余数问题
余数问题

1.把一个合数分解质因数,通常用短除法。
先用能整除这个合数的质数去除,一直除到商是质数为止,再把除数和商写成连乘的形式。
2.求几个数的最大公约数的方法是:先用这几个数的公约数连续去除,一直除到所得的商只有公约数1为止,然后把所有的除数连乘求积,这个积就是这几个数的的最大公约数。
3.求几个数的最小公倍数的方法是:先用这几个数(或其中的部分数)的公约数去除,一直除到互质(或两两互质)为止,然后把所有的除数和商连乘求积,这个积就是这几个数的最小公倍数。
4.成为互质关系的两个数:1和任何自然数互质;相邻的两个自然数互质;当合数不是质数的倍数时,这个合数和这个质数互质;两个合数的公约数只有1时,这两个合数互质。
一、基本概念和符号:1、整除:如果一个整数a,除以一个自然数b,得到一个整数商c,而且没有余数,那么叫做a能被b整除或b能整除a,记作b|a。
2、常用符号:整除符号“|”,不能整除符号“”;因为符号“∵”,所以的符号“∴”;二、整除判断方法:1. 能被2、5整除:末位上的数字能被2、5整除。
2. 能被4、25整除:末两位的数字所组成的数能被4、25整除。
3. 能被8、125整除:末三位的数字所组成的数能被8、125整除。
4. 能被3、9整除:各个数位上数字的和能被3、9整除。
5. 能被7整除:①末三位上数字所组成的数与末三位以前的数字所组成数之差能被7整除。
②逐次去掉最后一位数字并减去末位数字的2倍后能被7整除。
6. 能被11整除:①末三位上数字所组成的数与末三位以前的数字所组成的数之差能被11整除。
②奇数位上的数字和与偶数位数的数字和的差能被11整除。
③逐次去掉最后一位数字并减去末位数字后能被11整除。
7. 能被13整除:①末三位上数字所组成的数与末三位以前的数字所组成的数之差能被13整除。
②逐次去掉最后一位数字并减去末位数字的9倍后能被13整除。
三、整除的性质:1. 如果a、b能被c整除,那么(a+b)与(a-b)也能被c整除。
小学中级奥数第25讲-余数问题

23、16除以5的余数分别是3 和1,所以(23X16)除以5 的余数等于3X1=3。
23、19除以5的余数分别是3 和1,所以(23X19)除以5 的余数等于(3X4)除以5的 余数2。
某数被13除,商是9,余数是8,则某数等于
。
一个三位数除以36,得余数8,这样的三位数中,最大的是__________。
用自然数n去除63,91,129得到的三个余数之和为25,那么n=________.
求 478 296351 除以17的余数。
求 4373091993 被7除的余数。
22003 与 20032 的和除以7的余数是_______。
22008 20082 除以7的余数是多少?
有一个整数,除39,51,147所得的余数都是3,求这个数。
甲、乙两数的和是1088,甲数除以乙数商11余32,求甲、乙两数。
用某自然a去除1992,得到商是46,余数是r,求a和r。
当1991和1769除以某个自然数n,余数分别为2和1.那么,n最小是多少?
有一个整数,用它去除70,110,160所得到的3个余数之和是50,那么这个 整数是______。
课后作业 <作业2> 3782除以某个整数后所得的商恰好是余数的21倍,那么除数最小可能是_______。
课后作业 <作业3>
在大于2009的自然数中,被57除后,商与余数相等的数共有______个。
<作业4>
求 478 2569352 除以9的余数。
课后作业
<作业5>
求 3406 的个位数字。
除法算式 □□= 20 8 中,被除数最小等于________。
71427和19的积被7除,余数是几?
余数问题的解题方法

余数问题的解题方法
解题方法:
1. 除法互换律:将被除数和除数互换,得到的结果是余数。
例如:1÷3=0...1,则3÷1=3...0,即余数为零。
2. 同余定理:如果a÷b=c...d(c为商,d为余数),则a-d÷b=c...0,即余数为零。
例如:7÷3=2...1,则7-1÷3=2...0,余数为零。
3. 分解质因数法:将被除数和除数分解质因数,列出所有的可能组合,直到得到能够整除的结果则余数为零。
例如:6÷3=2...0,则2×3=6,余数为零。
4. 模运算:使用模运算,即a mod b=d,其中d为余数。
5. 对于除法不可整除的情况,可以使用乘除法,即a×b=c+d(c大于等于a,d为余数),其中d为余数。
例如:7×3=21,则21-7=14,余数为7。
6. 开平方法:将被除数平方,或者除数平方,直到得到整除的结果则余数为零。
例如:64÷8=8...0,则8×8=64,余数为零。
7. 拆分成多项式:将被除数和除数拆分成多项式,例如
a=a_1x_1+a_2x_2+…+a_nx_n,b=b_1x_1+b_2x_2+…+b_nx_n,则a÷b=c...d(其中d为余数)。
数量关系余数问题

数量关系-余数问题
三个例子:
1、余同取同:被除数除以几个除数所得的余数相同,例:一个数除以5余2,除以4余2,除以7余2;那么符合这个数的条件式子为;(5,4,7的公倍数140)140X+2。
2、和同加和:被除数加上除数所得的和相同,例:一个数除以6余1,除以5余2,除以4余3;那么符合这样的条件式子为,60X+7
3、差同减差:被除数减除数所得的差相同,例:一个数除以5余2,除6余3,除4余1,那么符合这样条件的同子为:60X-3
记忆口诀:余同取同,和同加和,差同减差,公倍数为周期
(1)一个三位数除以9余7,除以5余2,除以4余3,问这样的三位数一共几个?
A5B6C7D8
选A
解法:此题观察到三个选项都不符合上面的口诀,但可以看到后二个5+2=7,
4+3=7,符合和同加和,符合和同加和,公式为:20X+7,此式又与除9余7组成同余,故符合这样条件的式子可以归纳为180X+7
(2)三位数的自然数P满足:除以7余2,除以6余2,余以5也余2,则符合条件的自然数P有( C )。
A.2个
B.3个
C.4个
D.5个
解法:此题为同余,符合条件的公式为,(5,6,7)的公倍数+2,210X+2=P 100<210X+2<999,故X取值只能为:1,2,3,4共4个.
(3)一个三位数除以9余7,除以5余2,除以4余3,问这样的三位数一共几个?(A)
A5 B6 C7 D8
解法:跟例2一样,只是后二个变和同加和.公式为:100<180N+7<999,故N的取值为:1,2,3,4,5
(4)在1000以内,除以3余2,除以7余3,除以11余4的数有多少个?
A.4 C.6
B.5 D.7。
第讲余数问题

第十讲余数问题常考的余数问题基本可以分成四类:带余除法、余数周期问题、同余问题、“物不知其数”。
解题时关键要分清楚它到底是想考你什么,这样才能拿出正确的破解方法。
下面我简单谈谈这四类问题:㈠带余除法。
一般地,如果.α是整数,b是整数(b≠0),那么一定有另外两个整数q和r,使得α÷b=q……r或α=b×q+r当r=0时,我们称α能被b整除。
当r≠0时,我们称α不能被b整除,r为α除以b的余数,q为α除以b的不完全商(也简称为商)。
带余除法最关键就是理清被除数、除数、商、余数的关系,特别需要注意的是,余数肯定小于除数。
出题者常常会在这里设置陷阱。
#㈡余数周期。
这其中又分为递推数列(给一串数,要求第χ个数除以某个数的余数)和n次幂(求一个数的n次方除以某个数的余数)相关的余数问题,处理这两类问题一个最直接的做法就是找规律,因为它们除以某数的余数都是有周期的。
例如,求3130÷13的余数。
例如尖子班作业1。
㈢同余问题。
1、什么是“同余”整数α和b除以整数c,得到的余数相同,我们就说整数α、b对于模c同余。
记作:α≡b (mod c)例如:15÷4=3 (3)23÷4=5 (3)`15和23对于除数4同余。
记作:15 ≡23 (mod4)可以理解为15和23除以4的余数相同。
2、“同余”的四个常用性质是什么同余性质1:如果α≡ b (mod m),则m︱(α-b)若两数同余,他们的差必是除数的倍数。
例如,73 ≡23 (mod 10)则10︱(73-23)73与23的差是10的倍数。
$同余性质2:如果α≡ b (mod m),c ≡d (mod m),则α± c ≡ b ± d (mod m)两数和的余数等于余数的和。
两数差的余数等于余数的差。
例如,73 ≡3 (mod 10)84 ≡4 (mod 10)73+84 ≡3+4≡7 (mod 10)84-73≡4-3≡1 (mod 10)#同余性质3:如果α≡ b (模m),c ≡d (模m),则α× c ≡b×d (模m)两数积的余数等于余数的积。
余数问题

余缺问题例题研究:例1:一筐梨,分散后小箱装,用去8个箱子,还剩8kg未能装下;用9个箱子,则最后一个箱子还可以装4kg,求这筐梨的质量。
例2:某校组织师生去参观三峡工程建设,如果单独租用30座客车若干辆,则好坐满;如果单独租用40坐客车,可少租一辆,且余20个坐位,求该校参观三峡建设的人数。
例3:某球迷协会组织36名球迷拟租乘汽车赴比赛场地,为首次打进世界杯决赛圈的国家足球队加油助威。
可租用的汽车有两种:一种每辆可乘8人,另一种每辆可乘4人,要求租用的车子不留空座,也不超载。
①请你给出不同的租车方案(至少三种),②若8个座位的车子的租金是300元/天,4个座位的车子的租金是200元/天,请你设计出费用最少的租车方案,并说明理由。
练习:1、用绳子量井深,把绳子三折来量,井外余绳4尺,把绳子4折来量,井外余绳1尺,求井深和绳长各几尺?(请用两种不同的方法)2、某校春游,若包租相同的大巴13辆,那么就有14人没有座位;如果多包租1辆,那么就多了26个空位,求春游的总人数是多少?每辆大巴有多少座位?3、我市某高中分配给高一新生的宿舍若干.如果每室住8人,则少12个床位,如果每室住9人,却又空出2个房间.请你根据这些情况提出问题,并列出方程求解?4、运往新疆灾区的两批货物,第一批共480吨,用8节火车车厢和20辆汽车正好装完,第二批共524吨,用10节火车车厢和6辆汽车正好装完,求每节火车车厢和每辆汽车平均各装多少吨?5、我校组织初一学生去上海科技馆参观,原计划租用45座客车若干辆,但有15人没有座位,如果租用同样数量的60座客车,则多出一辆,且其余客车恰好坐满,已知45座客车每日租金为每辆220元,60座客车每辆300元,试问:(1)初一年级去上海科技馆参观的人数是多少?原计划租45座客车多少辆?(2)要使每个同学都有座位,怎样租用车辆更合算?8、初一(四)班发作业本,若每人发4本,则还余12本,若每人5本则还少18本,则全班共有______ 人,一共有__________本作业本。
数论之余数问题

数论之余数问题余数问题是数论知识板块中另一个内容丰富,题目难度较大的知识体系,也是各大杯赛小升初考试必考的奥数知识点,所以学好本讲对于学生来说非常重要。
许多孩子都接触过余数的有关问题,并有不少孩子说“遇到余数的问题就基本晕菜了!”余数问题主要包括了带余除法的定义,三大余数定理(加法余数定理,乘法余数定理,和同余定理),及中国剩余定理和有关弃九法原理的应用。
知识点拨:一、带余除法的定义及性质:一般地,如果a是整数,b是整数(b≠0),若有a〔b=q……r,也就是a=b〓q+r,0≤r<b;我们称上面的除法算式为一个带余除法算式。
这里:r=时:我们称a可以被b整除,q称为a除以b的商或完全商(1)当0r≠时:我们称a不可以被b整除,q称为a除以b的商或不完全商(2)当0一个完美的带余除法讲解模型:如图,这是一堆书,共有a本,这个a就可以理解为被除数,现在要求按照b本一捆打包,那么b就是除数的角色,经过打包后共打包了c捆,那么这个c就是商,最后还剩余d本,这个d就是余数。
这个图能够让学生清晰的明白带余除法算式中4个量的关系。
并且可以看出余数一定要比除数小。
二、三大余数定理:1.余数的加法定理a与b的和除以c的余数,等于a,b分别除以c的余数之和,或这个和除以c的余数。
例如:23,16除以5的余数分别是3和1,所以23+16=39除以5的余数等于4,即两个余数的和3+1.当余数的和比除数大时,所求的余数等于余数之和再除以c的余数。
例如:23,19除以5的余数分别是3和4,故23+19=42除以5的余数等于3+4=7除以5的余数,即2.2.余数的乘法定理a与b的乘积除以c的余数,等于a,b分别除以c的余数的积,或者这个积除以c所得的余数。
例如:23,16除以5的余数分别是3和1,所以23〓16除以5的余数等于3〓1=3。
当余数的和比除数大时,所求的余数等于余数之积再除以c的余数。
例如:23,19除以5的余数分别是3和4,所以23〓19除以5的余数等于3〓4除以5的余数,即2.3.同余定理若两个整数a、b被自然数m除有相同的余数,那么称a、b对于模m同余,用式子表示为:a≡b ( mod m ),左边的式子叫做同余式。
小学数学有余数问题的题目100道

小学数学有余数问题的题目100道1. 23除以5,余数是多少2. 19除以3,余数是多少?3. 41除以6,余数是多少?4. 35除以7,余数是多少?5. 56除以8,余数是多少?6. 28除以4,余数是多少?7. 37除以9,余数是多少?8. 16除以2,余数是多少?9. 53除以5,余数是多少?10. 22除以3,余数是多少?11. 47除以7,余数是多少?12. 32除以6,余数是多少?13. 59除以8,余数是多少?14. 25除以4,余数是多少?15. 34除以9,余数是多少?16. 17除以2,余数是多少?17. 61除以5,余数是多少?18. 29除以3,余数是多少?19. 44除以7,余数是多少?20. 38除以6,余数是多少?22. 26除以4,余数是多少?23. 31除以8,余数是多少?24. 15除以2,余数是多少?25. 63除以5,余数是多少?26. 35除以3,余数是多少?27. 49除以7,余数是多少?28. 42除以6,余数是多少?29. 55除以9,余数是多少?30. 27除以4,余数是多少?31. 39除以8,余数是多少?32. 18除以2,余数是多少?33. 67除以5,余数是多少?34. 37除以3,余数是多少?35. 46除以7,余数是多少?36. 33除以6,余数是多少?37. 58除以9,余数是多少?38. 24除以4,余数是多少?39. 40除以8,余数是多少?40. 19除以2,余数是多少?41. 69除以5,余数是多少?42. 32除以3,余数是多少?44. 36除以6,余数是多少?45. 53除以9,余数是多少?46. 一根绳子长23米,要剪成每段长4米的小段,最多可以剪成多少段,还剩多少米?47. 一盒巧克力有25块,小明每天吃3块,吃了8天后还剩下多少块巧克力?48. 小红有32个苹果,她每天吃5个,吃了6天后,还剩下多少个苹果?49. 一个果园里有47棵苹果树,每棵树上平均有18个苹果,如果摘掉8个坏苹果,最后还剩多少个苹果?50. 小华读一本200页的书,他每天读15页,读了12天后,还剩下多少页没有读?51. 丽丽有50张邮票,她给朋友送了8张后,还剩下多少张邮票?52. 一块布长60厘米,要裁成每段长8厘米的小段,最多可以裁成多少段,还剩多少厘米?53. 一袋糖有100颗,小明每天吃6颗,吃了15天后,还剩下多少颗糖?54. 小刚买了36支铅笔,他每天用4支,用了9天后,还剩下多少支铅笔?55. 小红从图书馆借了45本书,她每天读7本,读了6天后,还剩下多少本书没有读?56. 一个班级有50名学生,每5人组成一个小组进行活动,最后会剩下多少名学生没有参加小组?57. 小华买了28个苹果,她每天吃4个,吃了7天后,还剩下多少个苹果?58. 小明买了30支水彩笔,他每天用5支,用了6天后,还剩下多少支水彩笔?59. 丽丽买了42块巧克力,她每天吃6块,吃了7天后,还剩下多少块巧克力?60. 一盒饼干有35块,小明每天吃4块,吃了8天后,还剩下多少块饼干?61. 小华有60张邮票,她给朋友送了10张后,还剩下多少张邮票?62. 一根绳子长36米,要剪成每段长9米的小段,最多可以剪成多少段,还剩多少米?63. 一个班级有48名学生,每6人组成一个小组进行活动,最后会剩下多少名学生没有参加小组?64. 小刚买了24个玩具,他每天玩3个,玩了8天后,还剩下多少个玩具?65. 小红从图书馆借了60本书,她每天读8本,读了7天后,还剩下多少本书没有读?66. 小明买了50支铅笔,他每天用7支,用了7天后,还剩下多少支铅笔?67. 一盒糖果有42颗,小明每天吃5颗,吃了8天后,还剩下多少颗糖果?68. 丽丽买了21块巧克力,她每天吃3块,吃了6天后,还剩下多少块巧克力?69. 小华有30张邮票,她给朋友送了5张后,还剩下多少张邮票?70. 一根绳子长45米,要剪成每段长6米的小段,最多可以剪成多少段,还剩多少米?71. 一个班级有54名学生,每9人组成一个小组进行活动,最后会剩下多少名学生没有参加小组?72. 小刚买了40个玩具,他每天玩4个,玩了10天后,还剩下多少个玩具?73. 小红从图书馆借了72本书,她每天读9本,读了8天后,还剩下多少本书没有读?74. 小明买了63支铅笔,他每天用9支,用了7天后,还剩下多少支铅笔?75. 一盒糖果有70颗,小明每天吃8颗,吃了8天后,还剩下多少颗糖果?76. 丽丽买了35块巧克力,她每天吃5块,吃了7天后,还剩下多少块巧克力?77. 小红买了123颗糖果,平均分给9个小朋友后,还剩下几颗糖果?78. 爸爸买了256个苹果,如果每盘放6个,最多可以放满多少盘,还剩下几个?79. 三年级一班有43名学生,每6人组成一个小组进行活动,最多可以组成几个完整的小组,还剩下几人?80. 一本故事书有285页,小明每天看9页,看了30天后,还剩下多少页没有看?81. 小华的妈妈买了367个鸡蛋,每盘只能放10个,她需要准备多少个盘子才能放下所有的鸡蛋?82. 一条长239米的绳子,每段剪成8米长,最多可以剪成多少段,还剩下多少米?83. 学校图书馆有450本图书,每个班级借走7本,最后还剩下多少本图书?84. 小红有302张邮票,她想把它们平均分给5个好朋友,每个朋友最多能得到多少张邮票,还剩下多少张?85. 商店里有263支铅笔,每盒装12支,最多可以装满多少盒,还剩下几支?86. 丽丽买了496块巧克力,她每天吃8块,吃了60天后,还剩下多少块巧克力?87. 三年级二班有52名学生,每4人组成一个小组进行课外活动,最多可以组成多少个小组,还剩下几人?88. 小明有278张卡片,他打算每10张放进一个信封里,他需要准备多少个信封才能装下所有的卡片?89. 一根绳子长345米,每段剪成6米长,最多可以剪成多少段,还剩下多少米?90. 学校食堂买了196斤大米,每天吃9斤,吃了20天后,还剩下多少斤大米?91. 商店里有175瓶果汁,每箱装8瓶,最多可以装满多少箱,还剩下几瓶?92. 丽丽买了283颗糖果,她每天吃9颗,吃了30天后,还剩下多少颗糖果?93. 小红有421张邮票,她想把它们平均分给7个好朋友,每个朋友最多能得到多少张邮票,还剩下多少张?94. 商店里有312支铅笔,每盒装9支,最多可以装满多少盒,还剩下几支?95. 小华的妈妈买了157个鸡蛋,每盘只能放5个,她需要准备多少个盘子才能放下所有的鸡蛋?96. 一条长408米的绳子,每段剪成7米长,最多可以剪成多少段,还剩下多少米?97. 学校图书馆有369本图书,每个班级借走6本,最后还剩下多少本图书?98. 小红买了574颗糖果,平均分给8个小朋友后,还剩下几颗糖果?99. 爸爸买了179个苹果,如果每盘放4个,最多可以放满多少盘,还剩下几个?100. 三年级一班有38名学生,每5人组成一个小组进行活动,最多可以组成几个完整的小组,还剩下几人?。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数论模块数论题的特点就就是简洁明了,信息量瞧起来往往比较少,所以很多同学在见到数论题的时候总会觉得无从入手,因此,做数论题时很重要的一点就就是寻找突破口,走对方向。
另外,数论模块的另一个特点就就是:知识点非常多。
但相比组合而言,数论至少显得更“有法可依”,考场上一定要敢去思考数论题,“战略上藐视,战术上重视”,战略上要相信,考题所用的知识点绝对不会超出小学知识范畴,而考前我们能做的,就就是好好研究一下战术——如何应对每一类题目。
我就不详细讲每一个知识点(确实非常之多,关键在于平常积累),在这里,我就解数论题的三个突破口来谈谈考场上如何找到数论题的解题思路。
还就是那个我在课堂上讲过很多遍的例子:任意找一个数,我们都可以从三个角度去分析它, 例如154:(1)我们可以说它就是一百五十四,在这里,1就是百位上的数字,它代表1个100,5代表5个10,4代表4个1,这可以说就是位值原理的角度;(2)154=2×7×11,分解质因数;(3)154除以5余4,除以9余1,我们可以研究它除以任意一个数所得的商与余数;以上三种角度分析一个数也映射出数论体系的三大块内容,同时也就是我们分析数论问题的三种方式,三个突破口。
下面我来详细讲讲每一个角度。
一、位值原理与整除。
其实所有数字的整除特性都就是利用位值原理推导出来的,从这个也反映出了学习数论的一个策略:找到知识点的源头,知道它们就是怎么来的,这样就不用背那么多知识点了。
言归正传,什么样的题目我们往这个角度去思考呢?有些题目比较明显,就不用多说了,举个最简单的例子:55□39能被11整除,请问□就是几?这种题就直接利用整除特性就OK了。
考得比较多的,比如这样的题目:“一个三位数A的三个数字所组成的最大三位数与最小三位数的差仍就是数A,这个三位数A就是多少?”题中提到了X位数或者提到了这个数里面的某几位数字的,可以考虑用位值原理。
利用位值原理对题目进行“翻译”——也就就是把文字翻译成数学语言(数学式子),再结合其她的知识点去“加工”,一步步地解答它。
这就就是我常常对学生说的:不要对着题目干想,一定要动笔,尝试“翻译”题目。
借用薛威阳老师的理念,就就是“把思路放在纸上”。
二、分解质因数。
这也就是约数、倍数、质数、合数、平方数的核心。
所以涉及到约倍质合及平方数的问题就可以从分解质因数的角度去研究研究,题目中如果有具体数字,不妨对其进行质因数分解,从它的因子中寻找解题思路。
如果题目中没有给定具体数字,而就是让您求这个数,那么也可以从题目中给的信息去探索这个数含有的质因子及其个数。
这部分内容的知识点最多,同学们务必熟练掌握,否则一切都就是空谈。
三、余数。
常考的余数问题基本可以分成四类:带余除法、余数周期问题、同余问题、“物不知其数”,解题时关键要分清楚它到底就是想考您什么,这样才能拿出正确的破解方法。
下面我简单谈谈这四类问题:1、带余除法。
最关键就就是理清被除数、除数、商、余数的关系,特别需要注意的就是,余数肯定小于除数。
出题者常常会在这里设置陷阱。
2、余数周期。
这其中又分为递推数列(给一串数,要求第X个数除以某个数的余数)与次幂(求一个数的X次方除以某个数的余数)相关的余数问题,处理这两类问题一个最直接的做法就就是找规律,因为它们除以某数的余数都就是有周期的。
3、同余问题。
很多人分不清同余问题与“物不知其数”问题的区别。
举个例子:“一个自然数除429、791、500所得的余数分别就是a+5、2a、a,求这个自然数与a的值。
”这就是同余问题,已知被除数与余数,求除数。
这种问题就就是想办法把余数都化为相同的数,然后两两做差求最大公约数。
4、“物不知其数”。
与同余问题对应的,举个例子:“一个数除以3余2,除以5余3,除以7余2,求这个数。
”已知除数与余数,求被除数。
接这种问题又两个万能方法:逐级满足与中国剩余定理。
但就是考试往往不考这两个方法,这两个方法往往也比较繁琐。
考试题里不妨去研究研究题中给的除数与对应的余数的关系(与或差),若她们的与或差相同,那么就有简单的解题方法(即所谓“加同补”、“减同余”),实在没有,再考虑逐级满足与中国剩余定理。
最后我把小学数论里需要掌握的知识点列个简单的大纲,务必拿出来复习一下,如果这些基础都没有,那上面的这些都就是空谈,甚至都瞧不懂。
1、奇偶性质;2、特殊数(2、5、3、9、11、13、……)的整除特定与余数特性;3、质数、合数相关性质,判断一个数就是质数或合数的方法,分解质因数;4、约数、倍数、最大公约数、最小公倍数的求法与相关性质,约数个数定理;5、完全平方数的性质;6、带余除法,弃九法,同余问题与“物不知其数”问题的几个处理方法。
余数问题---四大绝技(加同补;减同余;中国剩余定理;逐步约束法)“差同减差,与同加与,余同取余,最小公倍加”这就是同余问题的口诀。
所谓同余问题,就就是给出“一个数除以几个不同的数”的余数,反求这个数,称作同余问题。
首先要对这几个不同的数的最小公倍数心中有数,下面以4、5、6为例,请记住它们的最小公倍数就是60。
1、差同减差:用一个数除以几个不同的数,得到的余数,与除数的差相同,此时反求的这个数,可以选除数的最小公倍数,减去这个相同的差数,称为:“差同减差”。
例:“一个数除以4余1,除以5余2,除以6余3”,因为4-1=5-2=6-3=3,所以取-3,表示为60n-3。
【60后面的“n”请见4、,下同】2、与同加与:用一个数除以几个不同的数,得到的余数,与除数的与相同,此时反求的这个数,可以选除数的最小公倍数,加上这个相同的与数,称为:“与同加与”。
例:“一个数除以4余3,除以5余2,除以6余1”,因为4+3=5+2=6+1=7,所以取+7,表示为60n+7。
3、余同取余:用一个数除以几个不同的数,得到的余数相同,此时反求的这个数,可以选除数的最小公倍数,加上这个相同的余数,称为:“余同取余”。
例:“一个数除以4余1,除以5余1,除以6余1”,因为余数都就是1,所以取+1,表示为60n+1。
4、最小公倍加:所选取的数加上除数的最小公倍数的任意整数倍(即上面1、2、3中的60n)都满足条件,称为:“最小公倍加”,也称为:“公倍数作周期”。
弃九法从第4讲知道,如果一个数的各个数位上的数字之与能被9整除,那么这个数能被9整除;如果一个数各个数位上的数字之与被9除余数就是几,那么这个数被9除的余数也一定就是几。
利用这个性质可以迅速地判断一个数能否被9整除或者求出被9除的余数就是几。
例如,3645732这个数,各个数位上的数字之与为3+6+4+5+7+3+2=30,30被9除余3,所以3645732这个数不能被9整除,且被9除后余数为3。
但就是,当一个数的数位较多时,这种计算麻烦且易错。
有没有更简便的方法呢?因为我们只就是判断这个式子被9除的余数,所以凡就是若干个数的与就是9时,就把这些数划掉,如3+6=9,4+5=9,7+2=9,把这些数划掉后,最多只剩下一个3(如下图),所以这个数除以9的余数就是3。
这种将与为9或9的倍数的数字划掉,用剩下的数字与求除以9的余数的方法,叫做弃九法。
一个数被9除的余数叫做这个数的九余数。
利用弃九法可以计算一个数的九余数,还可以检验四则运算的正确性。
例1 求多位数76458215除以9的余数。
分析与解:利用弃九法,将与为9的数依次划掉。
只剩下7,6,1,5四个数,这时口算一下即可。
口算知,7,6,5的与就是9的倍数,又可划掉,只剩下1。
所以这个多位数除以9余1。
例2 将自然数1,2,3,…依次无间隔地写下去组成一个数1234567891011213…如果一直写到自然数100,那么所得的数除以9的余数就是多少?分析与解:因为这个数太大,全部写出来很麻烦,在使用弃九法时不能逐个划掉与为9或9的倍数的数,所以要配合适当的分析。
我们已经熟知1+2+3+…+9=45,而45就是9的倍数,所以每一组1,2,3,…,9都可以划掉。
在1~99这九十九个数中,个位数有十组1,2,3,…,9,都可划掉;十位数也有十组1,2,3,…,9,也都划掉。
这样在这个大数中,除了0以外,只剩下最后的100中的数字1。
所以这个数除以9余1。
在上面的解法中,并没有计算出这个数各个数位上的数字与,而就是利用弃九法分析求解。
本题还有其它简捷的解法。
因为一个数与它的各个数位上的数字之与除以9的余数相同,所以题中这个数各个数位上的数字之与,与1+2+…+100除以9的余数相同。
利用高斯求与法,知此与就是5050。
因为5050的数字与为5+0+5+0=10,利用弃九法,弃去一个9余1,故5050除以9余1。
因此题中的数除以9余1。
例3 检验下面的加法算式就是否正确:2638457+3521983+6745785=12907225。
分析与解:若干个加数的九余数相加,所得与的九余数应当等于这些加数的与的九余数。
如果不等,那么这个加法算式肯定不正确。
上式中,三个加数的九余数依次为8,4,6,8+4+6的九余数为0;与的九余数为1。
因为0≠1,所以这个算式不正确。
例4 检验下面的减法算式就是否正确:783=5664192。
分析与解:被减数的九余数减去减数的九余数(若不够减,可在被减数的九余数上加9,然后再减)应当等于差的九余数。
如果不等,那么这个减法计算肯定不正确。
上式中被减数的九余数就是3,减数的九余数就是6,由(9+3)-6=6知,原题等号左边的九余数就是6。
等号右边的九余数也就是6。
因为6=6,所以这个减法运算可能正确。
值得注意的就是,这里我们用的就是“可能正确”。
利用弃九法检验加法、减法、乘法(见例5)运算的结果就是否正确时,如果等号两边的九余数不相等,那么这个算式肯定不正确;如果等号两边的九余数相等,那么还不能确定算式就是否正确,因为九余数只有0,1,2, (8)种情况,不同的数可能有相同的九余数。
所以用弃九法检验运算的正确性,只就是一种粗略的检验。
例5 检验下面的乘法算式就是否正确:46876×9537=447156412。
分析与解:两个因数的九余数相乘,所得的数的九余数应当等于两个因数的乘积的九余数。
如果不等,那么这个乘法计算肯定不正确。
上式中,被乘数的九余数就是4,乘数的九余数就是6,4×6=24,24的九余数就是6。
乘积的九余数就是7。
6≠7,所以这个算式不正确。
说明:因为除法就是乘法的逆运算,被除数=除数×商+余数,所以当余数为零时,利用弃九法验算除法可化为用弃九法去验算乘法。
例如,检验383801÷253=1517的正确性,只需检验1517×253=383801的正确性。
练习51、求下列各数除以9的余数:(1)7468251; (2)36298745;(3)2657348; (4)6678254193。