地铁钢轨波磨调研及原因-对策分析
钢轨波浪形磨耗原因分析与对策

钢轨波浪形磨耗原因分析与对策随着铁路运输的发展,钢轨作为铁路运输的重要组成部分,也面临着越来越严峻的磨耗和波浪形变形问题。
这种问题不仅会降低铁路运输的安全性和舒适性,而且会增加运输成本。
因此,了解钢轨波浪形磨耗的原因,采取相应的对策对于保障铁路运输的安全和高效具有重要意义。
钢轨波浪形磨耗的原因主要包括以下几个方面。
1. 过度使用钢轨在使用过程中,受到列车重量和速度等各种因素的影响,会逐渐发生磨损和形变,特别是在弯道部分,更容易发生波浪形磨耗。
如果钢轨过度使用,超过合理的使用寿命,也会加速磨损和形变,导致波浪形磨耗的出现。
2. 不良维护钢轨在使用过程中需要经常进行检修和维护,例如磨削、打磨和换新等,以保持钢轨的平整度和强度。
如果维护不良,没有及时发现和处理钢轨的磨损和形变,就会导致波浪形磨耗的出现。
3. 钢轨质量问题钢轨的质量直接影响着其使用寿命和抗折性能等关键指标。
如果钢轨质量存在问题,例如材料强度不足、表面硬度低下等,就会在使用过程中容易产生波浪形磨耗。
4. 温度变化钢轨在使用过程中,经常面临着较大的温度变化,例如昼夜温差、日间阳光和夜晚露水等。
这种温度变化会导致钢轨的热胀冷缩,从而使得其发生形变和波浪形磨耗。
针对以上问题,可以采取以下对策来减缓或避免钢轨波浪形磨耗的发生。
1. 增强钢轨维护对于钢轨的维护是防止波浪形磨耗的关键措施之一。
各铁路部门需要加强对钢轨的检查和维护,及时发现和处理钢轨的磨损和形变,保证其平整度和强度。
2. 优化钢轨材料合理选择高强度、高硬度和抗震性能良好的钢材,以降低钢轨的磨损和形变,避免波浪形磨耗的出现。
3. 加强造枕工艺造枕对铁路运输的影响不容忽视。
通过加强造枕工艺,使得钢轨与枕木更加紧密地结合在一起,以降低钢轨的翘曲和波浪形变形。
4. 提高铁路建设标准提高铁路建设标准,加强基础设施的建设和维护,例如弯道的设计和修建,以及保温、防潮等防护措施的加固,以减少磨损和形变,避免波浪形磨耗的出现。
钢轨波浪形磨耗原因分析与对策

钢轨波浪形磨耗原因分析与对策钢轨是铁路运输中的重要组成部分,其安全性和稳定性直接影响着铁路运输的质量和效益。
随着铁路运输的日益发展和使用量的增加,钢轨的波浪形磨耗问题日益突出,严重影响了铁路的运行安全和舒适度。
为了解决这一问题,需要对钢轨波浪形磨耗的原因进行深入分析,并提出相应的对策。
钢轨波浪形磨耗主要原因分析:1. 过度负荷运输导致的压力过大。
铁路运输中,由于货物过度装载或列车速度过快,钢轨受到巨大的压力,容易发生波浪形磨耗现象。
对策:加强货物负载管理,合理控制列车速度,保证货物运输符合标准,减少钢轨受压力过大的情况。
2. 铁路线路线形设计不合理。
铁路线路的设计不合理、弧线半径太小、坡度太陡等因素都会对钢轨产生不良影响,导致波浪形磨耗。
对策:对已建成的铁路线进行改造,优化线形设计,适度提高弧线半径,减小坡度,减少对钢轨的不良影响。
3. 钢轨材质和质量不合格。
钢轨的材质和质量直接影响其使用寿命,不合格的材质和质量会导致钢轨易受损和波浪形磨耗。
对策:加强钢轨质量监管,对生产厂家进行严格把关和审核,确保钢轨的材质和质量符合标准。
4. 钢轨铺设不平整。
钢轨铺设时,如果无法保持平整,就会导致轨肩和轨底出现不同程度的磨损,产生波浪形磨耗。
对策:加强钢轨铺设质量监督,确保铺设平整,并进行定期维修和检查,及时修复磨损的轨肩和轨底。
5. 钢轨使用过程中缺乏适当的维护和保养。
铁路运输中,对钢轨维护保养的重视程度不够,没有及时检查和修复损坏的钢轨,导致波浪形磨耗日渐加剧。
对策:加强对钢轨的日常检查和维护工作,及时发现和修复磨损、破损的钢轨,延长钢轨的使用寿命。
钢轨波浪形磨耗问题的产生原因是多方面的,需要从货物负载、线形设计、材质质量、铺设质量和维护保养等方面进行综合管理和解决。
只有通过加强管理,改善设计和提高维护水平,才能有效预防和减少钢轨波浪形磨耗问题,保障铁路运输的安全和舒适度。
钢轨波浪形磨耗原因分析与对策

钢轨波浪形磨耗原因分析与对策
钢轨波浪形磨耗是指钢轨表面出现波浪状变形,常见于中长期使用的铁路线路上。
这种磨耗会使铁路运输产生额外的噪音和不平稳的运行,严重时还会影响列车的安全运行。
对钢轨波浪形磨耗进行原因分析并采取相应的对策,是铁路维护和管理的重要任务之一。
1.工程设计不合理:铁路工程设计时,一些因素的考虑不充分,比如线路设计的曲线半径过小、纵向坡度过大等,会导致列车在运行过程中产生额外压力和震动,从而导致钢轨波浪形磨耗的发生。
2.列车过重:铁路列车的负载量过大,超过了钢轨的承载能力,导致钢轨发生弯曲变形,进而形成波浪形磨耗。
3.运行速度过快:列车在高速运行过程中,会产生强烈的振动和冲击力,加剧了钢轨的磨损和变形程度。
4.轨道维护不及时:如果铁路维护不到位,例如未及时清理铁路上的杂草、砂石等杂物,或者对已经出现的钢轨波浪形磨耗没有进行及时的维修和处理,都会加速钢轨波浪形磨耗的发生。
5.材质和质量问题:钢轨本身的材料和质量也是导致波浪形磨耗的重要原因之一。
如果使用的钢轨材料质量不合格、硬度不足或者存在表面缺陷等问题,都会加速钢轨的磨损和变形。
5.优化材质和质量:加强对钢轨材料的质量检验,确保使用的钢轨材料质量符合标准要求,同时选用合适的材质和硬度,以提高钢轨的抗磨耗能力和承载能力。
钢轨波浪形磨耗的原因较为复杂,涉及工程设计、列车负载、运行速度、维护管理以及材质和质量等多个方面。
对钢轨波浪形磨耗的对策也需要从各个方面综合施策,通过优化设计、控制负载、控制运行速度、加强维护和管理以及优化材质和质量等措施,减少钢轨波浪形磨耗的发生,提高铁路运输的安全性和效能。
地铁钢轨波磨的特征及治理措施

地铁钢轨波磨的特征及治理措施摘要:钢轨波磨就是指轨道在纵轴方向上因摩擦产生的一种波纹状耗损现象,且伴有不同的波长和振动频率。
这种波磨现象会让车辆在经过时发出噪音、发生明显的摇晃,降低人们的乘坐舒适程度,缩短车辆及其结构部件的使用寿命,从而增加了其运行的危险程度,因此对于钢轨波磨要及时采取防范和控制措施,不能任波磨现象持续发展。
本文通过对地铁钢轨波磨的特征进行研究,提出控制钢轨波磨的治理措施。
关键词:地铁轨道;钢轨波磨;磨损治理钢轨波磨是一种非常繁杂的,因车辆行驶时车轮转动接触轨道产生的物理现象。
这种现象在公路、汽车轮胎、火车轨道等具有反复滚动接触情况的位置时常发生。
而波磨现象的存在对人们的出行造成了严重困扰,所以人们对这一问题的解决进度逐渐提高了关注程度。
很多相关专业人员也加大了对波磨治理措施的研究力度,以便减少新的轨道产生波磨现象,同时控制现存轨道波磨状况的继续发展。
1.地铁钢轨波磨的特征虽然如今地铁轨道在世界各个地区均有设置,其构造多种多样,行驶的地铁车型、路线也存在差异,但是所形成的钢轨波磨在经过专业人员研究后发现,其仍具备了时间集中性、曲线、车辆和轨道结构相关性等共有特征。
1.1时间集中性钢轨波磨的严重情况多发生在新线开通和线路改建的前期。
如美国某地区的轨道电车是在1889年开始运行,但在六年后,轨道就开始产生很大的波磨现象;甚至有些地区的轨道仅仅运行六个月就出现了钢轨波磨;对于西班牙和巴黎的地铁,都在曲线轨道上发现了钢轨波磨,有些地区在投入了弹性车轮后也在短时间内出现了曲线波磨;即使是在对轨道改造过路线后的地区,仍避免不了波磨现象的发生;北京、南京等地大都也在地铁运行后的1~6个月内发生了轨道波磨情况。
1.2曲线相关性研究结果显示,钢轨波磨在半径较小的曲线轨道上最为常见,在半径较大的曲线和直线轨道上偶尔发现。
比如:中国、法国、德国、美国等大部分地区的钢轨波磨线路均是以弧形为主的。
通常,曲线上的波磨在低位置的轨道处较为明显,但一般来说,低位置轨道处的波磨较短,高位置的轨道处波磨较长。
钢轨波磨研及整治措施研究分析

钢轨波磨研及整治措施研究分析摘要:钢轨波浪形磨耗(简称钢轨波磨)是钢轨磨耗的主要形式之一。
随着铁路、高铁、地铁的迅速发展,钢轨波磨成为了铁路行业关注的重要轨道病害之一。
钢轨波磨不仅影响了行车舒适性,增加了维修工作量,更是行车的一大安全隐患。
本文结合轨道的结构及各地区轨道波磨形成特点分析轨道波磨的形成原因,及探讨轨道波磨的整治措施。
关键词:钢轨;波磨;整治措施一、波磨研究现状钢轨波磨是铁路工业界难以解决的技术问题。
从1863年第一条地铁建成至今已有一百五十多年的历史,人们对钢轨波磨的观察和研究也有一百余年。
虽然人们通过受力分析、波磨规律分析及数值计算推理对钢轨波磨初始形成和发展机理的有了很深的认知,但迄今为止还没有一种大范围统一的理论来解释波磨形成和发展的机理,以及影响波磨发展的因素。
近年来,列车速度、轴重、车流密度随着人类发展也在迅速提高,同时钢轨波磨带来的安全问题及成本问题也愈发明显。
我国随着高铁、地铁近几年的飞速发展,也掀起了对钢轨波磨研究的浪潮。
二、波磨形成特点分析经过近年来大量的调查研究,可以总结钢轨波磨有以下特点:1、钢轨波磨多发生在小半径曲线地段。
曲线半径在600m以下的曲线均存在不同程度的波磨,且曲线半径越小,波磨越严重。
因线路曲线段由两个曲率和超高不断变化的缓和曲线、一个曲率及超高均固定的圆曲线组成,当车辆从直线地段进入小半径曲线轨道的时候,会受到各种因素的影响,主要有轨道结构参数、轮轨几何型面和转向架结构等。
其中,轨道结构参数主要有外轨超高、曲线半径、缓和曲线长度和轨底坡等。
如果这些曲线参数设置不当或现场调试不当,将直接导致轮轨接触关系不稳定,这将是产生轮轨波磨的因素之一。
2、小半径曲线多出现在下股钢轨,且上股钢轨侧磨严重的地段,下股钢轨波磨越严重。
经试验研究,在曲线中,下股钢轨的磨耗指数要大于上股钢轨,这表明下股钢轨因磨耗而消耗的能量消耗要大于上股钢轨,所以在曲线上下股钢轨的波形磨耗要比上股钢轨严重。
钢轨波浪形磨耗原因分析与对策

钢轨波浪形磨耗原因分析与对策钢轨的波浪形磨耗是指钢轨表面出现一定幅度的波浪状磨损,使得轨道的平稳度下降,对列车运行安全带来隐患。
钢轨波浪形磨耗的原因有以下几个方面:1. 过分紧固螺栓:过分紧固螺栓会导致轨道固定不稳固,使得车轮与轨道接触面产生大的摩擦力,从而加剧钢轨的磨耗。
2. 弯曲压力过大:在铁路弯道处,列车的运行会产生向外的弯曲压力,如果弯道半径过小或者列车速度过快,会导致钢轨的磨耗增加。
3. 温度变化:钢轨在温度变化时会发生热胀冷缩,如果温度变化过大,会导致钢轨的波浪形磨耗。
4. 粒子污染:钢轨表面的粒子污染会增加车轮与轨道的摩擦力,加剧钢轨的磨损。
针对钢轨波浪形磨耗问题,可以采取以下对策:1. 加强钢轨的维护保养,定期对钢轨进行检查和维修,保障钢轨的平整度和固定度。
2. 合理调整螺栓紧固力,避免过分紧固造成钢轨的磨耗。
在紧固螺栓时,需要根据具体情况进行合理调整,保证螺栓的紧固力适中。
3. 加强对铁路弯道的设计和改造,合理选择弯道半径和提高线路速度限制,减少钢轨的磨耗。
4. 提高钢轨的耐磨性能,采用抗磨材料或者涂层技术,增加钢轨的耐磨性。
5. 加强钢轨的清洁工作,定期清理钢轨表面的粒子污染物,减少摩擦力,降低钢轨的磨损。
6. 配备合适的列车调度和运行管理系统,合理安排列车的运行速度和间隔,减少弯道运行带来的钢轨磨损。
钢轨波浪形磨耗问题是由多种原因导致的,需要采取一系列的对策来解决。
通过加强钢轨的维护保养、合理调整螺栓紧固力、改善铁路弯道设计、提高钢轨耐磨性能、清洁钢轨表面和合理安排列车运行等措施,可以有效降低钢轨的波浪形磨耗问题,提升铁路运行的平稳度和安全性。
钢轨波浪形磨耗原因分析与对策
钢轨波浪形磨耗原因分析与对策近年来,随着铁路运输的不断发展,越来越多的列车在铁路上行驶,因此,钢轨的质量问题越来越受到关注。
在这些钢轨中,有些钢轨会因为不同原因而出现波浪形磨耗,严重影响了列车的运行安全和运输效率。
因此,研究钢轨波浪形磨耗原因并提出有效对策,对保障铁路运输安全和提高交通运输效率具有重要意义。
1. 钢轨压弯应力大钢轨的压弯应力是指在列车行驶过程中,由于车轮和钢轨之间的接触而产生的应力。
如果钢轨的强度不足,接受强的压力后容易产生隆起,从而产生波浪形磨耗。
2. 轨床垫磨损严重轨床垫是指铁路运营时用于支撑轨枕的垫子,为保证铁路的正常运行,轨床垫需要经常更换。
如果轨床垫磨损严重,就会导致钢轨的支撑能力变弱,从而在列车行驶过程中产生波浪形磨耗。
3. 列车速度过快当列车在高速行驶过程中,车轮和钢轨之间的压力会更大,并且钢轨氧化速度快,这是波浪形磨耗的主因之一。
4. 钢轨制造材料不符合要求如果钢轨制造材料不符合要求,就会导致钢轨的质量变得很差,从而出现波浪形磨耗。
1. 加强钢轨维护钢轨作为铁路的重要构成部分,维护必不可少。
经常对钢轨进行巡视,及时发现和处理钢轨问题,减少钢轨波浪形磨耗。
轨床垫作为钢轨的重要支撑,需要经常更换。
定期更换轨床垫,并按照国家标准定期检测是否符合要求。
3. 加强列车管理4. 选用优质钢材比较好的钢材质量可有效保证钢轨的质量,避免钢轨出现波浪形磨耗。
因此,应该选择优质钢材制造钢轨。
综上所述,钢轨波浪形磨耗的原因和对策是多方面的。
只有在对钢轨质量、列车运输和轨道设施加强管理的基础上,才能更好地减少波浪形磨耗的发生,保障铁路运输安全和提高交通运输效率。
钢轨波浪形磨耗原因分析与对策
钢轨波浪形磨耗原因分析与对策钢轨是铁路运输中的重要组成部分,起到支撑和引导车轮的作用。
长期以来,由于列车的高速运行和巨大的荷载作用,钢轨容易出现波浪形磨耗问题,这不仅会对铁路运输安全造成威胁,也会使铁路设备的维护成本增加。
分析钢轨波浪形磨耗的原因,并提出相应的对策,对于铁路运输的安全稳定具有重要意义。
钢轨波浪形磨耗的原因可以分为内部原因和外部原因两个方面。
内部原因主要包括钢轨本身的质量问题和设计问题。
钢轨的材质如果不合适,即硬度过低或过高,容易引发波浪形磨耗问题。
钢轨的冷却和淬火工艺如果不恰当,也会导致钢轨的质量不稳定,进而影响其耐磨性能。
对于新铺设的钢轨来说,如果设计不合理,比如弯道半径太小、坡度过陡等,也容易引发波浪形磨耗问题。
外部原因主要包括列车运行的振动和荷载的影响。
列车在高速运行过程中,会产生较大的振动,从而使钢轨产生相应的变形和形变,进而引发波浪形磨耗。
由于车轮与钢轨之间的接触负载较大,会导致钢轨表面的磨损加剧,进而加速波浪形磨耗的生成。
气温、湿度等气候因素也会对钢轨的波浪形磨耗产生一定的影响。
针对以上的原因,可以采取一些对策来减少钢轨的波浪形磨耗。
对于钢轨本身来说,可以通过提高材质的硬度和耐磨性能,选择合适的工艺进行冷却和淬火,以及合理设计铺设的位置和坡度等,来改善钢轨的质量和性能。
在列车运行方面,可以通过减小车轮与钢轨之间的接触载荷,降低列车的运行速度和振动,来减少对钢轨的磨损。
在气候因素方面,可以通过加强钢轨的防腐蚀处理,以及提高钢轨的抗气候变化能力,来延长钢轨的使用寿命。
地铁小半径曲线钢轨磨耗分析及整治措施
地铁小半径曲线钢轨磨耗分析及整治措施摘要:本文结合研究背景及意义,对小半径曲线钢轨磨耗类型进行分析,提出了一些避免发生小半径曲线钢轨磨耗的若干建议供大家参考。
关键词:地铁小半径曲线;钢轨磨耗分析;整治措施在当今社会城市快速发展背下下,汽车也越来越多。
城市中出现了大量的交通堵塞现象,这对城市居民出行生活及城市经济发展带来了很大的冲击和影响。
为了解决目前我国大、中、小规模的交通问题,很多大城市都在大力发展轨道交通网,并对其进行了深入研究。
在整个地铁钢轨中,最易遭受磨耗破坏的是小半径曲线,列车通过其曲线钢轨时,列车通过其自身的巨大惯性作用,将对其形成强烈的撞击,从而导致钢轨变形,引起钢轨横向磨耗和波磨,如果不采取有效的处理方法。
一、研究背景及意义地铁项目以地下为主体,采用了隧道的构造方式,在运行的时候可以搭载更多的乘客,并且因为钢轨的特殊性,它在运行的时候具有很高的正确性,不会造成车流拥堵的情况。
目前,国内很多大城市都在大力发展着,把轨道交通的规划和建设与原来的地面公交系统相结合起来,可以让城市公交变得更为便捷,进而对城市的经济发展起到了积极的推动效果。
在城市轨道地铁建筑施工中,街道、居民楼等诸多原有建筑均会对工程产生不同程度影响,因此,在轨道布设上缺失不了精心的规划设计,无法实现如同地面铁路般的工程设计那样应用到大范围的轨道半径曲线,而是会出现大量的小半径的曲线。
除此之外,在进行地铁钢轨的设计和施工时,还必须要注意与其它的地面公共交通的有效对接,这对钢轨的设计也会产生一定的影响。
因此,在实际规范建设中,钢轨的设计要比地面的常规钢轨要大很多,而且,根据列车行驶的作用,在地铁项目的小半径曲线部位,更易产生强烈的摩擦,从而造成钢轨的损坏。
钢轨是牵引列车运行的主体,它不可避免地要承受着从车轮上传来的载荷,这就导致了车轮与钢轨之间的摩擦力,在这种持续的摩擦力下,钢轨表面会出现一些磨损。
二、小半径曲线钢轨磨耗类型分析(一)小半径曲线钢轨侧磨问题分析对于小半径曲线钢轨而言,最为常见的磨损问题则是侧磨问题,其产生原因是由于钢轨本身的原因。
城市轨道交通钢轨波磨成因分析及整治
城市轨道交通钢轨波磨成因分析及整治摘要:城市轨道交通为大众出行构建良好环境,对当前城市轨道交通进行分析,钢轨波磨现象较为普遍,不仅影响轨道零部件使用期限,更威胁大众出行安全与舒适性。
因此,本文对钢轨波磨成因进行分析,希望能够解决这一难题。
关键词:轨道交通;钢轨波磨;成因分析;整治措施随着经济发展,城市轨道交通不断完善,但是,交通拥堵、交通安全变得更为严重,为解决城市交通问题,打造便捷交通环境。
对当前的城市轨道交通进行分析,轨道交通体系较为完善,但是,在轨道交通车辆运行过程中,伴随着运行速度的提升,轮轨之间的相互作用更为限制,导致车辆轮轨磨损严重,甚至导致失效问题,所以,在轨道交通发展过程中,应充分重视这一问题,并对钢轨波磨成因进行分析,希望能够降低钢轨波磨带来的不良影响。
1.城市轨道交通钢轨波磨研究意义对钢轨波磨进行分析,钢轨波磨在轨道交通中具有重要连接作用,可以将车辆与轨道部分结合到一起,是轨道交通列车重要组成部分,对列车的牵引、运行、制动与传递工作具有重要作用。
但是,自城市轨道交通诞生、完善以来,并没有哪一种材料,能够完全解决列车运行所产生的轮轨损伤、噪音与脱轨问题。
这一问题如得不到解决,不仅会影响列车的使用寿命,更不利于列车运营与维护,甚至会影响列车运行安全性。
所以,近些年,针对列车运行产生的钢轨波磨问题进行不断研究,只有找到解决方式,才能延缓甚至去除钢轨波磨问题,从而降低城市轨道交通的维护费用,提高轨道列车运行安全,为大众出现提供保障。
1.不同类型的城市轨道钢轨波磨随着城市轨道钢轨波磨成因[1]问题得到重视,不同学者分别对钢轨波磨的特征、类型以及产生因素进行分析,并针对不同因素对钢轨波磨进行分类。
但是,这些分类是否完全正确,依旧需要时间的不断检验。
就钢轨波磨产生的原因进行研究,主要源于损伤机理,简单来说,列车钢轨纵向不平顺机理下轨道出现共振问题,如果列车运行达到一定速度后,此种机理确定波会延长,受到摩擦力、材料塑性等因素影响,出现磨损问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
地铁钢轨波磨调研及原因\对策分析摘要:通过对发生波磨现象的北京地铁线路进行现场调查,总结出北京地铁钢轨波磨的主要特征。
分析钢轨波磨产生的原因,发现轨道刚度、阻尼、自振频率、线路平顺性、钢轨硬度及地铁的线路和运营特征是钢轨波磨的敏感因素。
针对新建和既有地铁线路,分别提出预防和解决钢轨波磨的对策。
关键词:钢轨;波磨;调研;原因;对策钢轨投入运行后在表面形成一定规则的周期不平顺现象,就是常见的波浪形磨损,简称波磨(Corrugation)。
到20世纪70年代,由于高速重载列车的大量运用,钢轨波磨现象日益严重,由此引发了各国学者对钢轨波磨起因研究的浪潮,形成了许多有价值的波磨形成假说和分析模型[1]。
但至今未形成一个统一有效的理论模型来解释波磨初始形成和发展的机理以及波磨形成的关键因素[2]。
国内外的大量学者多从不同角度对铁路客运线路和重载货运线路钢轨波磨进行了深入的研究,并从多角度给出了预防和治理钢轨波磨的措施。
然而,随着近十年来城市轨道交通在我国的飞速发展,钢轨波磨在地铁运营中产生的负面影响也日益凸显。
例如在北京地铁已通车的4、5、10号线上,局部减振轨道通车不到一年便发生了钢轨波磨,严重的地段钢轨打磨后波磨重现时间仅2~4个月。
这种出现时间早、复发周期短、打磨后反复发生的波磨现象被称为钢轨异常波磨现象。
地铁钢轨波磨不仅引起了强烈的振动和噪声,增加了养护维修费用,还影响到行车安全,因此有必要对波磨的状况及影响因素进行调研分析,为综合治理钢轨波磨问题提供对策。
1 北京地铁钢轨波磨的现状调查通过北京地铁近几年通车的几条线路的现场调研和运营单位提供的打磨记录情况,得到钢轨波磨的特征如下:1.1 钢轨波磨出现时间早,个别线路开通运营仅1个月便在梯形轨枕地段发现了钢轨波磨现象。
1.2 钢轨波磨情况严重:调查发现,异常波磨地段最大矢度达到0.5mm,波长20mm~ 200mm。
1.3 异常波磨地段振动及振动诱发噪声增加显著:现场实测表明,在异常波磨地段,由波磨引起的环境噪声增大约15dB(A)。
1.4 除钢弹簧浮置板道床外, 其余各种轨道结构上均发现了钢轨异常波磨现象,其中以剪切型减振器减振地段最为严重。
(1)采用减振器轨道结构的地段,50%以上的地段,不论直线、曲线均出现了连续的波长35~ 50m的波磨现象(见图1),钢轨打磨后2个月波磨现象又会再次出现。
减振器波磨地段钢轨打磨深度为1.5-2.5mm,最大打磨深度3.4mm。
图1 剪切型轨道减振器钢轨波磨图2 梯形轨枕道床钢轨波磨弹性短枕式道床地段的波磨主要出现在R=350m小半径曲线头尾及小半径反向曲线区段,前者打磨后8个月检查无重现,后者打磨周期约为6个月。
铺设梯形轨枕的地段主要在小半径曲线出现波磨(见图3),其中平安里~新街口段是半径R=350m小半径曲线与16‰坡道叠加地段,异常波磨较为严重,重现期约2个月。
钢弹簧浮置板轨道状态良好,仅发现一处2米范围内的波磨,该处经查为轨道原始不平顺点。
非减振轨道局部也出现波磨,主要反映在小半径曲线地段及反向S曲线上,钢轨经打磨后局部有重现,但情况不严重,不需特殊处理。
1.5 线路通车一年后,铁科研金化所对某线路波磨严重地段的在线实测结果显示,满足轨道平顺性要求的钢轨焊接接头仅27%,说明线路接头的不平顺加剧了钢轨波磨。
1.6 地铁4号线车轮踏面出现严重的凹形磨耗(见图3),造成轮轨接触关系恶化,影响列车平稳运行,造成轨道、车辆部件提前失效,增加养护维修成本。
图3 车轮踏面磨耗从上述调查的规律看,地铁轨道出现钢轨波磨情况各异,原因不一,下文将重点对其进行论述。
2地铁钢轨波磨原因2.1 从轨道方面考虑,主要有以下几点:(1)部分减振轨道刚度不足地铁常用的减振轨道结构有:减振器扣件、Vanguard扣件、梯形轨枕和钢弹簧浮置板等。
以60kg/m钢轨为例,利用Abaqus对四种减振轨道进行分析(参振质量为0.6m长度范围内轨道质量),得出轨道结构参数如表1:表 1 轨道结构参数表轨道形式参振质量(kg)垂向刚度值(N/m)垂向阻尼值(Ns/m)横向刚度值(N/m)横向阻尼值(Ns/m)减振器扣件69.12 3.382e7 2417.33 1.095e7 1375.67Vanguard扣件66.31 4.713e7 2857.62 1.864e7 1797.31梯形轨枕333.03 6.040e7 7092.15 3.490e7 2456.04钢弹簧浮置板1892.10 4.630e7 14791.89 9.210e7 3995.64通过对轨道减振器及弹性短枕枕式整体道床进行疲劳试验和保持轨距能力试验得到的结果见表2。
表 2 剪切型轨道减振器与弹性短枕式整体道床的疲劳试验及轨距保持对比表轨道类型加载方式疲劳试验情况轨距保持情况轨道减振器DME试验机,加载时垂横向之比为2:1 在垂向荷载为40kN,横向荷载为20kN,经300万次疲劳试验后,无破坏和任何开裂疲劳试验开始时,轨头横移平均值3.6mm,当疲劳试验进行一段时间后,动态横向位移趋于稳定为2.9-3.1mm,轨底动态横向位移为2.1-2.3mm弹性短枕枕式整体道床加力架,加载时垂横向之比1:1 橡胶套靴在垂向荷载为60kN,横向荷载为60kN,经600万次疲劳试验后,无破坏和任何开裂经过200万次荷载循环后,轨距最大变化2mm;支承块距离变化1mm,到400万次已无变化。
从理论计算的结果看出,减振器扣件和Vanguard扣件的计算竖向和横向刚度均较低。
通过疲劳试验和保持轨距能力试验的结果可以看出,轨道减振器保持轨距能力较差,在车辆竖向、横向力的作用下产生较大竖向变形和轨距扩大,无法对钢轨的竖向、横向振动进行有效约束,加剧了轮轨间非正常接触,从而诱发和加剧波磨产生和发展。
(2)部分减振轨道阻尼不足轨道阻尼对波磨发生速率的影响很大。
对连续波磨上轮轨磨耗功的计算表明,低轨道阻尼下波磨的发展速率要快1倍以上[3]。
由表1的计算阻尼值和北京地铁4号线波磨调查情况来看,轨道阻尼越小的轨道型式越容易发生波磨。
(3)轮轨共振轨道参振质量与自振频率成反比,参振质量越小,自振频率越高。
当车辆的振动频率与轨道结构的自振频率接近时,易形成轮轨共振,其振幅(即挠度)比一般的振动大许多。
从表1可知,减振器扣件和Vanguard扣件参振质量较小,导致轨道自振频率偏高,易与车辆产生共振。
(4)线路原始不平顺轨道不平顺,使随机的轮对年化振动归一化,将高磨耗区和低磨耗区固定下来。
在许多情况下,轨道不平顺直接激发轮对粘滑振动,促进波磨形成和发展[4]。
Kalousek提出通过打磨可消除轨面的原始不平顺,提高线路的稳定性,大大减小轮轨动负荷,减小波磨的生成,延长钢轨的寿命[5]。
由于4号线钢轨焊接接头存在较多的不平顺,而运营之前又没有对钢轨进行初始打磨,线路存在大量原始不平顺,这是诱发波磨形成和发展的重要因素。
(5)钢轨硬度不足从北京地铁4号线调查发现,钢轨基体硬度测量结果的平均值为HB251,小于U71Mn钢轨硬度平均值280HB,钢轨硬度不足易导致轨头磨耗快、易产生塑性变形,是形成异常波磨的一个重要原因。
2.2 从线路方面考虑线路曲线半径越小,轮轨间出现滑动的几率越大,轮对粘滑振动及由此引起的波磨也就容易形成和发展。
在大半径曲线上,波磨即使出现,发展速率也很缓慢[6]。
地铁多位于城市中心区域,需要避让的敏感构筑物及地下管线较多,形成许多小半径曲线段或S型曲线,例如:北京地铁4号线102个曲线中曲线半径小于800m的曲线共59个,最小的曲线半径仅350m,。
选取曲线半径在400~800m范围内变化,所得曲线半径与地铁车辆曲线通过时钢轨磨耗功率之间的关系曲线如图4所示。
由图可看出,随着曲线半径的不断增加,磨耗功率呈现显著的下降趋势,尤其当半径处在400~600m内,磨耗功率数值下降最为明显。
图 4 曲线半径对钢轨磨耗功率的影响曲线曲线半径较小导致轨道受力复杂,易造成机车转向架、轮对等变形,地铁长期在非理想状态下运转,增加了轮轨摩擦损伤几率。
2.3 从运营特征考虑客货混跑线路上因货车与客车的作用部分抵消,波磨较少出现,而单跑货车或客车的线路上波磨容易出现。
通过曲线的所有列车中,如某一速度段的列车数量占明显优势,则波磨易于形成[3]。
地铁线路中,车辆仅用于客运,且车辆运行速度由信号控制,通过每个局部区段的行车速度基本固定不变,且地铁线路中发车间隔短、频繁加速制动,均造成了地铁线路更易发生钢轨波磨现象。
3、预防和整治地铁钢轨波磨的对策根据上述波磨原因调研和分析, 针对新建线路和既有线路,分别提出以下应对钢轨波磨问题的对策。
3.1 新建线路的波磨预防措施(1)合理选择减振减振的刚度和阻尼,增加轨道抵抗动态轨距扩大的能力。
从本文表1可知,刚度及阻尼从大到小的轨道形式依次为:钢弹簧浮置板、梯形轨枕、Vanguard扣件、减振器扣件,这个排序也正是运营中钢轨磨耗从小到大的顺序。
可见,适当增加轨道刚度和阻尼有利于减小振幅,从而减小轮轨冲击对钢轨的磨损。
(2)避免选用易发生轮轨共振的减振结构,例如剪切型轨道减振器扣件,如已选用该减振装置,则可适当加密减振器,以增加轨道刚度和阻尼,降低钢轨波磨几率。
(3)适当提高钢轨强度和硬度,使用屈服点较高的钢材,可有效抵制钢轨表面疲劳和塑性流动,推迟波磨出现[3]。
通过对比各种类型钢轨的性能(见表3),并考虑轮轨硬度的匹配,建议新建线路使用U71Mn热处理轨或U75V钢轨。
表3 钢轨机械性能比较表钢轨型号生产工艺(Mpa)(Mpa)(%) 轨头硬度(HB)U71Mn 热轧≥880≥490≥10 260~300在线热处理≥1180≥784≥10 332~391U75V 热轧≥980≥610≥10 280~320在线热处理≥1200≥800≥10 341~401注:—抗拉强度;—屈服强度;—伸长率;HB—布氏硬度另外,要严把钢轨质量关。
钢轨应具有出厂质量证明书和试验报告单,进场时除应检查其外观和标志外,尚应按不同的规格及生产厂家抽取试样进行硬度及力学性能检验,检验试验方法应符合现行国家标准的规定。
钢轨经进场检验合格后方可使用。
(4)适当降低轨道超高均衡超高条件下,轮对发生剧烈的粘滑振动,磨耗功出现持续波动,预示着波磨可能形成。
而欠超高条件下,轮对为非自激振动,预示着波磨难以形成[3]。
在新建线路的轨道设计中,曲线段的超高值设置建议略低于均衡超高,使用欠超高设计。
(5)提高轨道施工质量,进行钢轨预打磨,消除轨道原始不平顺。
由于地铁建设常常面临工期紧的困难,施工质量不易保证,而北京地铁每条市区线路刚开通的客流量便远远超过预测客流值,面临超负荷运行的情况,轨道的原始不平顺和初期大客流运营迅速激发了钢轨的波磨,进而引发车轮踏面的严重磨耗,造成轮轨接触关系相互恶化。