 BC =2.【解析】【分析】(1)根据三角形三边关系 先求出三角形第三边长的范围 即可求出周长范围.(2)根据三角形中线的定义可得,AD CD = 从而可得4,AB BC -=再根据ABC 的周长是14 以及,AB AC = 可得214AB BC +=进行计算即可解答. 【详解】解:(1)设第三边长为x 根据三角形的三边关系得7474,x ∴-<<+3,x ∴<<11∴三角形的周长C 的取值范围为:1422.c <<(2)如图所示:∴BD是AC边上的中线,AD CD∴=∴△ABD比△BCD周长长4cm()()4,AB AD BD BC CD BD∴++-++=4,AB BC∴-=4,BC AB∴=-ABC的周长是1414,AB AC BC∴++=,AB AC=214,AB BC∴+=2414,AB AB∴+-=6,AB∴=6,AB AC∴==2.BC∴=【点睛】本题主要考查了三角形三边关系等腰三角形的性质熟练掌握等腰三角形的性质是解题的关键.14.(2022·河北邯郸·七年级阶段练习)如图在直角三角形ABC中∴BAC=90° AD是BC边上的高CE 是AB边上的中线AB=12cm BC=20cm AC=16cm求:(1)AD的长;(2)∴BCE的面积.【答案】(1)485;(2)48.【解析】【分析】(1)利用面积法得到12AD•BC=12AB•AC然后把AB=12cm BC=20cm AC=16cm代入可求出AD的长;(2)由于三角形的中线将三角形分成面积相等的两部分 所以S △BCE =12S △ABC .【详解】解:(1)∴∴BAC =90° AD 是BC 边上的高 ∴12AD •BC =12AB •AC∴AD =121620⨯=485(cm );(2)∴CE 是AB 边上的中线∴S △BCE =12S △ABC =12×12×12×16=48(cm 2).【点睛】本题考查三角形中线的性质 涉及等积法 是重要考点 掌握相关知识是解题关键.15.(2022·黑龙江·哈尔滨市风华中学校七年级期中)如图 在6×10的网格中 每一小格均为正方形且边长是1 已知∴ABC 的每个顶点都在格点上.(1)画出∴ABC 中BC 边上的高线AE ;(2)在∴ABC 中AB 边上取点D 连接CD 使3BCD ACD S S =△△;(3)直接写出∴BCD 的面积是__________.【答案】(1)画图见解析(2)画图见解析(3)7.5【解析】【分析】(1)利用网格线过A 作BC 的垂线即可;(2)利用网格线的特点 取格点D 满足3BD AD = 则D 即为所求作的点;(3)利用三角形的面积公式直接计算即可.(1)解:如图 AE 即为BC 上的高.(2)如图 利用网格特点 可得3BD AD =∴D 即为所求作的点 满足3BCD ACD S S =△△.(3)1537.52BCD S =⨯⨯=. 【点睛】本题考查的是画三角形的高 三角形的面积的计算 熟悉等高的两个三角形的面积之间的关系是解本题的关键.16.(2022·江苏·沭阳县怀文中学七年级阶段练习)如图 在ABC 中 CD 、CE 分别是ABC 的高和角平分线 ,()BAC B ∠α∠βαβ==>.(1)若70,40αβ=︒=︒ 求DCE ∠的度数;(2)试用α、β的代数式表示DCE ∠的度数_________.【答案】(1)15DCE ∠=︒(2)2αβ-【解析】【分析】(1)根据三角形的内角和定理求出∴ACB 的值 再由角平分线的性质以及直角三角形的性质求出∴DCE . (2)由(1)的解题思路即可得正确结果.(1) 解:70BAC ∠=︒ 40B ∠=︒∴()180()180704070ACB BAC B ∠=︒-∠+∠=︒-︒+︒=︒CE 是ACB ∠的平分线∴1352ACE ACB ∠=∠=︒.CD 是高线∴90ADC ∠=︒∴9020ACD BAC ∠=︒-∠=︒∴352015DCE ACE ACD ∠=∠-∠=︒-=︒︒.(2) 解:BAC α∠= B β∠=∴()180()180ACB BAC B αβ∠=︒-∠+∠=︒-+CE 是ACB ∠的平分线∴()1118090222ACE ACB αβαβ+∠=∠=⨯︒-+=︒-⎡⎤⎣⎦.CD 是高线∴90ADC ∠=︒∴9090ACD BAC α∠=︒-∠=︒- ∴909022DCE ACE ACD αβαβα+-∠=∠-∠=︒--︒+=.【点睛】本题主要考查角平分线 高线以及角的转换 掌握角平分线 高线的性质是解题的关键.17.(2022·上海·八年级专题练习)如图 ∴ABC 中 ∴BAC =60º AD 平分∴BAC 点E 在AB 上 EG ∴ADEF ∴AD 垂足为F .(1)求∴1和∴2的度数.(2)联结DE 若S △ADE =S 梯形EFDG 猜想线段EG 的长和AF 的长有什么关系?说明理由.【答案】(1)30º;60º(2)相等 理由见解析【解析】【分析】(1)利用角平分线的定义求得BAD ∠ 然后在直角三角形中利用两锐角互余即可求得∴2 再利用平行线的性质即可求得∴1的度数.(2)根据S △ADE =S 梯形EFDG 可得AD =DF +EG 结合图形即可求解.(1)∴∴BAC =60º AD 平分∴BAC ∴1302BAD BAC ∠=∠=︒ 又∴EF ∴AD∴29060BAD ∠=︒-∠=︒ ∴EG ∴AD∴130BAD ∠=∠=︒.(2)相等. 理由如下: ∴EF ∴AD∴S △ADE =12AD EF ⋅ S 梯形EFDG =1()2DE EG EF +⋅ ∴S △ADE = S 梯形EFDG ∴12AD EF ⋅=1()2DE EG EF +⋅∴AD =DF +EG∴AD =AF +DF∴DF +EG =AF +DF即AF =EG .【点睛】本题考查了平行线的性质 角平分线的定义以及三角形和梯形的面积公式 熟练掌握平行线的性质和角平分线的定义是解题的关键.18.(2021·安徽省六安皋城中学八年级期中)如图 AD 是∴ABC 的边BC 上的中线 已知AB =5 AC =3. (1)边BC 的取值范围是 ;(2)∴ABD 与∴ACD 的周长之差为 ;(3)在∴ABC 中 若AB 边上的高为2 求AC 边上的高.【答案】(1)28BC <<;(2)2;(3)103h =. 【解析】【分析】 (1)直接根据三角形三边关系进行解答即可;(2)根据三角形中线将∴ABD 与∴ACD 的周长之差转换为AB 和AC 的差即可得出答案;(3)设AC 边上的高为h 根据三角形面积公式列出方程求解即可.【详解】解:(1)∴∴ABC 中AB =5 AC =3∴5353BC -<<+即28BC <<故答案为:28BC <<;(2)∴∴ABD 的周长为AB AD BD ++∴ACD 的周长为AC AD CD ++∴AD 是∴ABC 的边BC 上的中线∴BD CD =∴AB AD BD ++-(AC AD CD ++)=532AB AC -=-=故答案为:2;(3)设AC 边上的高为h 根据题意得:11222AB AC h ⨯=⨯ 即1152322h ⨯⨯=⨯⨯ 解得103h =.【点睛】本题考查了三角形三边关系 三角形的中线 三角形的高等知识点 熟练掌握基础知识是解本题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

7.1.2 三角形的高、中线与角平分线
1.以下说法错误的是()
A.三角形的三条高一定在三角形内部交于一点
B.三角形的三条中线一定在三角形内部交于一点
C.三角形的三条角平分线一定在三角形内部交于一点
D.三角形的三条高可能相交于外部一点
2.如果一个三角形的三条高的交点恰好是这个三角形的一个顶点,•那么这个三角形是() A.锐角三角形 B.直角三角形 C.钝角三角形 D.不能确定
3.如图1,BD=1
2
BC,则BC边上的中线为______,△ABD的面积=_____的面积.
(1) (2) (3)
4.如图2,△ABC中,高CD、BE、AF相交于点O,则△BOC•的三条高分别为线段________.5.下列图形中具有稳定性的是()
A.梯形 B.菱形 C.三角形 D.正方形
6.如图3,AD是△ABC的边BC上的中线,已知AB=5cm,AC=3cm,求△ABD•与△ACD的周长之差.
7.如图,∠BAD=∠CAD,AD⊥BC,垂足为点D,且BD=CD.•可知哪些线段是哪个三角形的角平分线、中线或高?
综合创新作业
8.(综合题)如图5,在等腰三角形ABC中,AB=AC,一腰上的中线BD将这个等腰三角形的周长分为15和6两部分,求该等腰三角形的腰长及底边长.
9.有一块三角形优良品种试验基地,如图所示,•由于引进四个优良品种进行对比试验,需将这块土地分成面积相等的四块,请你制定出两种以上的划分方案供选择(画图说明).
10.(创新题)如图,在△ABC中,D、E分别是BC、AD的中点,S△ABC=4cm2,求S△ABE.
11.(2004年,陕西)如图,在锐角△ABC中,CD、BE分别是
AB、AC上的高,•且CD、BE交于一点P,若∠A=50°,则∠
BPC的度数是()
A.150° B.130° C.120° D.100°。

相关文档
最新文档