八年级数学:角平分线的性质及判定练习(含答案)
八年级上册数学角平分线的性质与判定证明题训练 含答案

八年级上册数学角平分线的性质与判定证明题训练1.如图,在△ABC中,AD是角平分线,BD=CD,DE⊥AB,DF⊥AC,垂足分别为E,F.求证:EB=FC.2.如图,在△ABC中,∠BAC的平分线AD与BC边的垂直平分线DE交于点D,DG⊥AB,DH⊥AC,G,H为垂足.(1) 求证BG=CH.(2) 线段AB,AC与BG之间有何数量关系?证明你的结论.3.如图,已知BM,CN是△ABC的两条角平分线,相交于点P.求证点P也在∠BAC的平分线上.4.如图,点E,F分别在△ABC的边BA,BC的延长线上.BP,CP分别平分∠ABC,∠ACF,连接PA.(1) 若∠BAC=70∘,则∠BPC的度数为.(2) 求证PA是∠EAC的平分线.5.如图,在△ABC中,P是BC上一点,PR⊥AB,PS⊥AC,垂足分别为R,S,PR=PS,Q 是AC上一点,且∠CAP=∠APQ.(1) 求证:QP∥AR.(2) AR,AS相等吗?请说明理由.6.如图,四边形ABCD中,AB=AD,BC=DC,AE⊥BC,AF⊥CD,垂足为E,F.求证:AE=AF.7.如图,BE⊥AC于点E,CF⊥AB于点F,BE,CF相交于点D.若BD=CD,求证:AD平分∠BAC.8.如图,在四边形ABCD中,BD平分∠ABC,DF⊥BC于点F,DA=DC.求证:∠A+∠C=180∘.9.如图,在△ABC中,∠C=90∘,AD平分∠CAB,DE⊥AB于点E,点F在AC上,BE=FC.求证:BD=DF.10.如图,在△ABC中,∠ABC的平分线与△ACB的外角平分线交于点P,PD⊥AC于点D,PH⊥BA于点H.(1) 若PH=8cm,求点P到直线BC的距离;(2) 求证:点P在∠HAC的平分线上.11.如图,∠B=∠C=90∘,EB=EC,DE平分∠ADC,求证:AE是∠DAB的平分线.12.已知:如图,在Rt△ABC中,∠ACB=90∘,AD平分∠BAC,点D在BC上,DE⊥AB,垂足为点E,EF∥BC.求证:EC平分∠FED.13.如图,AD是△ABC的高,E为AC上一点,BE交AD于点F,且BD=AD,FD=CD.(1) 试说明BF与AC的位置关系和数量关系;(2) 连接DE,求∠DEC的大小.14.如图所示,AD是∠BAC的平分线,DE⊥AB,DF⊥AC,垂足分别为E,F,连接EF,EF与AD交于点G.求证:AD垂直平分EF.15.已知:如图所示,OP平分∠EOF,PA⊥OE,PB⊥OF,垂足分别是点A,B,且BD=AC.求证:PC=PD.16.已知:如图,∠1=∠2,∠3=∠4.求证:点P在∠MAN的平分线上.17.如图,在△ABC中,CD⊥AB于点D,BE⊥AC于点E,BE,CD交于点O,且AO平分∠BAC.求证:OB=OC.18.如图,AD为△ABC的角平分线,DE⊥AB,DF⊥AC,垂足分别为E,F.(1) 若AB=AC=5,△ABC面积为12,求DE的长;(2) 连接EF,并交AD于点G,试判断线段AD与EF的位置关系,并证明你的结论.19.如图,△ABC与△AED中,∠E=∠C,DE=BC,EA=CA,过A作AF⊥DE,垂足为F,DF交CB延长线于点G,连接AG.(1) 求证:GA平分∠DGB;(2) 若S四边形DGBA=6,AF=3,求FG的长.答案1. 【答案】∵AD平分∠BAC,∴∠1=∠2,∵∠1=∠2,DE⊥AB,DF⊥AC,∴DE=DF(角平分线上的点到角两边的距离相等),在Rt△DEB和Rt△DFC中,{DE=DF, BD=CD,∴Rt△DEB≌Rt△DFC(HL),∴EB=FC.2. 【答案】(1) 提示:连接BD,CD,证明△BDG≌△CDH(HL).(2) AB−AC=2BG.提示:证明AG=AH,结合第一问可得.3. 【答案】如图,过点P作PD⊥BC,PE⊥AC,PF⊥AB,垂足分别为D,E,F,连接AP.∵BM,CN是△ABC的两条角平分线,∴PD=PF,PD=PE,∴PE=PF,∴AP是∠BAC的平分线,即点P也在∠BAC的平分线上.4. 【答案】(1) 35∘(2) 过点P作PD,PG,PH,分别垂直于CF,CA,AE,垂足分别为D,G,H.∵BP,CP分别平分∠ABC,∠ACF,∴PH=PG.∴PA是∠EAC的平分线.5. 【答案】(1) ∵PR⊥AB,PS⊥AC,PR=PS,∴AP平分∠BAC,∴∠BAP=∠CAP,又∵∠CAP=∠APQ,∴∠BAP=∠APQ,∴QP∥AR.(2) 相等.理由:∵PR⊥AB,PS⊥AC,∴∠ARP=∠ASP=90∘,在Rt△APR和Rt△APS中,{AP=AP, PR=PS,∴Rt△APR≌Rt△APS,∴AR=AS.6. 【答案】连接AC.在△ABC与△ADC中,{AB=AD, BC=CD, AC=AC,∴△ABC≌△ADC(SSS),∴∠ACB=∠ACD.∴AE=AF.7. 【答案】∵BE⊥AC,CF⊥AB,∴∠DFB=∠DEC=90∘,∵∠BDF=∠CDE,BD=CD,∴△BDF≌△CDE(AAS),∴DE=DF,∴AD平分∠BAC.8. 【答案】过点D作DE⊥BA交BA的延长线于点E,∵DF⊥BC,DE⊥BA,BD平分∠ABC,∴DE=DF,在Rt△EAD和Rt△FCD中,{AD=CD, DE=DF,∴Rt△EAD≌Rt△FCD(HL),∴∠C=∠EAD,∵∠EAD+∠BAD=180∘,∴∠BAD+∠C=180∘.9. 【答案】∵AD平分∠BAC,DE⊥AB,∠C=90∘,∴DC=DE,在△DCF和△DEB中,{DC=DE,∠C=∠BED, CF=EB,∴△DCF≌△DEB(SAS),∴BD=DF.10. 【答案】(1) 作PQ⊥BE于Q,∵BP平分∠ABC,PH⊥BA,∴PH=PQ=8cm,即点P到直线BC的距离为8cm.(2) ∵PC平分∠ACE,PQ⊥BE,PD⊥AC,∴PD=PQ,由(1)知PH=PQ,∴PD=PH,∴点P在∠HAC的平分线上.11. 【答案】过点E作EF⊥AD于F,∵DE平分∠ADC,∠C=90∘,EF⊥AD,∴EC=EF,又∵EB=EC,∴EF=BE,又∵∠B=90∘,∴AE是∠DAB的平分线.12. 【答案】由角平分线性质,得DC=DE,推出∠DCE=∠DEC;又EF∥BC,得∠FEC=∠DCE,所以∠FEC=∠DEC,即EC平分∠FED.13. 【答案】(1) BF⊥AC且BF=AC.理由如下:∴∠ADB=∠ADC=90∘.又AD=BD,CD=FD,∴△ADC≌△BDF(SAS).∴AC=BF,∠CAD=∠FBD.又∠CAD+∠ACD=90∘,∴∠FBD+∠ACD=90∘,即∠EBC+∠ECB=90∘.∴∠BEC=90∘.∴BE⊥AC,即BF⊥AC.(2) 如图1,连接DE,过点D作DM⊥BE,DN⊥AC,垂足分别为M,N.∴∠DMF=∠DNC=90∘.由(1)得△ADC≌△BDF,∴∠DFM=∠C.又DF=DC,∴△DMF≌△DNC(AAS).∴DM=DN.∵DE是∠BEC的平分线.由(1)得∠BEC=90∘,∴∠DEC=12∠BEC=45∘.14. 【答案】证法1:∵AD平分∠BAC,DE⊥AB,DF⊥AC,∴DE=DF,∠EAG=∠FAG.在Rt△AED和Rt△AFD中,{AD=AD, DE=DF,∴Rt△AED≌Rt△AFD(HL).在△AEG和△AFG中,{AE=AF,∠EAG=∠FAG, AG=AG,∴△AEG≌△AFG(SAS).∴EG=FG,∠AGE=∠AGF=90∘.∴AD垂直平分EF.15. 【答案】因为OP平分∠EOF,PA⊥OE,PB⊥OF,所以PB=PA,在Rt△PBD与Rt△PAC中,{BD=AC,∠DBP=∠CAP=90∘, BP=AP,所以Rt△PBD≌Rt△PAC,所以PD=PC.16. 【答案】提示:过P作PS⊥AM于S,PQ⊥AN于Q,PT⊥BC于T,证PS=PQ.17. 【答案】∵AO平分∠BAC,CD⊥AB,BE⊥AC,∴OD=OE.在△BOD和△COE中,∠BDO=∠CEO=90∘,OD=OE,∠DOB=∠EOC,∴△BOD≌△COE,∴OB=OC.18. 【答案】(1) ∵AD为△ABC的角平分线,DE⊥AB,DF⊥AC,∴DE=DF,∵△ABC面积为12,∴12×AB⋅DE+12×AC⋅DF=12,而AB=AC=5,∴DE=DF=125.(2) AD⊥EF.理由如下:在直角△ADE与直角△ADF中,{AD=AD,DE=DF,∴△ADE≌△ADF(HL),∴AE=AF,∠EAD=∠FAD,∴AD⊥EF.19. 【答案】(1) 如图,过点A作AH⊥BC于点H,∵△ABC与△AED中,∠E=∠C,DE=BC,EA=CA,∴△ABC≌△ADE(SAS),∴S△ABC=S△AED,又∵AF⊥DE,即12×DE×AF=12×BC×AH,∴AF=AH,又∵AF⊥DE,AH⊥BC,∴GA平分∠DGB.(2) ∵△ABC≌△ADE,∴AD=AB,又∵AF⊥DE,AH⊥BC,AF=AH,∴Rt△ADF≌Rt△ABH(HL),∴S四边形DGBA=S四边形AFGH=6,∵Rt△AFG≌Rt△AHG,∴Rt△AFG的面积=3,∵AF=3,×FG×3=3,∴12解得FG=2.。
人教版八年级数学上册12.3角平分线的性质课时训练(含答案)

人教版八年级数学上册12.3角平分线的性质课时训练(含答案)人教版八年级数学上册12.3 角平分线的性质课时训练一、选择题1. 如图,PD⊥AB,PE⊥AC,垂足分别为D,E,且PD=PE,则△APD与△APE 全等的理由是()A.SAS B.AAA C.SSS D.HL2. 如图,P是∠AOB的平分线OC上一点,PD⊥OA,垂足为D.若PD=2,则点P到边OB的距离是()A.4 B. 3 C.2 D.13. 如图,P为OC上一点,PM⊥OA,PN⊥OB,垂足分别为M,N,PM=PN,∠BOC=30°,则∠AOB的度数为()A.30°B.45°C.60°D.50°4. 下面是黑板上给出的尺规作图题,需要回答横线上符号代表的内容.已知∠AOB.求作:∠AOB的平分线.作法如下:①以点O为圆心,适当长为半径画弧,交OA于点M,交__○__于点N;②分别以点__⊕__为圆心,大于__△__的长为半径画弧,两弧在__?__的内部交于点C;③画射线OC,OC即为所求.则下列回答正确的是()A.○表示OA B.⊕表示M,CC.△表示MN D.?表示∠AOB5. 如图,在直角坐标系中,AD是Rt△OAB的角平分线,点D的坐标是(0,-3),那么点D到AB的距离是()A.3B.-3C.2D.-26. 如图,利用尺规作∠AOB的平分线OC,其作法如下:(1)以点O为圆心,适当长为半径画弧,与OA,OB分别交于点D,E;(2)分别以点D,E为圆心,大于DE的长为半径画弧,两弧在∠AOB的内部交于点C;(3)画射线OC,则射线OC就是∠AOB的平分线.这样作图的原理是三角形全等的一种判定方法,这种判定方法是()A.SSSB.SASC.ASAD.AAS7. 如图,AB∥CD,以点A为圆心,小于AC的长为半径画弧,与AB,AC分别交于点E,F,再分别以点E,F为圆心,大于EF的长为半径画弧,两弧在∠CAB的内部交于点G,作射线AG交CD于点H.若∠C=140°,则∠AHC 的大小是()A.20°B.25°C.30°D.40°8. 如图,在Rt△ABC中,∠C=90°,以顶点A为圆心,适当长为半径画弧,分别交AC,AB于点M,N,再分别以点M,N为圆心,大于12MN的长为半径画弧,两弧交于点P,作射线AP交边BC于点D.若CD=4,AB=16,则△ABD的面积是()A.14 B.32 C.42 D.569. 如图,已知在四边形ABCD中,∠BCD=90°,BD平分∠ABC,AB=6,BC =9,CD=4,则四边形ABCD的面积是()A.24 B.30C.36 D.4210. 如图,AD是△ABC的角平分线,DE⊥AB,AB=6 cm,DE=4 cm,S△ABC=30 cm2,则AC的长为()A.10 cmB.9 cmC.4.5 cmD.3 cm二、填空题11. 如图,OP为∠AOB的平分线,PC⊥OB于点C,且PC=3,点P到OA的距离为________.12. 如图,在△ABC中,两条外角平分线交于点P,PM⊥AC交AC的延长线于点M.若PM=6 cm,则点P到AB的距离为.13. 将两块完全相同的三角尺在∠AOB的内部如图摆放,两块三角尺较短的直角边分别与∠AOB的两边重合,且含30°角的顶点恰好也重合于点C,则射线OC 即为∠AOB的平分线,理由是______________________.14. 如图,∠B=∠D=90°,根据角平分线的性质填空:(1)若∠1=∠2,则________=________.(2)若∠3=∠4,则________=________.15. 如图,在△ABC中,E为AC的中点,AD平分∠BAC交BC于点D,AB︰AC=2︰3,AD与BE相交于点O.若△OAE的面积比△BOD的面积大1,则△ABC的面积是.三、解答题16. 育新中学校园内有一块直角三角形(Rt△ABC)空地,如图所示,园艺师傅以角平分线AD为界,在其两侧分别种上了不同的花草,在△ABD区域内种植了一串红,在△ACD区域内种植了鸡冠花,并量得两直角边AB=20 m,AC=10 m,分别求一串红与鸡冠花两种花草的种植面积.17. 如图,已知∠1=∠2,BA18. 如图,在∠AOB的两边OA,OB上分别取点D,M和点E,N,使OM=ON,OD=OE,DN和EM相交于点C.求证:点C在∠AOB的平分线上.19. 如图,A,B两点分别在射线OM,ON上,点C在∠MON的内部且CA=CB,CD⊥OM,CE⊥ON,垂足分别为D,E,且AD=BE.(1)求证:OC平分∠MON;(2)如果AO=10,BO=4,求OD的长.20. 如图,在Rt△ABC中,∠ACB=90°,∠B=60°,AD,CE是角平分线,AD 与CE相交于点F,FM⊥AB,FN⊥BC,垂足分别为M,N.求证:FE=FD.人教版八年级数学上册12.3 角平分线的性质课时训练-答案一、选择题1. 【答案】D2. 【答案】C[解析] 如图,过点P作PE⊥OB于点E.∵P是∠AOB的平分线OC上一点,PD⊥OA,PE⊥OB,∴PE=PD=2.3. 【答案】C[解析] ∵点P在OC上,PM⊥OA,PN⊥OB,PM =PN,∴OC是∠AOB的平分线.∵∠BOC=30°,∴∠AOB=60°.4. 【答案】D5. 【答案】A[解析] 如图,过点D作DE⊥AB于点E.∵点D的坐标是(0,-3),∴OD=3.∵AD是△OAB的角平分线,∴ED=OD=3,即点D到AB的距离是3.6. 【答案】A7. 【答案】A[解析] 由题意可得AH平分∠CAB.∵AB∥CD,∴∠C+∠CAB=180°,∠HAB=∠AHC.∵∠ACD=140°,∴∠CAB=40°.∵AH平分∠CAB,∴∠HAB=20°.∴∠AHC=20°.8. 【答案】B[解析] 如图,过点D作DH⊥AB于点H. 由作法得AP平分∠BAC.∵DC⊥AC,DH⊥AB,∴DH=DC=4.∴S△ABD=12×16×4=32.9. 【答案】B[解析] 过点D作DH⊥AB交BA的延长线于点H. ∵BD平分∠ABC,∠BCD=90°,∴DH=CD=4.∴四边形ABCD的面积=S△ABD+S△BCD=12AB·DH+12BC·CD=12×6×4+12×9×4=30.10. 【答案】B[解析] 如图,过点D作DF⊥AC于点F.∵AD是△ABC的角平分线,DE⊥AB,∴DE=DF=4.∵AB=6,∴S △ABC =S △ABD +S △ACD =×6×4+AC ×4=30, 解得AC=9(cm).故选B .二、填空题11. 【答案】3 【解析】如解图,过点P 作PD ⊥OA 于点D ,∵OP 为∠AOB 的平分线,PC ⊥OB 于点C ,∴PD =PC ,∵PC =3,∴PD =3,即点P 到点OA 的距离为3.12. 【答案】6 cm[解析] 如图,过点P 作PN ⊥BC 于点N ,PQ ⊥AB 交AB 的延长线于点Q.∵BP ,CP 是两条外角的平分线,PM ⊥AC ,∴PN=PM ,PQ=PN.∴PQ=PM.∵PM=6 cm,∴PQ=6 cm,即点P 到AB 的距离为6 cm .13. 【答案】角的内部到角的两边距离相等的点在角的平分线上14. 【答案】(1)BCCD (2)AB AD15. 【答案】10[解析] 如图,过点D 作DM ⊥AC 于点M ,DN ⊥AB 于点N.∵AD 平分∠BAC,DM ⊥AC ,DN ⊥AB , ∴DM=DN.∵S △ABD ︰S △ADC =BD ︰DC ,且S △ABD =·AB ·DN ,S △ADC =·AC ·DM ,∴BD ∶DC=AB ∶AC=2∶3. 设△ABC 的面积为S ,则S △ADC =S.∵E 为AC 的中点, ∴S △BEC =S.∵△OAE 的面积比△BOD 的面积大1, ∴△ADC 的面积比△BEC 的面积大1. ∴S-S=1.∴S=10.故答案为10.三、解答题16. 【答案】解:如图,过点D 作DE ⊥AB 于点E ,DF ⊥AC 于点F.∵AD 是∠BAC 的平分线,∴DE =DF. ∵AB =20 m ,AC =10 m ,∴S △ABC =12×20×10=12×20·DE +12×10·DF ,解得DE =203(m).∴△ACD 的面积=12×10×203=1003(m 2),△ABD 的面积=12×20×203=2003(m 2).故一串红的种植面积为2003 m 2,鸡冠花的种植面积为1003 m 2.17. 【答案】证明:如图,过点P 作PE ⊥BA 交BA 的延长线于点E.又∵∠1=∠2,PF ⊥BC ,∴PE=PF ,∠PEA=∠PFC=90°. 在Rt △PEA 与Rt △PFC 中,∴Rt △PEA ≌Rt △PFC (HL). ∴∠P AE=∠PCB. ∵∠P AE+∠BAP=180°, ∴∠PCB+∠BAP=180°.18. 【答案】证明:如图,过点C 作CG ⊥OA 于点G ,CF ⊥OB 于点F .在△MOE 和△NOD 中,∴△MOE ≌△NOD (SAS). ∴S △MOE =S △NOD .∴S △MOE -S 四边形ODCE =S △NOD -S 四边形ODCE ,即S △MDC =S △NEC .由三角形面积公式得DM ·CG=EN ·CF .∵OM=ON ,OD=OE ,∴DM=EN.∴CG=CF . 又∵CG ⊥OA ,CF ⊥OB ,∴点C 在∠AOB 的平分线上.19. 【答案】解:(1)证明:∵CD ⊥OM ,CE ⊥ON ,∴∠CDA =∠CEB =90°.在Rt △ACD 与Rt △BCE 中,CA =CB ,AD =BE ,∴Rt △ACD ≌Rt △BCE(HL).∴CD=CE.又∵CD ⊥OM ,CE ⊥ON ,∴OC 平分∠MON. (2)在Rt △ODC 与Rt △OEC 中,CD =CE ,OC =OC ,∴Rt △ODC ≌Rt △OEC. ∴OD =OE. 设BE =x.∵BO =4,∴OE =OD =4+x. ∵AD =BE =x ,∴AO =OD +AD =4+2x =10. ∴x =3.∴OD =4+3=7.20. 【答案】证明:如图,连接BF.∵F 是△ABC 的角平分线AD ,CE 的交点,∴BF 平分∠ABC. ∵FM ⊥AB ,FN ⊥BC ,∴FM =FN ,∠DNF =∠EMF =90°.∵在Rt △ABC 中,∠ACB =90°,∠ABC =60°,∴∠BAC =30°.∵AD 平分∠BAC ,∴∠DAC =12∠BAC =15°. ∴∠CDA =75°.∵CE 平分∠ACB ,∠ACB =90°,∴∠ACE =45°. ∴∠MEF =75°=∠NDF. 在△DNF 和△EMF 中,∠DNF =∠EMF ,∠NDF =∠MEF ,FN =FM ,∴△DNF ≌△EMF(AAS).∴FE =FD.。
八年级数学角的平分线的性质、判定(人教版)(基础)(含答案)

角的平分线的性质、判定(人教版)(基础)一、单选题(共10道,每道10分)1.如图所示,利用尺规作∠AOB的平分线,作法如下:①以点O为圆心,适当长为半径画弧,交OA于点M,交OB于点N;②分别以点M,N为圆心,大于MN的长为半径画弧,两弧在∠AOB的内部相交于点C;③画射线OC,射线OC即为所求.在用尺规作角平分线时,用到的三角形全等的判定方法是( )A.SSSB.ASAC.AASD.SAS答案:A解题思路:由作法得OM=ON,CM=CN,在△OMC和△ONC中∴△OMC≌△ONC(SSS)∴∠MOC=∠NOC(全等三角形对应角相等)即OC是∠AOB的平分线故选A.试题难度:三颗星知识点:略2.如图,OP为∠AOB的平分线,PC⊥OA,PD⊥OB,垂足分别是C,D,则下列结论错误的是( )A.PC=PDB.∠CPO=∠DOPC.∠CPO=∠DPOD.OC=OD答案:B解题思路:∵OP为∠AOB的平分线,PC⊥OA,PD⊥OB∴PC=PD在Rt△OPC和Rt△OPD中,∴Rt△OPC≌Rt△OPD(HL)∴∠CPO=∠DPO,OC=OD故选B.试题难度:三颗星知识点:略3.如图,AB∥CD,BP和CP分别平分∠ABC和∠BCD,AD过点P,且与AB垂直.若AD=8,则点P到BC的距离是( )A.2B.4C.6D.8答案:B解题思路:如图,过点P作PE⊥BC于E,∵AB∥CD,AD过点P,且与AB垂直∴AD⊥CD∵BP平分∠ABC,PA⊥AB,PE⊥BC∴PA=PE∵CP平分∠BCD,PD⊥CD,PE⊥BC∴PE=PD∴PA=PE=PD即PE=AD==4故选B.试题难度:三颗星知识点:略4.三条公路将A,B,C三个村庄连成一个如图所示的三角形区域,如果在这个区域内修建一个集贸市场,要使集贸市场到三条公路的距离相等,那么这个集贸市场应建的位置是( )A.三条高线的交点B.三条中线的交点C.三条角平分线的交点D.三边垂直平分线的交点答案:C解题思路:由角平分线的性质“角的内部到角的两边的距离相等的点在角的平分线上”,故要使集贸市场到三条公路的距离相等,集贸市场应建在∠A,∠B,∠C的角平分线的交点处.故选C.试题难度:三颗星知识点:略5.如图,已知PA⊥OM于A,PB⊥ON于B,且PA=PB.若∠MON=50°,∠OPC=30°,则∠PCA 为( )A.20°B.45°C.55°D.80°答案:C解题思路:∵PA⊥OM于A,PB⊥ON于B,且PA=PB∴点P在∠MON的角平分线上即OP平分∠MON∴∠POC=∠MON=50°=25°∵∠PCA是△POC的一个外角∴∠PCA=∠POC+∠OPC=25°+30°=55°故选C.试题难度:三颗星知识点:略6.如图,在Rt△ABC中,∠C=90°,以顶点A为圆心,适当长为半径画弧,分别交AC,AB于点M,N,再分别以点M,N为圆心,大于MN的长为半径画弧,两弧交于点P,作射线AP交边BC于点D,若CD=4,AB=15,则△ABD的面积是( )A.15B.30C.45D.60答案:B解题思路:如图,过点D作DE⊥AB于E,由题意可知AP是∠BAC的平分线∵∠C=90°,DE⊥AB∴DE=CD=4∴故选B.试题难度:三颗星知识点:略7.如图,AD是△ABC中∠BAC的平分线,DE⊥AB于点E.若S△ABC=7,DE=2,AB=4,则AC 的长是( )A.3B.4C.5D.6答案:A解题思路:如图,过点D作DF⊥AC于F,∵AD是∠BAC的平分线,DE⊥AB于E,DF⊥AC于F∴DE=DF∴∴AC=3故选A.试题难度:三颗星知识点:略8.如图,已知△ABC的周长是21,BO,CO分别平分∠ABC和∠ACB,OD⊥BC于D,且OD=4,则△ABC的面积是( )A.25B.84C.42D.21答案:C解题思路:如图,连接OA,过点O作OE⊥AB于E,作OF⊥AC于F∵BO平分∠ABC,OD⊥BC,OE⊥AB,∴OE=OD,∵CO平分∠ACB,OD⊥BC,OF⊥AC,∴OF=OD,故选C.试题难度:三颗星知识点:略9.如图,AD是△ABC的角平分线,DF⊥AB,垂足为F,DE=DG,△ADG和△AED的面积分别为50和39,则△EDF的面积为( )A.11B.5.5C.7D.3.5答案:B解题思路:如图,过点D作DH⊥AC,垂足为H,∵AD平分∠BAC,DF⊥AB,DH⊥AC,∴DH=DF在Rt△DEF和Rt△DGH中,∴Rt△DEF≌Rt△DGH(HL)∴,在Rt△ADF和Rt△ADH中,∴Rt△ADF≌Rt△ADH(HL)∴,设,则,∴,∴,解得:.故选B试题难度:三颗星知识点:略10.如图,在△ABC中,∠C=90°,∠B=30°,以A为圆心,任意长为半径画弧分别交AB,AC于点M和N,再分别以M,N为圆心,大于的长为半径画弧,两弧交于点P,连接AP并延长交BC于点D,则下列说法中正确的个数有( )①AD是∠BAC的平分线;②∠ADC=60°;③S△DAC:S△ABC=1:3.A.0个B.1个C.2个D.3个答案:D解题思路:由尺规作图可知AD是∠BAC的平分线,故①正确∵在△ABC中,∠C=90°,∠B=30°,∴∠BAC=60°,∵AD是∠BAC的平分线,∴∠CAD=∠BAD=∠BAC=30°,∵在△ACD中,∠C=90°,∠CAD=30°,∴∠ADC=60°,故②正确如图,过点D作DE⊥AB于E,∵AD平分∠BAC,∠C=90°,DE⊥AB∴DC=DE在Rt△ACD和Rt△AED中,∴Rt△ACD≌Rt△AED(HL)∴,在△ADE和△BDE中,∴△ADE≌△BDE(AAS),∴,∴,∴S△DAC:S△ABC=1:3,故③正确故选D试题难度:三颗星知识点:略。
角平分线的性质和判定(人教版)(含答案)

答案:C
解题思路:
解:如图,
连接AP,
在Rt△APR和Rt△APS中,
,
∴Rt△APR≌Rt△APS(HL)
∴∠1=∠2,AR=AS,
∵AQ=PQ
∴∠2=∠3
∴∠1=∠3
∴PQ∥AR
故①,②正确,③不确定,综上,选C
试题难度:三颗星知识点:全等三角形的性质与判定
10.如图,△ABC的外角∠ACD的平分线CP与内角∠ABC的平分线BP交于点P.若∠BPC=40°,则∠CAP等于( )
A.40° B.45°
C.50° D.60°
答案:C
解题思路:
1.思路点拨
①见到两条角平分线相交,考虑角平分线的性质,过点P分别向角的两边作垂线,垂线段相等.
②借助常见结构:找到∠BPC和∠BAC的关系,求出∠BAC的度数.
③借助三角形的内角和定理和平角解决问题.
2.解题过程
解:如图,
过点P分别向BC,AC,BA边所在直线作垂线,垂足分别为点E,F,G,
3.如图,已知点O是△ABC内一点,且点O到△ABC三边的距离相等.若∠A=40°,则∠BOC等于( )
A.110° B.120°
C.130° D.140°
答案:A
解题思路:
①由点O到△ABC三边的距离相等,可知点O是△ABC三个角的角平分线;
②设 ,
分别在△ABC和△BOC中利用三角形内角和定理,
答案:C
解题思路:
(1)根据角平分线的性质:角平分线上的点到角两边的距离相等,可以得到DE=DC,
∴①正确;
(2)角平分线可以看成一个角的对称轴,对称轴两侧的图形全等,即△ADC≌△ADE,
8年级数学人教版上册同步练习角的平分线的性质(含答案解析)

8年级数学人教版上册同步练习角的平分线的性质(含答案解析)专题一利用角的平分线的性质解题1.如图,在△ABC中,AC=AB,D在BC上,若DF⊥AB,垂足为F,DG⊥AC,垂足为G,且DF=DG.求证:AD⊥BC.2.如图,已知CD⊥AB于点D,BE⊥AC于点E,BE,CD交于点O,且AO平分∠BAC.求证:OB=OC.3.如图,在Rt△ABC中,∠C=90°,21∠∠,AD是∠BAC的角平分线,DE⊥ABBAC B∶∶于点E,AC=3 cm,求BE的长.专题二角平分线的性质在实际生活中的应用4.如图,三条公路把A﹨B﹨C三个村庄连成一个三角形区域,某地区决定在这个三角形区域内修建一个集贸市场,要使集贸市场到三条公路的距离相等,则这个集贸市场应建在()A.在AC﹨BC两边高线的交点处B.在AC﹨BC两边中线的交点处C.在∠A﹨∠B两内角平分线的交点处D.在AC﹨BC两边垂直平分线的交点处5.如图,要在河流的南边,公路的左侧M区处建一个工厂,位置选在到河流和公路的距离相等,并且到河流与公路交叉A处的距离为1cm(指图上距离),则图中工厂的位置应在__________,理由是__________.6.已知:有一块三角形空地,若想在空地中找到一个点,使这个点到三边的距离相等,试找出该点.(保留作图痕迹)状元笔记【知识要点】1.角的平分线的性质角的平分线上的点到角的两边的距离相等.2.角的平分线的判定角的内部到角的两边的距离相等的点在角的平分线上.【温馨提示】1.到三角形三边距离相等的点是三角形三条角平分线的交点,不是其他线段的交点.2.到三角形三边距离相等的点不仅有内角的平分线的交点,还有相邻两外角的平分线的交点,这样的点共有4个.【方法技巧】1.利用角的平分线的性质解决问题的关键是:挖掘角的平分线上的一点到角两边的垂线段.若已知条件存在两条垂线段——直接考虑垂线段相等,若已知条件存在一条垂线段——考虑通过作辅助线补出另一条垂线段,若已知条件不存在垂线段——考虑通过作辅助线补出两条垂线段.2.利用角平分线的判定解决问题的策略是:挖掘已知图形中一点到角两边的垂线段.若已知条件存在两条垂线段——先证明两条垂线段相等,然后说明角平分线或角的关系;若已知条件存在一条垂线段——考虑通过作辅助线补出另一条垂线段,再证明两条垂线段相等;若已知条件不存在垂线段——考虑通过作辅助线补出两条垂线段后,证明两条垂线段相等.参考答案:1.证明:∵DF AB DG AC DF DG ⊥⊥=,,,∴AD 是BAC ∠的平分线,∴BAD CAD =∠∠.在ABD △和ACD △中,⎪⎩⎪⎨⎧=∠=∠=(公共边)(已求)已知)AD AD DAC DAB AC AB (∴SAS)ABD ACD (△≌△.∴ADB ADC =∠∠.又∵180BDA CDA +=︒∠∠,∴90BDA =︒∠,∴AD BC ⊥.2.证明:∵AO 平分∠BAC ,OD ⊥AB ,OE ⊥AC ,∴OD =OE ,在Rt △BDO 和Rt △CEO 中,⎪⎩⎪⎨⎧∠=∠=∠=∠,,COE DOB OEOD CEO BDO ∴(ASA)BDO CEO △≌△.∴OB =OC .3.解:∵∠C =90°,∴∠BAC +∠B =90°,又DE ⊥AB ,∴∠C =∠AED =90°,又21BAC B =∶∶∠∠,∴∠A =60°,∠B =30°, 又∵AD 平分∠BAC ,DC ⊥AC ,DE ⊥AB ,∴DC =DE ,∴3AE AC ==cm .在Rt △DAE 和Rt △DBE 中,⎪⎩⎪⎨⎧=∠=∠∠=∠.DE DE BEDAED B DAE∴△DAE ≌△DBE (AAS ),∴3BE AE == cm . 4.C 解析:根据角平分线的性质,集贸市场应建在∠A ﹨∠B 两内角平分线的交点处.故选C .5.∠A 的角平分线上,且距A1cm 处 角平分线上的点到角两边的距离相等6.解:作两个角的平分线,交点P 就是所求作的点.。
人教版八年级数学上册《角的平分线的性质》练习题附答案

13.3 角的平分线的性质一、选择题1.如图 1 所示 ,∠ 1=∠ 2,PD ⊥ OA ,PE ⊥ OB ,垂足分别为 D ,E ,则下列结论中错误的是 ( ).A . PD=PEB .OD=OE C.∠ DPO=∠ EPO D . PD=ODBEACPDEFOD ABDCA E B( 1) (2) (3)2.如图 2 所示,在△ ABC 中, AB=AC , AD 是△ ABC 的角平分线, DE ⊥AB , DF ⊥ AC ,垂足分别是 E ,F ,则下列四个结论:① AD 上任意一点到C ,B 的距离相等;② AD 上任意一点到 AB ,AC 的距离相等;③ BD=CD , AD ⊥ BC ;④∠ BDE=∠ CDF ,其中正确的个数是( ). A .1个 B.2个 C .3个 D. 4 个3.如图 3 所示,在 Rt △ ABC 中,∠ C=90°, AC=BC=1, AB=2 ,AD 在∠ BAC?的平分线上,DE ⊥ AB 于点 E ,则△ DBE 的周长为( ).A .2B .1+2C . 2D.无法计算AAAEDC EFPOEBOFB BDC(4)(5)(6)4.如图 4 所示,已知∠ AOB ,求作射线 OC ,使 OC 平分∠ AOB , ?作法的合理顺序是().( 1)作射线 OC ;( 2)在 OA 和 OB 上,分别截取 OD , OE ,使 OD=OE ; ( 3)分别以 D , E 为圆心,大于1DE 的长为半径作弧,在∠ AOB 内,两弧交于点 C .2A .( 1)( 2)( 3)B .( 2)( 1)( 3)C .( 2)( 3)( 1)D .( 3)( 2)( 1) 二、填空题1.( 1)若 OC 为∠ AOB 的平分线,点 P 在 OC 上, PE ⊥OA , PF ⊥ OB ,垂足分别为 E ,F ,则PE=________,根据是 ________________ .( 2)如图 5 所示,若在∠ AOB 内有一点 P ,PE ⊥ OA ,PF ⊥ OB ,垂足分别为 E ,F ,且 PE=PF ,则点 P 在 _______,根据是 ____________ .2.△ ABC 中,∠ C=90°, AD平分∠ BAC,已知 BC=8cm,BD=5cm,则点 D?到 AB?的距离为 _______.3.如图 6 所示, DE⊥AB 于 E,DF⊥ AC 于点 F,若 DE=DF,只需O 添加一个条件, ?这个条件是 __________ .4.如图所示,∠ AOB=40°, OM平分∠ AOB, MA⊥ OA于 A,MB?⊥OB?于 B, ?则∠ MAB的度数为 ________.三、解答题1.如图所示,AD是∠ BAC的平分线, DE⊥ AB 于 E, DF⊥ AC于 F,且 BD=CD,那么相等吗?为什么?AN M BBE与 CFEBDA F C2.如图所示,∠ B=∠ C=90°, M是 BC中点, DM平分∠ ADC,判断 AM?是否平分∠ DAB,说明理由.M DCA B3.如图所示,已知 PB⊥ AB,PC⊥ AC,且 PB=PC,D是 AP 上一点,由以上条件可以得到∠BDP= ∠ CDP吗?为什么?ADCBP探究应用拓展性训练1.(与现实生活联系的应用题)如图所示,在一次军事演习中,?红方侦察员发现蓝方指挥部设在 A 区,到公路、铁路的交叉处 B 点 700m.如果你是红方指挥员,?请你如图所示的作图地图上标出蓝方指挥部的位置.BA区比例尺 1:200002.(探究题)已知:在△ABC中, AB=AC.(1)按照下列要求画出图形:①作∠BAC的平分线交 BC于点 D;②过 D作 DE⊥ AB,垂足为点 E;③过点 D作 DF⊥ AC,垂足为点 F .(2)根据上面所画的图形,可以得到哪些相等的线段(AB=AC除外)?说明理由.3.如图所示,在△ ABC中, P, Q?分别是 BC, AC上的点,作 PR⊥ AB, PS⊥ AC,垂足分别是R,S.若 AQ=PQ, PR=PS, ?下面三个结论① AS=AR,② QP∥ AR,③△ BRP≌△ CSP中,正确的是().A .①和③B.②和③C.①和② C .①,②和③BRPA Q S C、、答案 :一、1. D 解析:∵∠ 1=∠ 2, PD ⊥ OA 于 E , PE ⊥ OB 于 E ,∴ PD=PE .又∵ OP=OP ,∴△ OPE ≌△ OPD .∴ OD=OE ,∠ DPO=∠ EPO .故 A ,B , C 都正确.2. D 解析:如答图,设点 P 为 AD 上任意一点,连结PB ,PC .∵ AD 平分∠ BAC ,∴∠ BAD=∠ CAD .又∵ AB=AC , AP=AP ,∴△ ABP ≌△ ACP ,∴ PB=PC . A故①正确.由角的平分线的性质知②正确.∵ AB=AC ,∠ BAD=∠ CAD ,AD=AD ,P∴△ ABD ≌△ ACD .E F∴ BD=CD ,∠ ADB=∠ ADC .BDC又∵∠ ADB+∠ ADC=180°, ∴∠ ADB=∠ ADC=90°, ∴ AD ⊥BC ,故③正确.由△ ABD ≌△ ACD 知,∠ B=∠ C .又∵ DE ⊥ AB 于点 E , DF ⊥AC 于点 F ,∴∠ BED=∠ CFD=90°,∴∠ BDE=∠ CDF .故④正确.4. C 解析:∵ AD 平分∠ CAB , AC ⊥ BC 于点 C ,DE ⊥ AB 于 E ,∴ CD=DE .又∵ AD=AD ,∴ Rt △ACD ≌ Rt △ AED ,∴ AC=AE . 又∵ AC=BC ,∴ AE=BC ,∴△ DBE 的周长为 DE+BD+EB=CD+BD+EB=BC+EB=AC+EB=AE+EB=AB= 2 .提示:设法将 DE+BD+EB 转成线段 AB .5. C二、 1.( 1) PF 角平分线上的点到角的两边的距离相同( 2)∠ AOB 的平分线上 到角的两边距离相等的点在角的平分线上2.解析:如图所示, AD 平分∠ CAB , DC ⊥ AC 于点 C , DM ⊥AB 于点 M .∴ CD=DM ,∴ DM=CD=BC-BD=8-5=3.答案: 3C提示:利用角的平分线的性质.D3. AD 平分∠ BAC .4.解析:∵ OM 平分∠ AOB ,∴∠ AOM=∠ BOM=AOB=20°.AMB2又∵ MA ⊥ OA 于 A , MB ⊥ OB 于 B ,∴MA=MB.∴Rt △OAM≌ Rt△ OBM,∴∠ AMO=∠ BMO=70°,∴△ AMN≌△ BMN,∴∠ ANM=∠ BNM=90°,∴∠ MAB=90° -70 ° =20°.答案: 20°三、 1.解析: BE=CF.∵AD平分∠ BAC, DE⊥ AB于点 E, DF⊥ AC于点 F,∴DE=DF.又∵ BD=DC,∴ Rt△ BDE≌Rt △ CDF,∴ BE=CF.提示:由角的平分线的性质可知DE=DF,从而为证△ BDE≌△ CDF提供了条件.2.解析: AM平分∠ DAB.理由:如答图13-9 所示,作 MN⊥ AD于点 N,∵ DM平分∠ CDA,MC ⊥ DC于点 C,MN⊥ AD于点 N,∴MC=MN.又∵ M是 BC的中点,∴ CM=MB,∴MN=BM,∴ AM平分∠ DAB.3.解析:可以.∵ PB⊥AB于点 B, PC⊥ AC于点 C,且 PB=PC,D CNM A B∴AP平分∠ BAC,∴∠ BAP=∠CAP.在 Rt△ ABP和 Rt△ ACP中,PB=PC , AP=AP,∴Rt △ABP≌ Rt△ ACP,∴ AB=AC.在△ ABD与△ ACD中,AB=AC ,∠ BAP=∠CAP, AD=AD,∴△ ABD≌△ ACD,∴∠ ADB=∠ ADC,∴∠ BDP=∠ CDP.探究应用拓展性训练1.如答图所示.解析:由题意可知,蓝方指挥部P 应在∠MBN的平分线上.又∵比例尺为1: 20000,∴ P 离 B 为 3. 5cm.提示:到角的两边距离相等的点在角的平分线上.2.( 1)解析:按题意画图,如答图13-11 .(2)可以得到 ED=FD, AE=AF, BE=CF,BD=CD.理由如下:∵ AB=AC,∠ 1=∠ 2, AD=AD,∴△ ABD≌△ ACD,∴ BD=DC.∵∠ 1=∠2, DE⊥AB 于点 E, DF⊥ AC于点 F,∴DE=DF.A1 2E F BD C又∵ AD=AD,∴Rt △AED≌ Rt△ AFD,∴ AE=AF,∴AB-AE=AC-AF,即 BE=CF.提示:正确地画出图形是解决问题的关键,另三角形全等来寻找相等的线段.3. C解析:如答图所示,连结AP.∵PR⊥AB于点 R, PS⊥ AC于点 S, PR=PS,∴ AP平分∠ BAC,∴∠ 1=∠2.又∵ AQ=QP,∴∠ 2=∠ 3,∴∠ 1=∠ 3,∴ PQ∥ AR.在 Rt △APR和 Rt△ APS中,外本题主要应用角的平分线的性质及BRP312PR=PS , AP=AP,A Q S C ∴Rt △APR≌ Rt△ APS,∴ AR=AS.而△ BRP与△ CSP不具备三角形全等的条件,故①②正确.提示:本题的突破口是判断出点P 在∠ BAC的平分线上.。
角平分线的性质定理和判定定理(含答案)

⾓平分线的性质定理和判定定理(含答案)⼏何专题2:⾓平分线的性质定理和判定定理⼀、知识点(抄⼀遍):1. ⾓平分线:把⼀个⾓平均分为两个相同的⾓的射线叫该⾓的平分线.2. ⾓平分线的性质定理:⾓平分线上的点,到这个⾓的两边的距离相等. 3. ⾓平分线的判定定理:⾓的内部到⾓的两边距离相等的点在⾓的平分线上. ⼆、专题检测题1. 证明⾓平分线的性质定理.(注意:证明⽂字性命题的三个步骤:①根据题意,画出图形;②写出已知和求证;③写出证明过程.) 2. 证明⾓平分线的判定定理. 3. 定理的⼏何语⾔表⽰(1)⾓平分线的性质定理:∵,∴ . (2)⾓平分线的判定定理:∵,∴ .4. 已知:如图所⽰,BN 、CP 分别是∠ABC 、∠ACB 的⾓平分线,BN 、CP 相交于O点,连接AO ,并延长交BC 于M 求证:AM 是∠BAC 的⾓平分线.5. 如图,已知BE ⊥AC ,CF ⊥AB ,点E ,F 为垂⾜,D 是BE 与CF 的交点,AD 平分∠BAC. 求证:BD=CD.B6. 如图,在Rt △ABC 中,∠C=90°,AC=BC. AD 是∠CAB 的平分线. 求证:AB=AC+CD.7. 如图,∠B=∠C=90°,M 是BC 的中点,DM 平分∠ADC ,求证:AM 平分∠DAB.8. 如图,已知P 是∠AOB 平分线上的⼀点.PC ⊥OA ,PD ⊥OB ,垂⾜分别是点C ,D ,CD 与OP 交于点M. 求证:(1)∠PCD=∠PDC ;(2)OP 是CD 的垂直平分线;(3)OC=OD.O⼏何专题2:⾓平分线的性质定理和判定定理答案1. 证明⾓平分线的性质定理.已知:如图,OC 平分∠AOB ,点P 在OC 上,PD ⊥OA 于点D ,PE ⊥OB 于点E求证: PD=PE证明:∵OC 平分∠ AOB∴∠1= ∠2∵PD ⊥ OA,PE ⊥ OB ∴∠PDO= ∠PEO 在△PDO 和△PEO 中∠PDO= ∠PEO ∠1= ∠2 OP=OP∴△PDO ≌△PEO(AAS) ∴PD=PE2.证明⾓平分线的判定定理.已知:如图,PD ⊥OA ,PE ⊥OB ,点D 、E 为垂⾜,PD =PE .求证:点P 在∠AOB 的平分线上证明: 经过点P 作射线OC ∵ PD ⊥OA ,PE ⊥OB∴∠PDO =∠PEO =90°在Rt △PDO 和Rt △PEO 中PO =PO PD=PE ∴ Rt △PDO ≌Rt △PEO (HL )∴∠ POD =∠POE ∴点P 在∠AOB 的平分线上.3. 定理的⼏何语⾔表⽰(1)⾓平分线的性质定理:∵ OP 平分∠AOB ,DP ⊥OA ,PE ⊥OB ,∴ DP=EP. (2)⾓平分线的判定定理:∵ PD⊥OA,PE⊥OB,PD =PE .∴ OP 平分∠AOB .OO4.已知:如图所⽰,BN、CP分别是∠ABC、∠ACB的⾓平分线,BN、CP相交于O 点,连接AO,并延长交BC于M求证:AM是∠BAC的⾓平分线.证明:作OE⊥AC,OG⊥AB,OF⊥BC,垂⾜分别为E、G、F.∵BN平分∠ABC,OG⊥AB,OF⊥BC,∴OG=OF.同理可证:OE=OF.∴OG=OE⼜∵OE⊥AC,OG⊥AB,∴AM是∠BAC的⾓平分线.5.如图,已知BE⊥AC,CF⊥AB,点E,F为垂⾜,D是BE与CF的交点,AD平分∠BAC.求证:BD=CD.证明:∵AD平分∠BAC,BE⊥AC,CF⊥AB,∴DF=DE.∵BE⊥AC,CF⊥AB,∴∠DFB=∠DEC=90°. 在△DFB和△DEC中,∠EDC=∠FDBDF=DE∠DFB=∠DEC∴△DFB≌△DEC(ASA)∴BD=CD.6.如图,在Rt△ABC中,∠C=90°,AC=BC. AD是∠CAB的平分线.求证:AB=AC+CD.证明:过点D作DE⊥AB,垂⾜为点E.∵AD平分∠CAB,∴∠CAD=∠BAD.∵DE⊥AB∴∠DEA=90°=∠C.在△CAD和△EAD中,∠CAD=∠BAD,∠DEA=∠C,AD=AD.∴△CAD≌△EAD(AAS).∴AC=AE,CD=DE.∵AC=BC,∴∠B=∠BAC=45°,∵∠DEB=90°,∴∠EDB=45°=∠B.∴DE=BE,∴CD=BE,∴AB=AE+BE=AC+CD.B7. 如图,∠B=∠C=90°,M 是BC 的中点,DM 平分∠ADC ,求证:AM 平分∠DAB.证明:过点M 作ME ⊥AD ,垂⾜为E ,∵DM 平分∠ADC ,∴∠1=∠2,∵MC ⊥CD ,ME ⊥AD ,∴ME=MC (⾓平分线上的点到⾓两边的距离相等),⼜∵MC=MB ,∴ME=MB ,∵MB ⊥AB ,ME ⊥AD ,∴AM 平分∠DAB (到⾓的两边距离相等的点在这个⾓的平分线上).8. 如图,已知P 是∠AOB 平分线上的⼀点.PC ⊥OA ,PD ⊥OB ,垂⾜分别是点C ,D ,CD 与OP 交于点M. 求证:(1)∠PCD=∠PDC ;(2)OP 是CD 的垂直平分线;(3)OC=OD.证明:(1)∵OP 平分∠AOB ,PC ⊥OA ,PD ⊥OB ,∴PC=PD ∴∠PCD=∠PDC. (2)∵OP 平分∠AOB ,∴∠COP=∠DOP. ∵PC ⊥OA ,PD ⊥OB ,∴∠PCO=∠PDO=90°,∴∠CPO=∠DPO. ∵PC=PD ,∴△CDP 是等腰三⾓形,∴PM 是等腰三⾓形底边上的中线和⾼线. 即OP 是CD 的垂直平分线. (3)由(2)知,∠CPO=∠DPO. ∴OP 平分∠CPD ,⼜∵CP ⊥OA ,DP 垂直OB ,∴OC=OD (⾓平分线的性质定理).O。
2022-2023学年八年级上数学:角平分线的性质(附答案解析)

2022-2023学年八年级上数学:角平分线的性质一.选择题(共5小题)1.如图,在△ABC中,∠C=90°,AP是角平分线,AB=5,CP=2,则△APB的面积为()A.5B.10C.20D.122.如图,在△ABC中,∠BAC=90°,高AD与角平分线BE相交于点F,∠DAC的平分线AG分别交BC、BE于点G、O,连接FG,下列结论:①∠ABD=∠DAC;②∠AFE =∠AEF;③AG⊥EF;④FG∥AC,其中所有正确结论的序号是()A.①②B.①③C.①②③D.①②③④3.如图,在△ABC中,∠B=90°,AD平分∠BAC,交BC于点D,BC=8cm,BD:CD =3:4,则点D到AC的距离为()cm.A.3B.4C.D.4.如图,AD是△ABC的角平分线,DE⊥AB于点E,S△ABC=9,DE=2,AB=5,则AC 的长是()A.2B.3C.4D.55.如图,Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于点D,AB=18,S△ABD=27,则CD的长为()A.4B.8C.3D.6二.填空题(共5小题)6.如图,地块△ABC中,边AB=40m,AC=30m,其中绿化带AD是该三角形地块的角平分线.若地块△ABD的面积为320m2,则地块△ACD的面积为m2.7.在平面直角坐标系中,点A(x,y)的坐标满足方程3x﹣y=4,当点A在第四象限,且到两条坐标轴的距离相等时,点A的坐标为.8.数学课上,老师要求同学们用一副三角板作一个钝角,并且作出它的角平分线.雯雯设计的作法如下:(1)先按照图1的方式摆放一副三角板,画出∠AOB;(2)在∠AOB处,再按照图2的方式摆放一副三角板,作出射线OC;(3)去掉三角板后得到的图形(如图3)为所求作.老师说雯雯的作法符合要求,是正确的.请你回答:(1)雯雯作的∠AOB的度数是;(2)射线OC是∠AOB的角平分线的依据是.9.如图,在△ABC中,∠C=90°,BD是△ABC的角平分线,已知AC=3,BC=4,AB =5,则CD的长为.10.如图,在△ABC中,∠C=90°,AD平分∠BAC交BC于点D,DE⊥AB,垂足为E,若BC=8,DE=3,则BD的长为.三.解答题(共5小题)11.如图①,在△ABC中,∠ABC和∠ACB的平分线交于点O,∠A=α.(1)如图①,若∠A=50°,求∠BOC的度数.(2)如图②,连接OA,求证:OA平分∠BAC.(3)如图③,若射线BO与∠ACB的外角平分线交于点P,求证OC⊥PC.12.如图,在△ABC中,AC=BC,∠C=90°,AD是△ABC的角平分线,DE⊥AB,垂足为E.(1)求证:CD=BE;(2)已知CD=2,求AC的长;(3)求证:AB=AC+CD.13.已知:如图,P是OC上一点,PD⊥OA于D,PE⊥OB于E,F、G分别是OA、OB 上的点,且PF=PG,DF=EG.求证:OC是∠AOB的平分线.14.如图,BD是△ABC的角平分线,DE⊥AB,垂足为E.△ABC的面积为70,AB=16,BC=12.求DE的长.15.已知在△ABC中,∠CAB的平分线AD与BC的垂直平分线DE交于点D,DM⊥AB于M,DN⊥AC交AC的延长线于N,你认为BM与CN之间有什么关系?试证明你的发现.2022-2023学年八年级上数学:角平分线的性质参考答案与试题解析一.选择题(共5小题)1.如图,在△ABC中,∠C=90°,AP是角平分线,AB=5,CP=2,则△APB的面积为()A.5B.10C.20D.12【分析】过P作PE⊥AB于E,根据角平分线的性质得到PE=PC,即可求出点P到边AB的距离;然后利用三角形的面积公式求解即可.【解答】解:如图,过P作PE⊥AB于E,∵∠C=90°,∴PC⊥AC.∵AP是角平分线,CP=2,∴PE=PC=2.∵AB=5,∴S△APB=AB•PE==5.故选:A.【点评】本题主要考查了角平分线的性质,熟记角平分线上的点角两边的距离相等是解决问题的关键.2.如图,在△ABC中,∠BAC=90°,高AD与角平分线BE相交于点F,∠DAC的平分线AG分别交BC、BE于点G、O,连接FG,下列结论:①∠ABD=∠DAC;②∠AFE=∠AEF;③AG⊥EF;④FG∥AC,其中所有正确结论的序号是()A.①②B.①③C.①②③D.①②③④【分析】利用等角的余角相等得到∠ABD=∠DAC,则可对①进行判断;同理可得∠BAD =∠C,根据三角形外角的性质得到∠AFE=∠ABF+∠BAF,∠AEF=∠C+∠EAC,则∠AFE=∠AEF,于是可对②进行判断;由AG平分∠DAC得到∠F AO=∠EAO,根据三角形内角和定理得到∠AFO+∠F AO=90°,即AO⊥EF,则可对③进行判断;证明F点为△ABG三条高的交点,则GF⊥AB,然后利用CA⊥BA得到FG∥AC,于是可对④进行判断.【解答】解:∵AD为高,∴∠ADB=90°,∵∠BAD+∠ABD=90°,∠BAD+∠DAC=90°,∴∠ABD=∠DAC,所以①正确;∵∠ABD+∠C=90°,∴∠BAD=∠C,∵∠AFE=∠ABF+∠BAF,∠AEF=∠C+∠EAC,∴∠AFE=∠AEF,所以②正确;∵AG平分∠DAC,∵∠F AO=∠EAO,∵∠AFE+∠AFE+∠F AE=180°,∴∠AFO+∠F AO=90°,∴AO⊥EF,所以③正确;∵BO⊥AG,AD⊥BG,∴F点为△ABG三条高的交点,∴GF⊥AB,而CA⊥BA,∴FG∥AC,所以④正确.故选:D.【点评】本题考查了角平分线的性质:角的平分线上的点到角的两边的距离相等.也考查了平行线的性质和等腰三角形的判定与性质.3.如图,在△ABC中,∠B=90°,AD平分∠BAC,交BC于点D,BC=8cm,BD:CD =3:4,则点D到AC的距离为()cm.A.3B.4C.D.【分析】由条件可先求得BD的长,再根据角平分线的性质可知D到AC的距离等于BD,可得到答案.【解答】解:∵BC=8cm,BD:CD=3:4,∴BD=(cm),∵AD平分∠BAC,∠B=90°,∴D到AC的距离等于BD,∴D点到线段AC的距离为cm,故选:D.【点评】本题主要考查角平分线的性质,掌握角平分线上的点到角两边的距离相等是解题的关键.4.如图,AD是△ABC的角平分线,DE⊥AB于点E,S△ABC=9,DE=2,AB=5,则AC 的长是()A.2B.3C.4D.5【分析】根据角平分线性质求出DF,根据三角形面积公式求出△ABD的面积,求出△ADC面积,即可求出答案.【解答】解:过D作DF⊥AC于F,∵AD是△ABC的角平分线,DE⊥AB,∴DE=DF=2,∵S△ADB=AB×DE=×5×2=5,∵△ABC的面积为9,∴△ADC的面积为9﹣5=4,∴AC×DF=4,∴AC×2=4,∴AC=4,故选:C.【点评】本题考查的是角平分线的性质,熟知角的平分线上的点到角的两边的距离相等是解答此题的关键.5.如图,Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于点D,AB=18,S△ABD=27,则CD的长为()A.4B.8C.3D.6【分析】过点D作DE⊥AB于E,根据角平分线上的点到角的两边距离相等可得DE=CD,然后利用△ABD的面积公式列式计算即可得解.【解答】解:如图,过点D作DE⊥AB于E,∵∠C=90°,AD平分∠BAC,∴DE=CD,∴S△ABD=AB•DE=×18•DE=27,解得:DE=3,∴CD=3.故选:C.【点评】该题主要考查了角平分线的性质、三角形的面积公式及其应用问题,解题的关键是作辅助线.二.填空题(共5小题)6.如图,地块△ABC中,边AB=40m,AC=30m,其中绿化带AD是该三角形地块的角平分线.若地块△ABD的面积为320m2,则地块△ACD的面积为240m2.【分析】过D分别作DE⊥AB于E,DF⊥AC于F,由平分线的性质证得DE=DF,由三角形的面积公式求出DF,再由三角形的面积公式即可求出△ACD的面积.【解答】解:过D分别作DE⊥AB于E,DF⊥AC于F,∵AD是∠BAC的平分线,∴DE=DF,∵AB=40m,△ABD的面积为320m2,∵DE=DF==16(m),∴△ACD的面积=AC•DF=×30×16=240(m2),故答案为:240.【点评】本题主要考查了角平分线的性质,三角形的面积公式,根据角平分线的性质证得DE=DF是解决问题的关键.7.在平面直角坐标系中,点A(x,y)的坐标满足方程3x﹣y=4,当点A在第四象限,且到两条坐标轴的距离相等时,点A的坐标为(1,﹣1).【分析】根据“当点A在第四象限,且到两条坐标轴的距离相等”可得x=﹣y,即﹣3y ﹣y=4,解得y的值,将其代入3x﹣y=4即可.【解答】解:∵点A(x,y)的坐标满足方程3x﹣y=4,点A在第四象限,且到两条坐标轴的距离相等,∴x=﹣y,∴﹣3y﹣y=4,解得:y=﹣1,代入3x﹣y=4中,得x=1,∴A(1,﹣1).故答案为:(1,﹣1).【点评】本题考查了一次函数图象与二元一次方程,熟练掌握一次函数图象与二元一次方程的有关知识是解题的关键.8.数学课上,老师要求同学们用一副三角板作一个钝角,并且作出它的角平分线.雯雯设计的作法如下:(1)先按照图1的方式摆放一副三角板,画出∠AOB;(2)在∠AOB处,再按照图2的方式摆放一副三角板,作出射线OC;(3)去掉三角板后得到的图形(如图3)为所求作.老师说雯雯的作法符合要求,是正确的.请你回答:(1)雯雯作的∠AOB的度数是150°;(2)射线OC是∠AOB的角平分线的依据是∠BOC=∠AOB.【分析】(1)利用三角板中的特殊角可计算出∠AOB的度数;(2)利用三角板中的特殊角可计算出∠BOC的度数,从而可得∠BOC=∠AOB,所以射线OC是∠AOB的平分线.【解答】解:(1)∠AOB=60°+90°=150°;故答案为:150°;(2)∠BOC=30°+45°=75°,所以∠BOC=∠AOB.故答案为:∠BOC=∠AOB.【点评】本题考查了基本作图,角平分线的定义和性质,正确理解题意是解题的关键.9.如图,在△ABC中,∠C=90°,BD是△ABC的角平分线,已知AC=3,BC=4,AB =5,则CD的长为.【分析】作DE⊥AB于E,根据角平分线的性质得到DE=DC,根据三角形的面积公式计算,得到答案.【解答】解:过点D作DE⊥AB于E,∵BD是△ABC的角平分线,∠C=90°,DE⊥AB,∴DE=DC,∵S△ACB=S△ABD+S△BCD,∴×3×4=×4×CD+×5×DE,解得:CD=,故答案为:.【点评】本题考查的是角平分线的性质、三角形的面积计算,掌握角的平分线上的点到角的两边的距离相等是解题的关键.10.如图,在△ABC中,∠C=90°,AD平分∠BAC交BC于点D,DE⊥AB,垂足为E,若BC=8,DE=3,则BD的长为5.【分析】根据角平分线的性质得出DC=DE=3,再代入BD=BC﹣DC求出即可.【解答】解:∵∠C=90°,AD平分∠BAC,DE⊥AB,DE=3,∴DC=DE=3,∵BC=8,∴BD=BC﹣DC=8﹣3=5,故答案为:5.【点评】本题考查了角平分线的性质,能熟记角平分线上的点到角两边的距离相等是解此题的关键.三.解答题(共5小题)11.如图①,在△ABC中,∠ABC和∠ACB的平分线交于点O,∠A=α.(1)如图①,若∠A=50°,求∠BOC的度数.(2)如图②,连接OA,求证:OA平分∠BAC.(3)如图③,若射线BO与∠ACB的外角平分线交于点P,求证OC⊥PC.【分析】(1)利用三角形的内角和先求出∠ABC与∠ACB的和,再根据角平分的定义求出∠OBC与∠OCB的和即可解答;(2)根据角平分线的性质定理,想到过点O作OD⊥BC,OE⊥AB,OF⊥AC,垂足分别为D,E,F,证出OE=OF即可解答;(3)根据角平分的定义求出∠OCP=90°即可解答.【解答】(1)解:∵∠A=50°,∴∠ABC+∠ACB=180°﹣∠A=130°,∵∠ABC和∠ACB的平分线交于点O,∴∠OBC=∠ABC,∠OCB=∠ACB,∴∠OBC+∠OCB=∠ABC+∠ACB=65°,∴∠BOC=180°﹣(∠OBC+∠OCB)=115°;(2)证明:过点O作OD⊥BC,OE⊥AB,OF⊥AC,垂足分别为D,E,F,∵∠ABC和∠ACB的平分线交于点O,OD⊥BC,OE⊥AB,OF⊥AC,∴OD=OE,OD=OF,∴OE=OF,∴OA平分∠BAC;(3)证明:∵OC平分∠ACB,CP平分∠ACD,∴∠ACO=∠ACB,∠ACP=∠ACD,∴∠OCP=∠ACO+∠ACP=∠ACB+∠ACD=∠BCD=×180°=90°,∴OC⊥CP.【点评】本题考查了角平分线的性质,熟练掌握角平分线的定义和角平分线的性质定理是解题的关键.12.如图,在△ABC中,AC=BC,∠C=90°,AD是△ABC的角平分线,DE⊥AB,垂足为E.(1)求证:CD=BE;(2)已知CD=2,求AC的长;(3)求证:AB=AC+CD.【分析】(1)先根据题意判断出△ABC是等腰直角三角形,故∠B=45°,再由DE⊥AB 可知△BDE是等腰直角三角形,故DE=BE,再根据角平分线的性质即可得出结论;(2)由(1)知,△BDE是等腰直角三角形,DE=BE=CD,再根据勾股定理求出BD 的长,进而可得出结论;(3)先根据HL定理得出Rt△ACD≌Rt△AED,故AE=AC,再由CD=BE可得出结论.【解答】(1)证明:∵在△ABC中,AC=BC,∠C=90°,∴△ABC是等腰直角三角形,∴∠B=45°,∵DE⊥AB,∴△BDE是等腰直角三角形,∴DE=BE.∵AD是△ABC的角平分线,∴CD=DE,∴CD=BE;(2)解:∵由(1)知,△BDE是等腰直角三角形,DE=BE=CD,∴DE=BE=CD=2,∴BD===2,∴AC=BC=CD+BD=2+2;(3)证明:∵AD是△ABC的角平分线,DE⊥AB,∴CD=DE.在Rt△ACD与Rt△AED中,∵,∴Rt△ACD≌Rt△AED,∴AE=AC.∵由(1)知CD=BE,∴AB=AE+BE=AC+CD.【点评】本题考查的是角平分线的性质,熟知角的平分线上的点到角的两边的距离相等是解答此题的关键.13.已知:如图,P是OC上一点,PD⊥OA于D,PE⊥OB于E,F、G分别是OA、OB 上的点,且PF=PG,DF=EG.求证:OC是∠AOB的平分线.【分析】利用“HL”证明Rt△PFD和Rt△PGE全等,根据全等三角形对应边相等可得PD=PE,再根据到角的两边距离相等的点在角的平分线上证明即可.【解答】证明:在Rt△PFD和Rt△PGE中,,∴Rt△PFD≌Rt△PGE(HL),∴PD=PE,∵P是OC上一点,PD⊥OA,PE⊥OB,∴OC是∠AOB的平分线.【点评】本题考查了角平分线上的点到角的两边距离相等的性质,全等三角形的判定与性质,熟记性质并求出全等三角形是解题的关键.14.如图,BD是△ABC的角平分线,DE⊥AB,垂足为E.△ABC的面积为70,AB=16,BC=12.求DE的长.【分析】过点D作DF⊥BC于F,根据角平分线上的点到角的两边距离相等可得DE=DF,再利用△ABC的面积列出方程求解即可.【解答】解:如图,过点D作DF⊥BC于F,∵BD是△ABC的角平分线,DE⊥AB,∴DE=DF,S△ABC=×16•DE+×12•DF=70,所以,14DE=70,解得DE=5.【点评】本题考查了角平分线上的点到角的两边距离相等的性质,熟记性质并利用三角形的面积列出方程是解题的关键.15.已知在△ABC中,∠CAB的平分线AD与BC的垂直平分线DE交于点D,DM⊥AB于M,DN⊥AC交AC的延长线于N,你认为BM与CN之间有什么关系?试证明你的发现.【分析】连接BD,CD,由角平分线的性质可得DM=DN,线段垂直平分线的性质可得BD=CD,所以Rt△BMD≌Rt△CND(HL),则BM=CN.【解答】解:BM=CN.理由:连接BD,CD,∵AD平分∠BAC,DM⊥AB,DN⊥AC,∴DM=DN,∵DE垂直平分BC,∴BD=CD,在Rt△BMD与Rt△CND中∵∴Rt△BDM≌Rt△CDN(HL),∴BM=CN.【点评】此题主要考查角平分线的性质和线段垂直平分线的性质以及全等三角形的判定和性质,难度中等,作辅助线很关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
T
Q P
N
M
O
E
D
C
B A
八年级数学:角平分线的性质及判定练习(含答案)
一、选择题
1.三角形中,到三边距离相等的点是( )
(A )三条高线交点. (B )三条中线交点. (C )三条角平分线交点. (D )三边垂直平分线交点.
2.如图,MP ⊥NP ,MQ 为△NMP 的角平分线,MT =MP ,连结TQ ,则下列结论不正确的是( ) (A )TQ =PQ . (B )∠MQT =∠MQP .(C )∠QTN =90o . (D )∠NQT =∠MQT .
(第2题) (第3题) (第4题)
3.如图,AB =AC ,AE =AD ,则①△ABD ≌△ACE ;②△BOE ≌△COD ;③O 在∠BAC 的平分线上,
以上结论( )
(A )都正确. (B )都不正确. (C )只有一个正确. (D )只有一个不正确. 4.已知:如图,△ABC 中,AB =AC ,BD 为∠ABC 的平分线,∠BDC =60o ,则∠A 的度数是( ) (A )10o . (B )20o . (C )30o . (D )40o . 5.如果一个三角形的一条角平分线恰好是对边上的高,那么这个三角形是( ) (A )直角三角形. (B )等腰三角形. (C )等边三角形. (D )等腰直角三角形. 6.如图,在△ABC 中,AD 平分∠BAC ,DE ⊥AB 于E ,DF ⊥AC 于F ,M 为AD 上任意一点,则下列结论错误的是( ) (A )DE =DF . (B )ME =MF . (C )AE =AF . (D )BD =DC .
7.已知:如图,BE 、CF 是△ABC 的角平分线,BE 、CF 相交于
D ,∠A =50o ,则∠BDC 的度数是( ) (第6题) (A )70o . (B )120o . (C )115o . (D )130o .
8.已知:如图,△ABC 中,∠C =90o ,点O 为△ABC 的三条角平分线的交点,OD ⊥BC ,OE ⊥AC ,
OF ⊥AB ,点D 、E 、F 分别是垂足,且AB =10cm ,BC =8cm ,CA =6cm ,则点O 到三边AB 、AC
D
C
B
A
M
F E
C
B A
F
E
O
D C A
B
B 1
C
B A 1
A
A
B C
D E
F
G 北
P
Q
C
B A
F
E D
C
B
A
和BC 的距离分别等于( )
(A )2cm 、2cm 、2cm . (B )3cm 、3cm 、3cm . (C )4cm 、4cm 、4cm . (D )2cm 、3cm 、5cm .
(第7题) (第
8题) 二、填空题 9.到一个角的两边距离相等的点在 .
10.一个三角形三边长为3,a ,7,若它的周长是4的倍数,则a = . 11.直角三角形中,两锐角的角平分线所成的锐角等于 .
12.如图,△APQ 为等边三角形,且∠B =∠BAP =∠QAC =∠C ,则∠BAC = .
(第12题) (第13题) (第14题)
13.如图,△ABC ≌△A 1B 1C 1,且∠A ∶∠ABC ∶∠ACB =1∶3∶5,则∠BCA 与∠B 1A 1C 的比等
于 .
14.如图,已知BD ⊥AE 于B ,DC ⊥AF 于C ,且DB =DC ,∠BAC =40o ,∠ADG =130o ,则∠DGF
= .
15.如图,在△ABC 中,∠C =90o ,AM 是∠CAB 的平分线,CM =20cm ,那么M 到AB 的距离
为 .
M C
B
A
F
E
D
B
A
M
D C
B
A
O
P
Q
C
B
A
(第15题) (第16题)
16.如图,要在河流的南边,公路的左侧M 处建一个工厂,位置选在到河流和公路的距离相等,
并且到河流与公路交叉A 点处的距离为1cm (指图上距离),则图中工厂的位置应在 ,理由是 . 三、解答题
17.如图,∠AOB 是直角,OP 平分∠AOB ,OQ 平分∠AOC ,∠POQ =70o ,求∠AOC 的度数.
18.如图,∠B =∠C =90o ,M 是BC 上一点,且∠AMD =90o ,DM 平分∠ADC ,求证:AM 平分∠
DAB .
19.如图,BD =CD ,BF ⊥AC ,CE ⊥AB .求证:D 在∠BAC 的角平分线上.
O
N
M
P
C
B
A A
B
C
D
E
P
F
E
C
B A
F
E D
C
B
A
20.如图,P 是△ABC 的外角∠EAC 的平分线AF 上的任意一点,求证:△ABC 的周长小于△PBC
的周长.
21.如图,在△ABC 中,∠B =∠C ,点D 是BC 的中点,DE ⊥AB ,DF ⊥AC ,E ,F 为垂足,求证:
D 在∠BAC 的角平分线上.
22.已知:如图,Rt △ABC 中,∠C =90o ,AC =BC ,AD 为∠BAC 的平分线,AE =BC ,DE ⊥AB 垂
足为E ,求证△DBE 的周长等于AB .
23.如图,已知PA ⊥ON 于A ,PB ⊥OM 于B ,且PA =PB .∠MON =50o ,∠OPC =30o ,求∠PCA 的
大小.
N
M
E
D
C B
A
A
B
C
D
F
N
P
M
24.如图,AE 平分∠BAC ,BD =DC ,DE ⊥BC ,EM ⊥AB ,EN ⊥AC .求证:BM =CN .
25.已知:如图,PA 、PC 分别是△ABC 外角∠MAC 与∠NCA 的平分线,它们交于P ,PD ⊥BM 于
M ,PF ⊥BN 于F .求证:BP 为∠MBN 的平分线.
参考答案
一、选择题
1.C 2.D 3.A 4.B 5.B 6.D 7.C 8.A 二、填空题
9.这个角的角平分线上 10.6 11.45o 12.120o 13.5:1 14.150o 15.20cm 16.∠BAC 的平分线上且距A 点1cm 处,角的平分线上的点到角两边的距离相等 三、解答题
17.50o . 18.∵∠B =∠C =90o ,∴∠ADC +∠DAB =180o ,又∵∠AMD =90o ,∴∠ADM +∠DAM
=90o,∠CDM+∠MAB=90o,∵∠CDM=∠ADM,∴∠DAM=∠MAB. 19.△BDE≌△CDF,DE=DF,即D在∠BAC的角平分线上. 20.在AE上截取AD=AC. 21.△BDE≌△CDF. 22.Rt △ADC≌Rt△ADE,周长=BE+ED+DB=BE+CD+DB=BE+BC=BE+AE=AB. 23.55o. 24.连结BE、CE,证△BME≌△CNE. 25.作PE⊥AC于。