平面向量的数乘运算
7.1.4平面向量的数乘

3a与a的方向相反 3a 3 a
一、向量的数乘运算的定义:
实数与向量a的积是一个确定的向量,记为 a,
其方向和长度规定如下: (1) a a ; (2) 当 0, a与a 的方向相同;当 0, a的方向与a的方向相反;当 0, a 0.
因为O分别为AC,BD的中点,所以 1 1 1 1 AO AC (a+b)= a+ b, 2 2 2 2 1 1 1 1 OD BD (b − a)= a+ b, 2 2 2 2
AO、 OD 可以用向量a,b线性表示.
运用知识
强化练习
计算: (1)3(a − 2 b) − 2(2 a+b); (2)3 a − 2(3 a − 4 b)+3(a − b).
例1:计算下列各式
(1)(3) 4a (2)3(a b ) 2(a b ) a
(3)(2a 3b c ) (3a 2b c )
ad????b试用ab表示向量解ac????abbd????b?a因为o分别为acbd的中点所以1122????????aoac1212abab1122????????odbd12?12b?aab1212ab和12?12ab都叫做向量ab的线性组合或者说aood????????可以用向量ab线性表示
向量的减法
一、定义(利用向量的加法定义)。 二、几何意义(起点相同,由减向量的终点 指向被减向量的终点)。
向量的数乘
一、①λ
a 的定义及运算律 b=λa 向量a与b共线
②向量共线定理 (a≠0)
二、定理的应用: 1. 证明 向量共线 2. 证明 三点共线: AB=λBC A,B,C三点共线
平面向量数乘的定义及运算法则

平面向量数乘的定义及运算法则一、平面向量数乘的定义a平面向量数乘是指将一个实数与一个向量相乘的运算。
给定一个向量,记实数为k,则该数乘运算表示为k。
二、数乘运算的几何意义a1.若k>0,则k的几何意义是将向量的长度放大k倍,并且与的方向相同。
a2.若k<0,则k的几何意义是将向量的长度放大|k|倍,并且与的方向相反。
a3.若k=0,则k的几何意义是零向量,即长度为零的向量。
三、数乘运算的性质a1.结合律:对于任意实数k1、k2和向量,有k1(k2)=(k1k2)。
a2.分配律:对于任意实数k和向量、**b**,有k(+**b**)=k+k**b**。
a3.分配律:对于任意实数k1、k2和向量,有(k1+k2)=k1+k2。
a4.数乘1的性质:对于任意向量,有1=。
a5.数乘0的性质:对于任意向量,有0=**0**。
四、实例分析现在我们通过一个实例来理解平面向量数乘的定义及运算法则。
例1:已知向量**a**=(2,3),计算3**a**和-2**a**。
解:根据定义,我们有:a-3=3(2,3)=(6,9)a--2=-2(2,3)=(-4,-6)a所以,3=(6,9),-2=(-4,-6)。
a根据几何意义,3的长度是向量长度的3倍,并且与方向相同;-2的长度是向量长度的2倍,并且与方向相反。
五、总结平面向量数乘的定义及运算法则为:-数乘运算是将一个实数与一个向量相乘的运算。
-数乘运算的几何意义是改变向量的长度和方向。
-数乘运算满足结合律、分配律,数乘1的性质和数乘0的性质。
-通过实例分析可以更好地理解平面向量数乘的概念和运算法则。
在向量的数乘运算中,需要注意实数与向量的顺序以及符号的正确性,以确保结果的准确性。
掌握平面向量数乘的定义及运算法则,能够在解决相关问题时得到正确的结果,并应用到更复杂的向量运算中。
平面向量的数乘运算

例1 .计算: ( 1 )(3 ) 4a; ( 2 )3 (a b) 2 (a b) a; ( 3 )( 2a 3b c) ( 3a 2b c) .
三.共线向量定理
定理:向量a(a≠0)与b共线,当且仅当有唯一
一个实数 λ,使b= λa
练习2.已知单位向量 e, 向量a=3 e, b=-4 e
当λ=0时, λ a = 0
练习1 点C在线段AB上,且
B
C
_
2
_7_A
B
AC CB
5 2
, 则A C
5 _7_ _A B,
二.数乘运算律
λ(μa) (λμ)a
(λ μ)a λa μa
λ (a b) λa λb
特别地, (λ)a (λa) λ(a)
λ(a b) λa λb
D
C
D
C
N
M
A
B
A
M
B
练习1:如图,在平行四边形ABCD中,点M是 AB中 点,点N在线段BD上,且有BN= 1 BD,
3
求证:M、N、C三点共线
2. 设 e1 , e2 , 是两个不共线的向量, 已知 AB = 2 e1 +k e2 , CB = e1 +3 e2 , CD = 2 e1-e2 , 若A, B, D 三点共线, 求 k 的值.
例 平行四边形ABCD的两条对角线相交于点,M
且A
B
a,A
D
b,试
用a,b表 示M
A、M B、M C、M D.
学习目标
1. 理解掌握向量数乘运算及其几何意义, 数乘运算律,并能熟练地运用定义和运算 律进行有关计算.
2. 理解、掌握向量共线定理, 会根据向 量共线定理判断两个向量是否共线及其 几何意义.
平面向量的乘法运算

平面向量的乘法运算平面向量的乘法运算是指对两个向量进行乘法操作,得到一个新的向量。
在平面向量的乘法运算中,有两种常见的运算法则,即点乘和叉乘。
1. 点乘点乘又称为数量积或内积,记作A·B,它的运算规则为:A·B = |A| |B| cosθ其中,A和B分别为两个向量,|A|和|B|分别为它们的模,θ为它们之间的夹角。
点乘的结果是一个标量(实数),而不是一个向量。
点乘运算的结果代表了两个向量之间的相似度。
当两个向量夹角为0度时,它们的点乘结果达到最大值,代表两个向量的方向完全一致;当两个向量夹角为180度时,它们的点乘结果达到最小值,代表两个向量方向相反;当夹角为90度时,它们的点乘结果为零,代表两个向量垂直。
2. 叉乘叉乘又称为向量积或外积,记作A×B,它的运算规则为:A×B = |A| |B| sinθ n其中,A和B分别为两个向量,|A|和|B|分别为它们的模,θ为它们之间的夹角,n为两个向量构成的平面的法向量。
叉乘的结果是一个新的向量,该向量垂直于原来的两个向量所在的平面。
新向量的模等于两个原向量的模的乘积再乘以它们之间夹角的正弦值。
叉乘的方向遵循右手定则,即右手握住由A向B的方向转过的角度,伸出的大拇指所指向的方向就是结果向量的方向。
通过点乘和叉乘的运算,我们可以进行向量的乘法运算,并得到一个新的向量。
这对于解决一些与平面几何相关的问题非常有用,比如计算面积、判断两条线段是否相交等。
此外,在物理学中,点乘和叉乘也有广泛的应用,比如力的计算和磁场的计算等。
总结:平面向量的乘法运算包括点乘和叉乘。
点乘得到的结果是一个标量,反映了两个向量之间的相似度;叉乘得到的结果是一个新的向量,垂直于原向量所在的平面。
通过向量的乘法运算,我们可以解决一些与平面几何相关的问题,并在物理学中应用于力的计算和磁场的计算等。
教案平面向量的数乘运算

平面向量的数乘运算教学目标:1. 理解平面向量的数乘运算概念。
2. 掌握平面向量的数乘运算规则。
3. 能够运用数乘运算解决实际问题。
教学内容:一、平面向量的数乘运算概念1. 引入实数与向量的乘积,即数乘运算。
2. 讲解数乘运算的定义及性质。
二、平面向量的数乘运算规则1. 讲解数乘运算的分配律。
2. 讲解数乘运算的结合律。
3. 讲解数乘运算的单位向量。
三、数乘运算在坐标系中的应用1. 讲解二维坐标系中向量的数乘运算。
2. 讲解三维坐标系中向量的数乘运算。
四、数乘运算与向量长度的关系1. 讲解数乘运算与向量长度的关系。
2. 讲解数乘运算在求向量长度中的应用。
五、数乘运算在向量运算中的应用1. 讲解数乘运算在向量加法中的应用。
2. 讲解数乘运算在向量减法中的应用。
教学方法:1. 采用讲授法,讲解数乘运算的概念、规则及应用。
2. 利用多媒体演示,直观展示数乘运算在坐标系中的应用。
3. 引导学生通过练习,巩固数乘运算的知识。
教学评估:1. 课堂练习:布置有关数乘运算的题目,检查学生掌握情况。
2. 课后作业:布置有关数乘运算的综合题目,要求学生在规定时间内完成。
3. 单元测试:进行有关数乘运算的测试,了解学生对知识的掌握程度。
教学资源:1. 教学PPT:展示数乘运算的概念、规则及应用。
2. 练习题库:提供丰富的数乘运算题目,供学生练习。
3. 坐标系软件:辅助展示数乘运算在坐标系中的应用。
教学建议:1. 在讲解数乘运算概念时,注意与实数的乘法进行对比,帮助学生理解。
2. 在讲解数乘运算规则时,举例说明,让学生更好地掌握。
3. 在数乘运算的应用部分,注重引导学生思考,提高解决问题的能力。
4. 针对不同程度的学生,合理安排课堂练习和课后作业,提高教学效果。
5. 及时进行教学评估,针对学生的薄弱环节进行有针对性的讲解和辅导。
平面向量的数乘运算教学内容:六、数乘运算与向量坐标的关系2. 举例说明数乘运算在坐标系中的应用。
7.2 数乘向量课件-2023届广东省高职高考数学第一轮复习第七章平面向量

不一定是直解) 【解】 因为 3xa+(10-y)b=(4y-7)a+2xb
所以(3x,10-y)=(4y-7,2x),联立方程组31x0=-4yy=-27x,解得yx==43. 故 x=3,y=4.
二、填 空 题
9.向量 a∥b 且|a|=3|b|,则向量 a、b 的关系式是__a_=__3_b_或__a_=__-__3_b___. 【解析】 由两向量平行知 a=3b 或 a=-3b.
10.若向量 a=e1+e2,b=e1-e2,则 2a+3b=__5_e_1_-__e_2 __. 【解析】 2a+3b=2(e1+e2)+3(e1-e2)=5e1-e2.
11.在四边形 ABCD 中,A→D=12B→C,则四边形 ABCD 是___梯___形. 【解析】 由A→D=12B→C得A→D∥B→C,A→D=12B→C.
12.如果 a=-2b(b≠0),则 a 与 b 的位置关系是_平__行__且__反__向___. 【解析】 由向量平行的概念可知 a 与 b 平行,又 λ=-2<0,∴a 与 b 反向.
6.(1)(-2)×12 a=__-__a__;(2)2(a+b)-3(a-b)=__-__a_+__5_b__. 【解析】 (1)(-2)×12a=(-2)×12a=(-1)a=-a;
(2)2(a+b)-3(a-b)=2a+2b-(3a-3b)=2a+2b-3a+3b=-a+5b.
一、选 择 题
5.已知向量 e1、e2 不共线,实数 x、y 满足(3x-4y)e1+(2x-3y)e2=6e1
+3e2,则 x-y=( A )
平面向量的加法减法与数乘运算课件

数乘的运算性 质
结合律
$\lambda(\mu\mathbf{a})=(\lambda\mu)\mathbf{a}$。
分配律
$\lambda(\mathbf{a}+\mathbf{b})=\lambda\mathbf{a}+\lambd a\mathbf{b}$。
反交换律
$\lambda\mathbf{a}\cdot\mathbf{b}=\lambda(\mathbf{a}\cdot \mathbf{b})$。
2023
PART 04
平面向量的加法减法与数 乘运算的应用
REPORTING
在物理学中的应用
力的合成
电磁学中的向量表示
在物理中,向量加法可以应用于力的 合成,例如两个力的向量和可以表示 为它们的加法运算。
在电磁学中,向量加法可以用于表示 电磁场中的向量,例如电场强度和磁 场强度。
速度和加速度
速度和加速度是物理学中重要的向量 概念,通过向量加法可以计算出物体 在不同方向上的速度和加速度。
详细描述
2. 这类题目需要学生灵活运用所学知识,进行深入思考 和细致计算。
2023
REPORTING
THANKS
感谢观看
求解向量与轴的夹角
通过数乘运算可以求得向量与 轴之间的夹角。
投影问题
通过数乘运算可以求得一个向 量在另一个向量上的投影。来自 2023PART 03
平面向量的加法减法与数 乘运算的几何意 义
REPORTING
平面向量的几何意 义
01
02
03
04
向量表示为有向线段
向量的起点为线段的起点,终 点为线段的终点
向量的长度和方向
平面向量数乘运算的坐标表示

平面向量数乘运算的坐标表示我很乐意帮你撰写这篇关于平面向量数乘运算的坐标表示的文章。
在文章中,我将从简单的概念和基本原理开始,逐步深入探讨这个主题,帮助你更好地理解这一数学运算的重要性和应用。
1. 什么是平面向量?在开始探讨平面向量数乘运算的坐标表示之前,让我们先来回顾一下什么是平面向量。
平面向量是具有大小和方向的量,通常用箭头表示在平面上。
平面向量通常表示为 (x, y),其中 x 和 y 分别代表向量在 x 轴和 y 轴上的分量。
2. 数乘运算的定义数乘运算是指一个向量与一个标量相乘的操作。
在数乘运算中,向量的大小会根据标量的大小进行缩放,方向保持不变。
数乘运算的结果是一个新的向量。
3. 坐标表示平面向量数乘运算的坐标表示非常重要。
通过坐标表示,我们可以清晰地看到向量与标量相乘后的变化。
假设有向量a = (a1, a2),标量k,那么a与k的数乘结果可以表示为ka = (ka1, ka2)。
4. 数乘运算的性质数乘运算具有一些重要的性质,比如分配律、结合律等。
这些性质对于理解和运用数乘运算非常重要。
5. 应用举例平面向量数乘运算的坐标表示在几何学、物理学等领域有着广泛的应用。
比如在物理学中,力的合成就常常会用到平面向量的数乘运算,通过坐标表示可以清晰地看到力的变化和合成结果。
总结和回顾通过本文的介绍,我希望你能够更好地理解平面向量数乘运算的坐标表示。
数乘运算是向量运算中的重要部分,通过坐标表示可以更直观地看到向量的变化,这对于理解和运用向量运算有着重要的意义。
个人观点和理解在我的个人看来,平面向量数乘运算的坐标表示是向量运算中的基础而重要的一部分。
通过数乘运算,我们可以更清晰地看到向量的变化和作用,这有助于我们在实际问题中更好地运用向量概念。
希望你也能对这一主题有深刻的理解和灵活的运用。
在知识文章格式的指导下,我将本文按照序号标注的格式进行撰写,以便更好地呈现文章内容。
文章总字数大于3000字,不用出现字数统计。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平面向量的数乘运算
知识点一:向量数乘运算:
⑴实数与向量的积是一个向量的运算叫做向量的数乘,记作.
①;
②当时,的方向与的方向相同;当时,的方向与的方向相反;当时,.
⑵运算律:①;②;③.
⑶坐标运算:设,则.
知识点二:向量共线定理:向量与共线,当且仅当有唯一一个实数,
使.
设,,其中,则当且仅当时,向量、共线.
知识点三:平面向量基本定理:如果、是同一平面内的两个不共线向
量,那么对于这一平面内的任意向量,有且只有一对实数、,使.(不
共线的向量、作为这一平面内所有向量的一组基底)
知识点四:分点坐标公式:设点是线段上的一点,、的坐标分别
是,,当时,点的坐标是.(当
知识点五:平面向量的数量积:
⑴.零向量与任一向量的数量积为.
⑵性质:设和都是非零向量,则①.②当与同向时,;当与反向时,;或.③.
⑶运算律:①;②;③.
⑷坐标运算:设两个非零向量,,则.
若,则,或.设,,则.
设、都是非零向量,,,是与的夹角,则.
数学 平面向量数量积的坐标表示同步达纲【同步达纲练习】
一、选择题.
1.下列各向量中,与=(3,2)垂直的向量是( )
A. =(3,-2)
B. =(2,3)
C. =(-4,6)
D. =(-3,2)
2.若=(2,3), =(-4,7),则在方向上的投影为( )
A. B. C. D.
3.已知向量=(3,-2), =(m+1,1-m),若⊥,则m的值为( )
A. B.- C.-1 D.1
4.已知向量||=5,且=(3,x-1),x∈N,与向量垂直的单位向量是(
)
A.(,-)
B.(-,)
C.(- ,)或(,-)
D.(
,-)或(-,)
5.若=(cosα,sinα), =(cosβ,sinβ),则( )
A. ⊥
B. ∥
C.( +)⊥(-)
D.(
+)∥(-)
6.已知=(1, ), =(+1, -1),则与的夹角为( )
A. B. C.
D.
7.以A(2,5),B(5,2),C(10,7)为顶点的三角形的形状是( )
A.等腰三角形
B.直角三角形
C.等腰直角三角
形 D.等腰三角形或直角三角形
8.已知=(-2,-1), =(λ,1).若与的夹角为钝角,则λ的取值范围
是( )
A.(- ,+∞)
B.(2,+∞)
C.(- ,
+∞) D.(-∞,- )
9.已知=(x1,y1),=(x2,y2),则在下列各结论中为·=0的充要条件的
是( )
①=或=或⊥ ②⊥ ③x1y1+x2y2=0 ④x1x2+y1y2=0
A.①③
B.②③
C.③④
D.①④
10.已知与的夹角的余弦为-,则,的坐标可以为( )
A.(4,3),(-12,5)
B.(3,4),(5,12)
C.(-3,
4),(5,-12) D.(-3,4),(-5,12)
二、填空题
1.已知=(4,3), =(-1,2),则与的夹角为 .
2.已知=(3,-5), =(-4,-2),则·= .
3.顺次连接A(3,-1),B(1,2),C(-1,1),D(3,-5)的四边形是 .
4.以原点和点A(5,2)为顶点作等腰直角三角形OAB,∠B=90°,则
向量为 .
5.已知向量=(1,2), =(x,1),分别求出当+2与2-平行和垂直时实数x
的值 .
6.已知=(2,1),=(-1,-1), =+k,=+,与的夹角是,则实数k的值
.
三、解答题
1.已知=(1,-2), =(4,3)
求(1) 2 (2) 2 (3) ·
(4)(3+2)·(-3) (5) 与的夹角
(6) 在上的投影
2.已知:点A(0,3),B(6,3),AD⊥OB,垂足为D,求点D的坐标.
3.已知A(-2,3),正方形OABC,求点C、点B的坐标.
【素质优化训练】
1.已知=(-1,0), =(1,1), =λ+μ(λ、μ∈R),若⊥,且||=2,试求λ、μ的值及向量c的坐标.
2.若=(cosα,sinα), =(cosβ,sinβ),用|k+|=|-k|(k∈R,k≠0),试用k表示·.
3.已知=(-3,-2), =(-4,k),若(5-)·(-3)=-55,求实数k的值.
4.求与向量=(,-1)和=(1, )的夹角相等,且模为的向量的坐标.
5.已知矩形ABCD的相对顶点A(0,-1),C(2,5),且顶点B到两坐标轴的距离相等,求顶点D的坐标.
【生活实际运用】
如图,四边形ABCD是正方形,P是对角线BD上的一点,PECF是矩形,用向量法证明
(1)PA=EF (2)PA⊥EF
证明:建立如图所示坐标系,设正方形边长为1,||=λ,则A(0,1),P(λ,λ),E(1,λ),F(λ,0)
∴=(-λ,1-λ), =(λ-1,- λ)
(1)||2=(-λ)2+(1-λ)2=λ2-λ+1
||2=( λ-1)2+(-λ)2=λ2-λ+1
∴||2=||2,故PA=EF
(2) ·=(-λ)( λ-1)+(1-λ)(- λ)=0
∴⊥ ∴PA⊥EF.
【知识探究学习】
已知A(0,a),B(0,b),(0<a<b),在x轴的正半轴上求点C,使
∠ACB最大,并求出最大值.
解,设C(x,0)(x>0)
则=(-x,a), =(-x,b)
则·=x2+ab.
cos∠ACB=
令t=x2+ab
故cos∠ACB=
当=即t=2ab时,cos∠ACB最大值为.
当C的坐标为(,0)时,∠ACB最大值为arccos.
【同步达纲练习】
一、1.C 2.C 3.B 4.D 5.C 6.A 7.B 8.A 9.D 10.C
二、1.arccos 2.-2 3.梯形 4.(-,)或(-,-)
5. ,或-2
6.
三、1.(1) 2=5 (2) 2=25 (3) ·=-2 (4)-121 (5)π-arccos
(6)-
2.D(2,1)
3.C(3,2)或(-3,-2),B(1,5)或(-5,1)
【素质优化训练】
1.λ=μ=2,C(0,2)或λ=μ=-2,C(0,-2)
2. ·=
3.k=-10或k=6
4. =(,)
5.D的坐标为(,),(,),(,),(,)。