-光学基础知识

合集下载

光学工程知识点总结

光学工程知识点总结

光学工程知识点总结1. 光学基础知识光学是物理学中研究光及其相互作用的科学。

在光学领域,我们需要了解光的传播规律、光的波动性质、光的折射、反射、散射等基本知识。

光学的基础知识为光学工程师设计光学系统提供了理论基础。

2. 光学系统设计光学系统设计是光学工程的核心内容之一。

光学系统通常包括光源、透镜、反射镜、光栅等光学元件,以及对光进行探测和分析的部件。

光学系统设计需要考虑光学元件的性能参数、光路的布局、系统成像质量等因素,以实现特定的光学功能。

3. 光学材料光学材料是构成光学系统的重要组成部分。

不同的应用领域对光学材料的性能要求各不相同。

光学材料通常需要具有良好的透明性、高折射率、低散射率等特点,以适应不同的光学系统设计需求。

4. 光学器件制造技术光学器件制造技术是光学工程的重要组成部分。

光学器件通常需要具有高精度、高表面质量和良好的光学性能。

常见的光学器件制造技术包括光学表面精加工、光学薄膜涂覆、光学玻璃加工等。

5. 光学系统测试光学系统测试是保证光学系统性能的重要手段。

光学系统测试需要考虑光学成像、光学畸变、光学材料特性等问题,以验证系统设计和制造过程中的各项性能指标是否符合要求。

6. 光学工程应用光学工程在各个领域都有广泛的应用。

例如,光学通信系统是当今信息传输中最主要的传输方式,光学显微镜在生物科学中有重要的应用,激光技术在材料加工、医疗治疗等领域也有重要应用。

总的来说,光学工程是一门重要的交叉学科,它涉及了光学原理、材料科学、光学器件制造技术等多个领域。

光学工程的发展为现代科技领域的发展提供了重要支撑,也为人类社会的发展带来了诸多便利。

希望本文的介绍能够让读者更好地了解光学工程的相关知识,对此领域有更深入的认识。

光学体系知识点梳理总结

光学体系知识点梳理总结

光学体系知识点梳理总结一、光学基础知识1. 光的本质光是电磁波的一种,是一种由电场和磁场交替而成的波动现象。

光是由光源发出,经过介质传播,最终影响我们的视觉系统。

2. 光的特性(1)波动特性:光具有波动性,可以表现为干涉、衍射、偏振等现象。

(2)微粒特性:光也具有微粒性,可以用光子模型解释光电效应、康普顿效应等现象。

3. 光的传播(1)直线传播:在均匀介质中,光沿着直线传播,遵循光的直线传播定律。

(2)折射现象:当光线从一种介质进入另一种介质时,会发生折射现象,遵循折射定律。

(3)反射现象:当光线从介质表面反射时,遵循反射定律。

4. 光的颜色白光是由所有可见光波长组成的,当光通过色散介质时,不同波长的光会按不同程度发生偏折,从而产生色散现象。

5. 光学仪器(1)凸透镜:透镜是一种光学元件,可以将平行入射的光线聚焦或发散。

(2)凹透镜:凹透镜同样可以将平行入射的光线聚焦或发散,与凸透镜形成对称。

(3)棱镜:通过对光的折射和衍射,可以实现光的分光和复合。

二、光学成像1. 成像原理成像是光学系统中非常重要的一部分,成像原理是指当物体放在一定位置时,通过透镜、镜面等光学元件可以在另一位置产生与实物相似的像。

2. 透镜成像透镜成像是指通过透镜实现对物体的成像,分为凸透镜和凹透镜成像。

3. 成像公式成像公式是描述透镜成像的数学关系式,可以根据物距、像距、焦距等参数计算成像的位置和大小。

4. 像的性质像的性质包括实像与虚像、正像与负像、放大与缩小等,是成像过程中需要了解的重要内容。

5. 透镜组成像透镜组成像是指通过不同透镜的组合实现对物体的成像,常见的透镜组包括双凸透镜组、凹凸透镜组等。

6. 成像畸变(1)球差:由于透镜的非理想性,会出现球差现象,导致成像的模糊和色差。

(2)色差:不同波长的光经过透镜时折射角度不同,会导致色差现象,影响成像的清晰度。

三、光学仪器1. 望远镜望远镜是一种基于透镜或镜面的光学仪器,可以放大远处物体的像,包括折射望远镜和反射望远镜。

光学基础知识详细版

光学基础知识详细版

光学基础知识详细版一、光的本质光是一种电磁波,是自然界中的一种能量传递形式。

光的本质可以通过波动理论和粒子理论来解释。

波动理论认为光是一种波动现象,具有波长、频率、振幅等特性;粒子理论则认为光是由光子组成的,光子是光的能量载体。

二、光的传播光在真空中的传播速度是恒定的,约为299,792,458米/秒。

光在不同介质中的传播速度不同,这是由于介质的折射率不同所致。

当光从一种介质传播到另一种介质时,会发生折射现象,即光线方向发生改变。

三、光的反射和折射光的反射是指光线在遇到界面时,按照一定规律返回原介质的现象。

光的折射是指光线在通过两种不同介质的界面时,传播方向发生改变的现象。

光的反射和折射遵循斯涅尔定律,即入射角和折射角满足一定的关系。

四、光的干涉和衍射光的干涉是指两束或多束相干光波相遇时,由于光波的叠加,形成新的光强分布的现象。

光的衍射是指光波在遇到障碍物或通过狭缝时,发生弯曲并绕过障碍物传播的现象。

五、光的偏振光的偏振是指光波的振动方向具有一定的规律性。

自然光是由无数个振动方向不同的光波组成的,因此不具有偏振性。

当光波通过某些特殊材料或经过反射、折射等过程后,可以形成具有一定偏振性的光波。

六、光的吸收和发射光的吸收是指光波在传播过程中,能量被物质吸收的现象。

光的发射是指物质在吸收光能后,以光波的形式释放能量的现象。

光的吸收和发射遵循一定的规律,如光的吸收强度与光的频率有关,光的发射强度与物质的性质有关。

七、光的成像光的成像是指利用光学系统(如透镜、反射镜等)使物体发出的光波或反射的光波在另一位置形成实像或虚像的过程。

光的成像原理是光的折射和反射现象,通过光学系统可以实现对物体形状、大小、位置的观察和研究。

八、光的测量光的测量是光学研究中的重要内容,主要包括光强、光强分布、波长、频率、相位等参数的测量。

光的测量方法有直接测量和间接测量两种,直接测量是通过光学仪器直接测量光波参数,间接测量是通过测量光波与物质相互作用的结果来推算光波参数。

光学基础知识点总结

光学基础知识点总结

光学基础知识点总结一、光的基本特性光是电磁波的一种,具有波粒二象性,既具有波动性,也具有粒子性。

光的波长决定了它的颜色,波长越短,频率越高,颜色就越偏向紫色;波长越长,频率越低,颜色就越偏向红色。

媒质对光的传播起到了阻碍的作用,阻碍的程度由折射率决定。

在真空中,光速是最高的,为3.0×10^8m/s。

二、光的传播光在真空中的传播速度是最快的,当光通过不同介质时,光速会减慢,并且折射。

光的折射是由于光速在不同介质中的差异导致的,根据折射定律,入射角和折射角之比等于两种介质的折射率之比。

当光从光密介质射向光疏介质时,入射角大于折射角;反之,当光从光疏介质射向光密介质时,入射角小于折射角。

这就是为什么水池里的东西看上去都有些歪的原因。

三、光的反射和折射光的反射是指光线从一种介质透过到另一种介质时,遇到界面时发生的现象。

根据反射定律,光线的入射角等于反射角,反射定律表明入射角和反射角是相等的。

光的折射是指光在通过两种介质的分界面时,由于介质折射率的不同,在两种介质中的传播方向发生改变的现象。

四、光的干涉和衍射光的干涉是光波相互叠加,在波峰与波谷相遇时叠加会增强,而在波峰与波峰相遇时叠加会减弱。

光的干涉现象有两种:一种是菲涅尔干涉,一种是朗伯干涉。

光的衍射是指光波通过一道障碍物,由于波的直线传播受到限制,在障碍物边缘处波前发生变形,这种现象就是衍射。

光的干涉和衍射是光学中非常重要的现象,也是很多光学仪器(如干涉仪、衍射光栅等)的原理基础。

五、光学成像光学成像是指通过光学器件将物体的形象投射到屏幕或者成像器件上的过程。

根据成像光学器件的不同,光学成像可以分为透镜成像和反射镜成像。

在透镜成像中,成像的原理是由于透镜对光的折射性质,使得光线汇聚或发散从而产生物体的形象。

在反射镜成像中,成像的原理是由于反射镜对光的反射性质,使得光线经过反射后,同样能够形成物体的形象。

光学成像技术在医学、军事、天文学、摄影等领域都有着非常重要的应用。

光学基础知识

光学基础知识

光学加工基础知识§1 光学玻璃基本知识一. 基本分类和概念光学材料分类:光学玻璃、光学晶体、光学塑料三类。

玻璃的定义:不论化学成分和固化温度范围如何,一切由熔体过冷却所得的无定形体,由于粘度逐渐增加而具有固体的机械性质的,均称为玻璃。

光学玻璃分为冕牌K 和火石F 两大类,火石玻璃比冕牌玻璃具有较大的折射率nd 和较小的色散系数vd 。

二. 光学玻璃熔制过程将配合料经过高温加热,形成均匀的,高品质的,并符合成型要求的玻璃液的过程,称玻璃的熔制。

玻璃的熔制,是玻璃生产中很重要的环节.,玻璃的许多缺陷都是在熔制过程中造成的, 玻璃的产量、质量、生产成本、动力消耗、熔炉寿命等都与玻璃的熔制有密切关系。

混合料加热过程发生的变化有:物理过程配合料的加热,吸附水的蒸发,单组分的熔融,个别组分挥发.某些组分的多晶转变。

化学过程---- 固相反应,盐的分解,水化物分解,结晶水的排除,组分间的作用反应及硅酸盐的形成。

物理化学过程------ 低共熔物的组分和生成物间相互溶解,玻璃与炉气介质,耐火材料相互作用等。

上述这些现象的发生过程与温度和配合料的组成性质有关. 对于玻璃熔制的过程,由于在高温下的反应很复杂,尚待充分了解,但大致可分为以下几个阶段。

1. 加料过程硅酸盐的形成2. 熔化过程玻璃形成3. 澄清过程-----消除气泡4. 均化过程------消除条纹5. 降温过程——调节粘度6. 出料成型过程总之,玻璃熔制的每个阶段各有其特点,同时,它们又是彼此互相密切联系和相互影响的•在实际熔制中,常常是同时或交错进行的,这主要取决于熔制的工艺制度和玻璃窑炉结构特点。

三. 玻璃材料性能1 .折射率nd、色散系数vd根据折射率和色散系数与标准数值的允许差值,光学玻璃可以分为五类2. 光学均匀性光学均匀性指同一块玻璃中折射率的渐变。

玻璃直径或边长不大于150mm,用鉴别率比值法玻璃分类如表1-2。

1类或2类还应测星点。

光学知识基础

光学知识基础

光学知识基础一、光学基本概念光学是研究光的行为和性质的物理学科。

它探讨了光在真空、气体、液体和固体中的传播规律,以及光的产生、变化和相互作用。

光可以看作是一种电磁波,其波长范围覆盖了从伽马射线、X射线、紫外线和可见光到红外线、微波和无线电波的广泛频谱。

在光学中,有几个重要的基本概念需要理解。

首先是光的波动性,即光在传播过程中表现出振动的特性,具有相位和波长。

其次是光的粒子性,即光是由粒子或光子组成的,这些粒子具有能量和动量。

此外,光学还涉及到光的干涉、衍射、反射、折射等现象,以及光学仪器和系统的工作原理。

二、光学元件与仪器光学元件和仪器在科学实验、工业生产、通信、医疗等领域有广泛应用。

常见的光学元件包括透镜、反射镜、棱镜、滤光片、光栅等。

这些元件可以单独使用,也可以组合在一起形成复杂的系统,以实现特定的光学功能。

例如,透镜是由两个曲面组成的,可以会聚或发散光。

反射镜由涂有金属反射层的玻璃制成,可以反射光线。

棱镜可以将一束光分成不同颜色的光谱。

滤光片可以过滤特定波长的光,而光栅则由一系列狭缝或反射线组成,用于分光或成像。

常见的光学仪器包括显微镜、望远镜、照相机、投影仪等。

显微镜用于观察微小物体,望远镜用于观察远处物体,照相机用于记录图像,投影仪则用于展示图像或视频。

这些仪器利用了光的折射、反射、干涉和衍射等原理,以实现清晰、准确的成像。

三、光学应用光学在许多领域都有广泛的应用。

在科学研究方面,光学显微镜可用于观察生物样品,光谱仪可用于分析物质成分,激光雷达可用于地形测量和遥感监测等。

在工业生产方面,光学成像系统可用于产品质量检测,光学传感器可用于自动化生产线控制,激光加工可用于切割、打标和焊接等。

在通信领域,光纤通信利用光的传输速度快、抗干扰能力强等优点,已成为现代通信的主流方式。

在医疗领域,光学仪器可用于诊断和治疗,如内窥镜、激光手术刀等。

此外,光学还在照明、显示、传感等领域有广泛的应用。

四、光的干涉与衍射光的干涉是指两束或多束相干光波在空间某一点叠加时,产生明暗相间的干涉现象。

光学必备知识点总结图解

光学必备知识点总结图解

光学必备知识点总结图解光学是研究光的传播、反射、折射以及与物质相互作用的一门学科。

在现代科技中,光学应用广泛,包括光纤通信、激光技术、光学显微镜、望远镜、光学测量等方面。

因此,了解光学的基本知识对于我们理解现代科技、发展科学技术至关重要。

在本文中,将对光学的基本知识点进行总结,包括光的性质、光的传播、折射、反射、色散、光学仪器等方面的知识点,希望对读者有所帮助。

一、光的性质1. 光的波动性光具有波动性质,即光是以波的形式传播的。

光波的传播方式可以用波长、频率、波速来描述。

光的波长决定了光的颜色,不同波长的光对应不同的颜色。

波长和频率之间有着一定的关系,即速度等于波长乘以频率。

在真空中,光的波速是一个恒定值,即光速等于约299,792,458米/秒,记作c。

2. 光的粒子性光也具有粒子性质,即光是由一些微小的粒子组成的。

这些粒子被称为光子,是光的一个基本单位。

光的粒子性质可以用来解释一些光学现象,如光电效应、康普顿散射等。

3. 光的干涉和衍射干涉是指两束相干光叠加在一起时会产生明暗条纹的现象。

衍射是指光通过狭缝或物体边缘时会发生偏折的现象。

这两个现象是光的波动性质的重要体现。

二、光的传播1. 光的直线传播在均匀介质中,光沿着一条直线传播。

这是光学的一个基本原理,也是光学成像的基础。

2. 光的折射当光线从一种介质射入到另一种介质中时,光线会发生折射。

折射定律表明了入射角、折射角和介质折射率之间的关系。

这个定律对于理解光在介质中的传播有着重要的意义。

3. 光的反射当光线与界面垂直入射时,光线会发生反射。

反射定律规定了入射角和反射角之间的关系。

反射还可以产生镜面反射和漫反射两种形式。

三、光的折射1. 透镜透镜是一种光学器件,主要分为凸透镜和凹透镜两种。

透镜可以将平行光线汇聚成一个点,也可以将一点光源产生的光线汇聚成一个点。

透镜的焦距决定了透镜的成像性能。

2. 成像原理成像原理是指由透镜成像的规律。

通过透镜,可以将物体成像到焦平面上,形成实物像或虚物像。

光学基础知识科普

光学基础知识科普

光学基础知识科普光学是研究光的传播、反射、折射、干涉、衍射和吸收等现象的科学。

它是物理学的一个重要分支,也是现代科技的基础之一。

本文将从光的本质、光的传播、光的反射和折射以及光的干涉和衍射等方面进行科普介绍。

一、光的本质光是一种电磁波,它是由电磁场和磁场相互作用产生的。

光的特点有三个:光是一种电磁波,光速是一定的,光是一种能量传播的波动。

二、光的传播光的传播是一种直线传播,即光沿着直线路径传播。

当光遇到障碍物时,会发生反射、折射和散射等现象。

反射是光线遇到平面或曲面时,沿着入射角等于反射角的方向发生反射;折射是光线从一种介质进入另一种介质时,由于介质的不同密度导致光线的传播方向发生改变;散射是光线照射到不规则表面或介质中的微粒上,由于微粒的不规则形状导致光线的传播方向发生随机改变。

三、光的反射和折射光的反射是指光线遇到平面或曲面时,沿着入射角等于反射角的方向发生反射。

反射的规律有两个:入射角等于反射角,入射光线、反射光线和法线在同一平面上。

光的折射是指光线从一种介质进入另一种介质时,由于介质的不同密度导致光线的传播方向发生改变。

折射的规律有两个:入射角、折射角和两种介质的折射率之间满足斯涅尔定律,入射光线、折射光线和法线在同一平面上。

四、光的干涉和衍射光的干涉是指两束或多束光线相遇时,由于光的波动性质而产生的明暗相间的干涉条纹。

干涉分为两种:相干干涉和非相干干涉。

相干干涉是指两束或多束光线具有相同的频率和相位差,可以产生明暗相间的干涉条纹;非相干干涉是指两束或多束光线的频率和相位差不同,产生的干涉条纹比较模糊。

光的衍射是指光通过小孔、小缝或绕过障碍物后发生偏离直线传播的现象。

衍射的程度与波长和孔径的大小有关,波长越长、孔径越小,衍射现象越明显。

衍射现象广泛应用于光学仪器和光学材料的研究中。

总结起来,光学基础知识科普主要包括光的本质、光的传播、光的反射和折射以及光的干涉和衍射等内容。

光学的研究对于我们理解光的行为规律、应用光学技术和开展光学工程都具有重要意义。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

光学基础知识物理学的一个部门。

光学的任务是研究光的本性,光的辐射、传播和接收的规律;光和其他物质的相互作用(如物质对光的吸收、散射、光的机械作用和光的热、电、化学、生理效应等)以及光学在科学技术等方面的应用。

17世纪末,牛顿倡立“光的微粒说”。

当时,他用微粒说解释观察到的许多光学现象,如光的直线性传播,反射与折射等,后经证明微粒说并不正确。

1678 年惠更斯创建了“光的波动说”。

波动说历时一世纪以上,都不被人们所重视,完全是人们受了牛顿在学术上威望的影响所致。

当时的波动说,只知道光线会在遇到棱角之处发生弯曲,衍射作用的发现尚在其后。

1801年杨格就光的另一现象(干涉)作实验(详见词条:杨氏干涉实验)。

他让光源S的光照亮一个狭长的缝隙S,这个狭缝就可以看成是一条细长的光源,从这个光源射出的光线再通1 过一双狭缝以后,就在双缝后面的屏幕上形成一连串明暗交替的光带,他解释说光线通过双缝以后,在每个缝上形成一新的光源。

由这两个新光源发出的光波在抵达屏幕时,若二光波波动的位相相同时,则互相叠加而出现增强的明线光带,若位相相反,则相互抵消表现为暗带。

杨格的实验说明了惠更斯的波动说,也确定了惠更斯的波动说。

同样地,19世纪有关光线绕射现象之发现,又支持了波动说的真实性。

绕射现象只能借波动说来作满意的说明,而不可能用微粒说解释。

20世纪初,又发现光线在投到某些金属表面时,会使金属表面释放电子,这种现象称为“光电效应”。

并发现光电子的发射率,与照射到金属表面的光线强度成正比。

但是如果用不同波长的光照射金属表面时,照射光的波长增加到一定限度时,既使照射光的强度再强也无法从金属表面释放出电子。

这是无法用波动说解释的,因为根据波动说,在光波的照射下,金属中的电子随着光波而振荡,电子振荡的振幅也随着光波振幅的增强而加大,或者说振荡电子的能量与光波的振幅成正比。

光越强振幅也越大,只要有足够强的光,就可以使电子的振幅加大到足以摆脱金属原子的束缚而释放出来,因此光电子的释放不应与光的波长有关。

但实验结果却违反这种波动说的解释。

爱因斯坦通过光电效应建立了他的光子学说,他认为光波的能量应该是“量子化”的。

辐射能量是由许许多多分立能量元组成,这种能量元称之为“光子”。

光子的能量决定于方程E=hν式中E=光子的能量,单位焦耳-34h=普朗光常数,等于6.624?10焦耳?秒ν=频率。

即每秒振动数。

ν=c/λ,c为光线的速度,λ为光的波长。

现代的观念,则认为光具有微粒与波动的双重性格,这就是“量子力学”的基础。

在研究和应用光的知识时,常把它分为“几何光学”和“物理光学”两部分。

适应不同的研究对象和实际需要,还建立了不同的分支。

如光谱学,发光学、光度学,分子光学、晶体光学,大气光学、生理光学和主要研究光学仪器设计和光学技术的应用光学等等。

严格地说,光是人类眼睛所能观察到的一种辐射。

由实验证明光就是电磁辐射,这部分电磁波的波长范围约在红光的0.77微米到紫光的0.39微米之间。

波长在0.77微米以上到1000微米左右的电磁波称为“红外线”。

在0.39微米以下到0.04微米左右的称“紫外线”。

红外线和紫外线不能引起视觉,但可以用光学仪器或摄影方法去量度和探测这种发光物体的存在。

所以在光学中光的概念也可以延伸到红外线和紫外线领域,甚至X射线均被认为是光,而可见光的光谱只是电磁光谱中的一部分。

物理学上指能发出一定波长范围的电磁波(包括可见光与紫外线、红外线和X光线等不可见光)的物体。

通常指能发出可见光的发光体。

凡物体自身能发光者,称做光源,又称发光体,如太阳、恒星、灯以及燃烧着的物质等都是。

但像月亮表面、桌面等依靠它们反射外来光才能使人们看到它们,这样的反射物体不能称为光源。

在我们的日常生活中离不开可见光的光源,可见光以及不可见光的光源还被广泛地应用到工农业,医学和国防现代化等方面。

光源主要可分为:热辐射光源,例如太阳、白炽灯、炭精灯等;气体放电光源,例如,水银灯、荧光灯等。

激光器是一种新型光源,具有发射方向集中、亮度高,相干性优越和单色性好的特点。

光学中以光的直线传播性质及光的反射和折射规律为基础的学科。

它研究一般光学仪器(如透镜、棱镜,显微镜、望远镜、照相机)的成像与消除像差的问题,以及专用光学仪器(如摄谱仪、测距仪等)的设计原理。

严格说来,光的传播是一种波动现象,因而只有在仪器的尺度远大于所用的光的波长时,光的直线传播的概念才足够精确。

由于几何光学在处理成像问题上比较简单而在大多数情况下足够精确,所以它是设计光学仪器的基础。

光学中研究光的本性以及光在媒质中传播时各种性质的学科。

物理光学过去也称“波动光学”,从光是一种波动出发,能说明光的干涉、衍射和偏振等现象。

而在赫兹用实验证实了麦克斯韦关于光是电磁波的假说以后,物理光学也能在这个基础上解释光在传播过程中与物质发生相互作用时的部分现象,如吸收,散射和色散等,而且获得一定成功。

但光的电磁理论不能解释光和物质相互作用的另一些现象,如光电效应、康普顿效应及各种原子和分子发射的特征光谱的规律等;在这些现象中,光表现出它的粒子性。

本世纪以来,这方面的研究形成了物理光学的另一部门“量子光学”。

光源发出之光,通过均匀的介质时,恒依直线进行,叫做光的直进。

此依直线前进之光,代表其前进方向的直线,称之为“光线”。

光线在几何光学作图中起着重要作用。

在光的直线传播,反射与折射以及研究透镜成像中,都是必不可少且要反复用到的基本手段。

应注意的是,光线不是实际存在的实物,而是在研究光的行进过程中细窄光束的抽象。

正像我们在研究物体运动时,用质点作为物体的抽像类似。

指地球进入月球的本影中,太阳被遮蔽的情形。

当太阳、月球和地球在同一条直线上时便会发生。

月球每月都会处于太阳与地球之间,不过日食并不能每月看到,这是因为白道(月球的轨道)平面对地球轨道有5?的倾角。

月球可能时而在黄道之上或时而在黄道之下,故其阴影不能落在地球上。

只有当太阳、月球和地球在一直线内,才能产生日蚀。

如果地球的某一部分在月影之内,即发生日蚀;日蚀有全蚀、偏蚀、环蚀三种。

地球上的某些地方正位于月球的影锥之内(即在基本影之内)这些地方就能观看到日全蚀。

锥外虚影所射到的地方(即半影内的地方)则看到偏蚀。

月球离地球较远的时候,影锥尖端达不到地面,这时从圆锥的延长线中央部分看太阳的边缘,还有狭窄的光环,这就是发生的环蚀现象。

环蚀在亚洲,一百年中只能遇见十几次,在一个小地区欲见环蚀者,数百年也难得有一次机会。

月影投到地面上,急速向西走,所以某一地点能够看见的全蚀时间非常的短,最长不过七分半钟,平均约3分。

日全蚀带的宽度,平均约160公里。

在某一地点能够看见日全蚀的机会,非常的少;平均360年只有一次。

日全蚀的机会虽少,而需要观测和研究的问题甚多。

例如日月相切时刻的测定。

爱因斯坦引力说的证明等等。

在我国古代称之为岁星,是九大行星中最大也最重的行星,它的直径比地球的直径大11倍,它的质量也比地球重317倍。

它的自转周期为9.842小时,是所有行星中最快的一个。

木星上的大气分布很广阔,其组成含氢(H)2氮(N)、沼气(甲烷CH)及氨气(NH),因此,其表面完全为昏暗所笼罩着。

243木星离地球的距离为628 220 000公里,它的赤道直径为142 804公里,比地球要大11倍。

虽然它是太阳系最大的一颗行星,但它却有最短的自转周期,比起地球的一天短了14小时6分钟;故知它是以极其惊人的速度不停地自转着,就是在其赤道上的某一质点最少也以时速45 000公里的速度卷旋前进着。

离心力在赤道地带也大得惊人,结果便造成赤道的凸出,使此行星变成如一个压扁的橙子一样。

木星有四颗大卫星,被命名为木卫一、木卫二…,都能用小望远镜看到,甚至有人能用肉眼观察到。

显然它们的体积必定相当可观,它们的直径木卫一约是3719公里,木卫二约是3139公里,木卫三约是5007公里,木卫四约是5184公里。

在这四颗卫星中,最靠近木星表面的一颗就是木卫一。

由于巨大的卫星引力。

木卫一只能以42小时半的时间环绕木星一周。

在这些木卫环绕木星的过程中,它们有时在木星之后所谓被掩,有时在木星的阴暗面,称为蚀,有时在木星前叫作凌犯。

当地球位于太阳和月球之间而且是满月时,进入地影的月球,就会发生月蚀。

月球全部走到地影中的时候,叫做全蚀;只有一部分进入本影的时候,叫做偏蚀。

月全蚀的时候可分做五象,当月球和本影第一次外切的时候,叫做初亏;第一次内切的时候叫做蚀既;月心和本影中心距离最近的时候,叫做蚀甚;当月球和本影第二次内切的时候,叫做生光;第二次外切的时候叫做复圆。

偏蚀时,只有初亏、蚀甚、复圆三种现象。

月蚀现象一定发生于望(阴历十五)的时候;但是望的时候,未必发生月蚀。

这是因为白道(月球运行轨道)和黄道(地球运行的轨道)不相一致的缘故。

但望时的月球如果距离交点太远,将不能发生月蚀;必须在某一定距离之内,才可以发生月食,这一定的界限,叫做月蚀限;这限界是随日、月、地球的距离和白道交角的变化而略有变动,最大值为12.2?,最小值为9.5?。

月蚀最长时共维持3小时40分,其中1时40分为全蚀,其余两小时为偏蚀。

月蚀如在地平以上发生,则因地球自转,故可见地区超过半个地球。

月全蚀时因地球大气反射红光进入地影,故可见古铜色微光之月面。

月蚀次数虽较少,但见蚀带极广,而日蚀带狭窄,故同一地区之居民,看见月蚀之次数较日蚀多。

一般指光在真空中的传播速度。

真空中的光速是物理学的常数之一,它的特征是:(1)一切电磁辐射在真空中传播的速率相同,且与辐射的频率无关;(2)无论在真空中还是在其他物质媒质中,无论用什么方法也不能使一个信号以大于光速c的速率传播;(3)真空中光速与用以进行观测的参照系10无关。

如果在一伽利略参照系中观察到某一光信号的速率为c=2.99793?10厘米/秒,那么,在相对此参照系以速度v平行于光信号运动的另一个伽利略参照系中,所观测到的光信号一定也是c,而不是c+v(或c-v),这就是相对论的基础;(4)电磁学理论中的麦克斯韦方程和罗伦兹方程中都含有光速。

当用高斯单位来写出这两个方程时,这一点特别明显。

光在真空中的速度为c,在其他媒质中,光的速度均小于c,且随媒质的性质和光波的波长而不同。

伽利略曾经建议,使光行一段7.5千米的路程以测定其速度,但因所用的设备不完善而未成功。

此后,直到1675年,丹麦学者罗默在巴黎求得光速之可用数值。

罗默把他的观察扩展到宇宙之间,而其所用的研究对象则为木星卫星的成蚀。

这些卫星之中最内层的因此,每经过此一周期之间隔,M便再次进入木星J之阴影中,而使地球上的观察者暂时无法看到它。

罗默发现,当地球E环绕太阳S作公转木星卫星的成蚀要迟14秒钟会才发生;又当地球在同一时间(即至于木星卫星的实际绕转周期,则可根据地球公转到E或E时所作之观测58 2求得。

相关文档
最新文档