七年级数学上册第43余角和补角新课标人教版PPT课件

合集下载

人教版七年级数学上册教学课件-4.3.3余角和补角 优秀课件PPT

人教版七年级数学上册教学课件-4.3.3余角和补角  优秀课件PPT

如图:∠1与∠2互余,∠3与∠4互余,如果∠2=∠4,那么∠1与 ∠3相等吗?为什么?
1 2
理由:∵∠1与∠2互余 ∴∠1=90o-∠2 ∵∠3与∠4互余 ∴∠3=90o-∠4
又∵∠2=∠4 ∴∠1=∠3
3 4
等角的余角相等
如图:∠1与∠2互补,∠3与∠4互补,如果∠2=∠4,那么∠1与 ∠3相等吗?为什么?
图中有与∠3互补的角吗?_∠__B_O__D___.
DC
E
1
23 4
A
O
B
今天学习的知识
互为余角
互为补角
对应图形
1 2
21
数量关系 ∠1+ ∠2 = 90 ° ∠1+ ∠2 = 180 °
性 质 同角或等角的
余角相等
同角或等角的 补角相等
用微笑告诉别人,今天的我,比昨天更强。瀑布跨过险峻陡壁时,才显得格外雄伟壮观。勤奋可以弥补聪明的不足,但聪明无法弥补懒惰的缺陷。孤独是 每个强者必须经历的坎。有时候,坚持了你最不想干的事情之后,会得到你最想要的东西。生命太过短暂,今天放弃了明天不一定能得到。只有经历人生 的种种磨难,才能悟出人生的价值。没有比人更高的山,没有比脚更长的路学会坚强,做一只沙漠中永不哭泣的骆驼!一个人没有钱并不一定就穷,但没 有梦想那就穷定了。困难像弹簧,你强它就弱,你弱它就强。炫丽的彩虹,永远都在雨过天晴后。没有人能令你失望,除了你自己人生舞台的大幕随时都 可能拉开,关键是你愿意表演,还是选择躲避。能把在面前行走的机会抓住的人,十有八九都会成功。再长的路,一步步也能走完,再短的路,不迈开双 脚也无法到达。有志者自有千计万计,无志者只感千难万难。我成功因为我志在成功!再冷的石头,坐上三年也会暖。平凡的脚步也可以走完伟大的行程。 有福之人是那些抱有美好的企盼从而灵魂得到真正满足的人。如果我们都去做自己能力做得到的事,我们真会叫自己大吃一惊。只有不断找寻机会的人才 会及时把握机会。人之所以平凡,在于无法超越自己。无论才能知识多么卓著,如果缺乏热情,则无异纸上画饼充饥,无补于事。你可以选择这样的“三 心二意”:信心恒心决心;创意乐意。驾驭命运的舵是奋斗。不抱有一丝幻想,不放弃一点机会,不停止一日努力。如果一个人不知道他要驶向哪个码头, 那么任何风都不会是顺风。行动是理想最高贵的表达。你既然认准一条道路,何必去打听要走多久。勇气是控制恐惧心理,而不是心里毫无恐惧。不举步, 越不过栅栏;不迈腿,登不上高山。不知道明天干什么的人是不幸的!智者的梦再美,也不如愚人实干的脚印不要让安逸盗取我们的生命力。别人只能给 你指路,而不能帮你走路,自己的人生路,还需要自己走。勤奋可以弥补聪明的不足,但聪明无法弥补懒惰的缺陷。后悔是一种耗费精神的情绪,后悔是 比损失更大的损失,比错误更大的错误,所以,不要后悔!复杂的事情要简单做,简单的事情要认真做,认真的事情要重复做,重复的事情要创造性地做。 只有那些能耐心把简单事做得完美的人,才能获得做好困难事的本领。生活就像在飙车,越快越刺激,相反,越慢越枯燥无味。人生的含义是什么,是奋 斗。奋斗的动力是什么,是成功。决不能放弃,世界上没有失败,只有放弃。未跌过未识做人,不会哭未算幸运。人生就像赛跑,不在乎你是否第一个到 达终点,而在乎你有没有跑完全程。累了,就要休息,休息好了之后,把所的都忘掉,重新开始!人生苦短,行走在人生路上,总会有许多得失和起落。 人生离不开选择,少不了抉择,但选是累人的,择是费人的。坦然接受生活给你的馈赠吧,不管是好的还是坏的。现在很痛苦,等过阵子回头看看,会发 现其实那都不算事。要先把手放开,才抓得住精彩旳未来。可以爱,可以恨,不可以漫不经心。我比别人知道得多,不过是我知道自己的无知。你若不想 做,会找一个或无数个借口;你若想做,会想一个或无数个办法。见时间的离开,我在某年某月醒过来,飞过一片时间海,我们也常在爱情里受伤害。1、 只有在开水里,茶叶才能展开生命浓郁的香气。人生就像奔腾的江水,没有岛屿与暗礁,就难以激起美丽的浪花。别人能做到的事,我一定也能做到。不 要浪费你的生命,在你一定会后悔的地方上。逆境中,力挽狂澜使强者更强,随波逐流使弱者更弱。凉风把枫叶吹红,冷言让强者成熟。努力不不一定成 功,不努力一定不成功。永远不抱怨,一切靠自己。人生最大的改变就是去做自己害怕的事情。每一个成功者都有一个开始。勇于开始,才能找到成功的 路。社会上要想分出层次,只有一个办法,那就是竞争,你必须努力,否则结局就是被压在社会的底层。后悔是一种耗费精神的情绪后悔是比损失更大的 损失,比错误更大的错误所以不要后悔。每个人都有潜在的能量,只是很容易:被习惯所掩盖,被时间所迷离,被惰性所消磨。与其临渊羡鱼,不如退而结网。 生命之灯因热情而点燃,生命之舟因拼搏而前行。世界会向那些有目标和远见的人让路。不积跬步,无以至千里;不积小流,无以成江海。骐骥一跃,不 能十步;驽马十驾,功在不舍。锲而舍之,朽木不折;锲而不舍,金石可镂。若不给自己设限,则人生中就没有限制你发挥的藩篱。赚钱之道很多,但是 找不到赚钱的种子,便成不了事业家。最有效的资本是我们的信誉,它小时不停为我们工作。销售世界上第一号的产品——不是汽车,而是自己。在你成

人教版数学七 年级上册4.3.3余角、补角的概念和性质ppt(共17张ppt)

人教版数学七 年级上册4.3.3余角、补角的概念和性质ppt(共17张ppt)

A
动动脑
C
B O
练一练
1、一个角的补角是它的余角的4倍,求这个 角的余角是多少度?
解另:解设:这设个这角个的角度的数余为角x的,度则数依为题x意,得
1则80它的x补角4(可90设为x()x 90) . x x 9060 4x
90 6x0=3300
答答::这这个个角角的的余余角角的的度度数数为为3300。。
余角与补角
学习目标
1、掌握余角与补角的概念和性质,并能熟 练应用性质进行求值运算。 2、会利用方位角来描述物体的方位。
观赏意大利名胜比萨斜塔
1和 2有什么关系?
1
2
1和 2有什么关系?
1
2
3和 4有什么关系?
43
3和 4有什么关系?
43
2 1
4 3
如果两个角的 和为90 ,就说这两个角互为余角。
互余的互角余是的否两一个定角是一锐定角都?是锐角。
3
1
2
4
如果两个角的 和为180 ,就说这两个角互为补角。
一个角的补角是否一定是钝角?
帮找朋友 的余角 的补角
80
10
100
45
70 39'
45
19 21'
90
135
109 2个角AOB ,但人不能进入围 墙,我们如何去测量这个角的大小呢?
B
CB
1 O
2 1
AO 3
A
D
2 3
2和 3都是1的余角,它们有什么关系?
同角的余角相等
例1 1与2互余,3与4互余,如果2=4, 那么1与3相等吗?为什么?
1 2
3 4
等角的余角相等

人教版数学七年级上册 4.3.3余角与补角课件(共24张PPT)

人教版数学七年级上册 4.3.3余角与补角课件(共24张PPT)

或∠2是∠1的余角
1 解得: x =60
两个锐角之和都等于90° 两个锐角之和都等于90°
角 的余角是
,补角是
O 同一个角的补角比余角大90°
同一个锐角的补角比余角大 ∠1 = 90°—∠2
B
A M 同一个锐角的补角比余角大
已知一个角的补角是这个角的余角的4倍,求这个角的度数
A
M
说明它们相等的原因。
若两个角互补,则一个为锐角,一个为钝角.
同一个角的补角比余角大90°
理解互为余角和互为补角的概念 由题意得180-x=3x
A
DB
( ) (2) ∠1 +∠2+ ∠3=90°,则∠1 、∠2、 ∠3互为余角.
∠1是∠2的余角,
或∠2是∠1的余角
理解互为余角和互为补角的概念
(2)图中哪几对角是相等的角(直角除外)? 如果∠1=∠3,那么∠2与∠4相等吗?为什么?
对应 图形
性质
பைடு நூலகம்同角或等角的 余角相等
同角或等角的 补角相等
提高题:
认真观察下面的图形,回答下列问题: 一般地,如果两个角的和等于90°(直角),就说这两个角互为余角.即其中每一个角都是另一个角的余角。
OC是∠AOB的平分线。
(1)图中有哪几对互余的角? 45°+45°= 90°
(1)图中有哪几对互余的角?
探究:余角和补角的性质 如图∠1 与∠2互余,∠3 与∠4互余 , 如果∠1=∠3,那么∠2与∠4相等吗?为 什么?
1
2
3
4
余角性质: 同角或等角的余角相等
探究:余角和补角的性质 如图∠1 与∠2互补,∠3 与∠4互补 ,如 果∠1=∠3,那么∠2与∠4相等吗?为什么?

人教版七年级上册数学4.3.3余角、补角的概念与性质课件(23张ppt)

人教版七年级上册数学4.3.3余角、补角的概念与性质课件(23张ppt)
(简称互余)
2、什么叫互为补角?
如果两个角的和等于 180 ° ,那么这两个角互为补角。
(简称互补)
反之也成立
1、什么叫互为余角?
如果两个角的和等于 90°,那么这两个角互为余角 (简称互余)
几何语言: ∵∠1+∠2 = 90°, ∴∠1、∠2互为余角
2、什么叫互为补角? 如果两个角的和等于 180∠°1,+那∠么2 这= 两90个°角互为补角
180 ° - ∠AOC
= =
180 °- 115 °
65答° :这个角为
60°。90
°-
∠AOD
答:∠ BOC 的度数为 115 °
能力提升
如图,将两块三角板的直角顶点重叠在一起。
AD
C
20°
70 ° 70 °
O 图1 B
AD
C 40 °50°
40 °
O 图2 B
A
x 90C°- x
D
90 °- x
2、如图,点O为直线AB上的一点,OD平分∠AOB,
∠COE = 90 ° , 则∠BOC = ∠DOE ,
∠COD = ∠AOE .
E
D
C
A
O
B
D
C
1 2 34
E
A
O
B
综合运用
方程的思想
1、一个角的补角是它的余角的 4 倍,求这个角?
2、如图,A、O、B三点在一条直线上, 已知∠ AOD=25 ° ,∠COD=90 °, 求∠ BOC的度数?
D
25 ° O
A
B
C
强化练习,巩固提高
2、1已、如知图一∠,个AA、O角DO=、2的5B三°补点,在角∠一是C条OD直它=9线0的上°,余, 角的 4 倍,

人教版七年级数学上册《余角和补角》课件

人教版七年级数学上册《余角和补角》课件
那么∠2=∠4吗?
因为∠1+∠2= 90° ,
°
∠3+∠4= 90 ,
且∠1=∠3,
所以∠2=∠4.
等角的余角相等.
探索新知
如果∠1与∠2互补,∠3与∠4互补,且∠1=∠3,那
么∠2=∠4吗?
∠2=∠4.
如何证明?
探索新知
已知:∠1与∠2互补,∠3与∠4互补,且∠1=∠3,
求证:∠2=∠4.
证明:因为∠1与∠2互补,
如果两个角的和等于180º(平角),就说这
两个角互为补角,即其中一个角是另一个角的补角.
性质:同角(等角)的余角相等.
同角(等角)的补角相等.
作业:
1. 完成习题4.3中第8,
9题;
2.完成练习册本课时的
习题。
谢谢
21世纪教育网(www.21cnjyX)
中小学教育资源网站
兼职招聘:
https://www.21cnjyX/recruitment/home/admin
方向上,同时,在它北偏东40°、南偏西10°、西北(即北偏西
45°)方向上又分别发现了客轮B,货轮C和海岛D.仿照表示灯塔
方位的方法,画出表示客轮B、货轮C和海岛D方向的射线.
D
西
北40° B
45°
O


60°
10°

A
巩固练习
练习1. 已知∠α=53°27′, ∠α与∠β互为余角,求∠β​​的度数
.
解: 因为∠与∠互为余角(已知),
所以∠ + ∠ = 90°(余角定义),
所以∠ = 90°-∠.
因为∠=53°27′,

所以∠​​ = 90°-​∠​=90°-53°27

人教版数学七年级上册4.余角和补角课件

人教版数学七年级上册4.余角和补角课件

16 . (8 分 ) 如 图 , 已 知 直 线 AB 和 CD 相 交 于 点 O , OM 平 分 ∠ BOD , ON⊥OM,∠AOC=50°. (1)求∠AON的度数; (2)写出∠DON的余角.
解:(1)65° (2)∠DOM,∠MOB
17.(10分)如图,AB是一条直线,OC是一条射线,∠AOC=2∠AOF, ∠BOC=2∠BOE. (1)∠1与∠2互余吗?
解:如图:
19.(12分)如图甲所示,∠AOB,∠COD都是直角. (1)试猜想∠AOD与∠COB在数量上是相等、互余、还是互补的关 系,你能用推理的方法说明你的猜想是否成立吗? (2)当∠COD绕点O旋转到图乙的位置时,你本来的猜想还成立吗?
方位的表示方法
在表示方向时,要先在观测点画出方位图,然后测量出角度并在图 上表示出来,注意表示时要先写北还是南,再写偏东或偏西,偏多
少度,如图4-3-28,OA是表示北偏东30°的 一条射线,OB是表示南偏西50°的一条射线; 特别地,射线OC表示北偏西45°可写成西北 方向,OD表示东南方向.
例题
小结
1. 余角和补角的定义:
如果两个角的和等于
,就说这两个角互为余角;如果两个
角的和为
,就说这两个角互为补角.
2. 余角和补角的性质: 同角(等角)的补角________,同角(等角)的余角_________.
3. 如图,O是直线AB上的点,OC是∠AOB的平分线. (1)∠AOD的补角是__∠__B_O__D___,余角是__∠__C_O__D__; (2)∠DOB的补角是__∠__A__O_D_____. 4. 已 知 ∠ α = 20° , 则 ∠ α 的 余 角 为 _______70,° ∠ α 的 补 角 为 ______1_6_0.° 5. ∠A的补角为130°,则∠A的余角为________4.0°

6.3.3 余角和补角(课件)人教版(2024)数学七年级上册

6.3.3 余角和补角(课件)人教版(2024)数学七年级上册

等角的补角相等
归纳:
类型
性质
数学语言
余角
①如果∠1+∠2=90°,∠1+∠3=90°,
同角(等角) 那么∠2=∠3; 的余角相等 ②如果∠1+∠2=90°,∠3+∠4=90°,
且∠1=∠3,那么∠2=∠4
补角
①如果∠1+∠2=180°,∠1+∠3=180°, 同角(等角) 那么∠2=∠3;
的补角相等 ②如果∠1+∠2=180°,∠3+∠4=180°, 且∠1=∠3,那么∠2=∠4
所以∠3= 180°-∠1, 根据等式的性质,∠2=∠3.
同角的补角相等
思考4:已知:∠1与∠2互为补角,∠3与∠4互为补角, 如果∠1=∠3,那么∠2与∠4相等吗?为什么?
解:因为∠1与∠2互为补角,
所以∠2= 180°-∠1,
又∠3与∠4互为补角,
所以∠4= 180°-∠3,
因为∠1=∠3 根据等式的性质,∠2=∠4.
解:它的余角是 19°21′,补角是 109°21′.
【选自教材P177 练习 第3题】
5. ∠α的补角是它的3倍,∠α是多少度?
解:设∠α= x.则 3x=180°-x,解得 x=45°.所以∠α是 45°
【选自教材P177 练习 第4题】
6.如图,要测量两堵围墙所形成的∠AOB的度数,但人不 能进入围墙,如何测量?
【选自教材P177 练习 第1题】
3.图中给出的各角中,哪些互为余角?哪些互为补角?
解:互为余角的角是 10°和 80°、30°和 60°,互 为补角的角是10°和 170°、30°和 150°、60°和 120°、80°和 100°.
【选自教材P177 练习 第2题】

人教版七年级数学上 4.3.3《余角和补角》课件(共18张PPT)课件

人教版七年级数学上  4.3.3《余角和补角》课件(共18张PPT)课件

理由:由(1)可知∠1+∠2+∠3+∠4=180° 由(2)可知 ∠1+∠3=∠2+∠4=∠1+∠4=∠2+∠3=90°
知识的Ne超twor市k Op,timi生zatio命n Ex的pert狂Tea欢m
第3关:合作展示 求知、求真、求健,求美
2.若一个角的补角是这个角的余角的4倍,求这个角. 解:设这个角是x°, 则 180-x= 4 ( 90-x) 解得x = 60 答:这个角是60°.
第3关:合作展示 求知、求真、求健,求美
1.如下图,点A,O,B在同一条直线上,射线OD和射线OE分别平
分∠AOC和∠BOC,
(1)∠AOC与∠BOC的关系是什么?
互补 (2)图中有哪几对相等的角?
因为OD平分∠AOC,所以∠1=∠2,
23
1
4
同理,∠3=∠4
(3)图中有哪几对互余的角?
∠2和∠3, ∠1和∠4, ∠1和∠3, ∠2和∠4.
的角? ∠1=∠A ,∠2=∠B
因为∠1与∠2互余
因为∠1与∠2互余
∠A与∠2互余恭喜大家∠1!与∠B互余
所以∠1=∠A 闯关所成以功∠2!=∠B
(同角的余角相等) (同角的余角相等)
知识的Ne超twor市k Op,timi生zatio命n Ex的pert狂Tea欢m
课堂小结
求知、求真、求健,求美
思考:直角和平角中,被分成的两个角的度数分别有什 么关系呢?
1 2
3
4
∠1+∠2=__9_0_°,
∠3+∠4=__1_8_0.°
结论:两个角的数量关系与角的位置无关.
知识的Ne超twor市k Op,timi生zatio命n Ex的pert狂Tea欢m
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 2
O
3
(∠1+∠2=90°, ∠2+∠3=90°)
(2)你能发现哪几个角是相等的(直角除外)?
AOC与BOD B
(∠1=∠3)
D
(3)你能用一句话概括以上规律吗?
同角的余角相等
14
3、如图,∠1与∠2互余,∠3与∠4互余,如果∠1=∠3,那 么∠2与∠4相等吗?为什么?你能用一句话概括这一规律吗?
∠2 又∵ ∠1= ∠2
等角的补角相等。
∴ 1800- ∠1= 1800-∠2
4.3.3余角和补角
1
标题添加
点击此处输入相 关文本内容
标题添加
点击此处输入相 关文本内容
总体概述
点击此处输入 相关文本内容
点击此处输入 相关文本内容
2
∠1+∠2有什么关系?
∠1+∠2=900
❖如果两个角的和等于900(直角), 我们就说这两个角互为余角。把其 中一个角称为另一个角的余角
3
❖ 如果 1=300,2=250, 3=350,那么 它们互为余角。 (错)
又∵ ∠1=∠3(已知)
∴ ∠2=∠4(等量代换)
2
1
4 3
补角性质:同角或等角的补角相等 12
动手画图,探索性质
1.请你借助直角三角板,在原图上画出∠COB 所有的余角。
A C
O
B
D
13
四.动手画图,探索性质
2.画完图后请回答下列问题:
A
(1)图中有哪几对互余的角?
C BOC与AOC, BOC与BOD
18
∠1与∠ADC互余 ∠2与∠BDC互余 E (∠1+∠ADC=900)(∠2+∠BDC=900 )
D
1
2
F
(1).∠ADC与∠BDC有什Biblioteka 关系? A 为什么?B C
∵∠1+∠ADC=900, ∠2+∠BDC=900
∴ ∠ADC=900- ∠1, ∠BDC=900-
∠2
又∵ ∠1= ∠2
等角的余角相等。
5
∠1 、∠2互为余角 ∠1+∠2=90° ∠1 、∠2互为补角 ∠1+∠2=180°
•(1)互余、互补是两个角的关系;
∠1的余角是∠2,反之: ∠2 的余角是∠1 ; ∠1的补角是∠2,反之: ∠2 的补角是∠1 ;
•(2)与他们的和(数值)有关,与位置无关; •(3)一个角为X0,则他的余角为 (90-X)0 ,
∴ 900- ∠1= 900-∠2
即∠ADC= ∠BDC
19
∠1与∠ADB互补 ∠2与∠EDB互补 (∠1+∠ADB=1800 )(∠2+∠EDB=1800 )
E
(2).∠ADF与∠BDE有什么 关系?为什么?
A
D
1
2
B C
∵∠1+∠ADF=1800, ∠2+∠BDE=
1800
∴ ∠ADF=1800- ∠1, ∠BDE=1800-
4、互补的两个角不可能相等。
( )
5、钝角没有余角,但一定有补角。(

6、互余的两个角一定都是锐角,两个锐角一定互余.( )
7、如果 A20,5 B 70,5 那 A 么 与 B互 。 (为余 ) 角
8、如果 Ax0, B (9 x) 0 0, 那 A 么 与 B互。余 ( . )
互为余角只是对两个角而言的。
1
❖ 两副直角三角板中, 1=300,2=600,
它们互为余角.(对)
互为余角仅仅表明了两个角
的数量关系,而与角的位置
2
关系无关。
4
12
∠1和∠2有什么关系?
∠1+∠2=1800 ❖ 如果两个 角的和等于1800(平
角),我们就说这两个角互为补 角。把其中一个角称为另一个角 的补角
重要提醒:(如何表示一个角的余角和补角) 锐角∠的余角是(90 °—∠ ) ∠的补角是(180 °—∠ )
8
二、判断题:
1、90度的角叫余角,180度的角叫补角。 ( )
2、若 1 2 390,0 则 1 ,2 ,3互为 ( 余 ) 角.
3、如果一个角有补角,那么这个角一定是钝角。( )
2 1
4
3
答:∠2 与∠4相等。
∵∠1与∠2互余,∠3与∠4互余(已知) ∴ ∠2 = 90°─∠1,∠4 = 90°─∠3(互为余角的定义) ∵ ∠1=∠3(已知) ∴ ∠2 =∠4(等量减等量差相等即“等量代换”)
等角的余角相等
15
互为余角
互为补角
对应图形
1 2
21
数量关系 ∠1+ ∠2 = 90 ° ∠1+ ∠2 = 180 °


同角或等角的 余角相等
同角或等角的 补角相等
16
学以致用
D E
1. ∠1=120 °, ∠1与∠2互补, ∠3 与∠2互余,则∠3= 300 .
2. 2.O为直线AB上的一点,OD平 分∠AOB,∠COE = 90 °
则∠BOC = ∠DOE, C ∠COD = ∠AOE 。
A
OB
17
观察左图,并回答问题: E
2、直角有余角吗? 没有
3、同一个角的补角比它的
余角大多少度?
90°
11
探究:余角和补角的性质 如图∠1 与∠2互补,∠3 与∠4互补 ,如果∠1
=∠3,那么∠2与∠4相等吗?为什么?
∵ ∠1 与∠2互补(已知)
∴ ∠1 +∠2=1800(互为补角定义)
∴ ∠2=1800-∠1 (等式的性质)
同理可知:∠4=1800-∠3
(1)这幅图形中,有几个角(除了 直角和平角外)?
A
D
F
1
2
B C
(2)哪些角互为余角? 哪些角互为补角?
∠1与∠ADC互余 (∠1+∠ADC=900)
∠1与∠ADF互补 (∠1+∠ADF=1800 )
∠2与∠BDC互余 (∠2+∠BDC=900 )
∠2与∠EDB互补 (∠2+∠EDB=1800 )
则他的补角为 (180-X)0 。
6
比一比,看谁填得快
角α
α的余角 α的补角
500 670 23035'
400
230 66025'
1300 1130 156025'
锐角的补角是钝角;
900 1350 100035'
900 450 79025'
直角的补角是直角; 钝角的补角是锐角;
7
练习
一、填空 1、70°的余角是 20° ,补角是 110 ° 。 2、 ∠ ( ∠ <90 ° )的余角是 90°- ∠ ,它的补 角是 180°- ∠ 。
9
例1 若一个角的补角等于它的余角的4 倍,求这
个角的度数。
解:设这个角是x °,则它的补角是(180°-x°), 余角是(90°-x°) 。
根据题意得: (180°-x°)=4 (90°-x°)
解得: x =60 答:这个角的度数是60 °。
一个角的余角和它的补角互补.求这个角。 10
想一想:1、钝角有余角吗? 没有
相关文档
最新文档