离子交换法
离子交换法方程式

离子交换法方程式
(原创实用版)
目录
1.离子交换法的定义和原理
2.离子交换法的应用领域
3.离子交换法的方程式及其解析
正文
一、离子交换法的定义和原理
离子交换法是一种常用的物质分离和纯化方法,其基本原理是利用离子交换剂与待处理溶液中的离子进行交换,从而达到分离和纯化的目的。
离子交换剂通常是一种具有固定电荷和不同交换基团的高分子物质,它可以与溶液中的离子发生可逆的吸附和解吸附反应。
二、离子交换法的应用领域
离子交换法广泛应用于化学、生物学、环境科学等领域,主要用途包括:水处理、离子分离和浓缩、离子交换色谱、电镀废水处理等。
三、离子交换法的方程式及其解析
离子交换法的基本方程式如下:
R-H+ + Na+ → R-Na+ + H+
其中,R-H+ 代表待处理的阳离子,Na+ 代表交换剂上的可交换阳离子,R-Na+ 代表交换后的产物。
从方程式中可以看出,离子交换法的过程是一个动态平衡过程,其交换速度和交换效率受到多种因素的影响,如交换剂的物理和化学性质、溶液的 pH 值、反应时间等。
第1页共1页。
离子交换法

离子交换法简介离子交换法是一种常用的分离和提纯离子的方法。
它利用固体材料中存在的离子交换树脂来与溶液中的离子进行交换,并实现离子的选择性分离和浓缩。
离子交换法具有操作简便、工艺灵活、效果好等优点,被广泛应用于水处理、制药、饮料工业等领域。
原理离子交换法基于离子的化学性质和固体材料的物理性质,通过离子交换树脂将固态材料与溶液中的离子进行交换。
离子交换树脂是一种具有特殊结构的聚合物,其表面带有一定的正负电荷。
当离子溶液通过离子交换树脂时,其中的离子会与树脂表面的离子发生电荷交换,使离子从溶液中被吸附到固体材料上。
离子交换树脂可以根据其具有的功能基团而分为阳离子交换树脂和阴离子交换树脂。
阳离子交换树脂具有负电荷,可吸附并固定阳离子,阴离子交换树脂具有正电荷,可吸附并固定阴离子。
在实际应用中,通常使用一定的工艺步骤和反应条件,调节离子交换树脂与溶液中离子之间的交换效率和选择性。
应用离子交换法在许多领域得到了广泛的应用。
水处理离子交换法在水处理中起着重要的作用。
水中的硬度主要由钙和镁离子引起,在水中存在一定量的钠、钾和氢离子。
使用针对特定离子的离子交换树脂,可以将水中的硬度离子与树脂上的钠、钾或氢离子进行交换,从而降低水中的硬度。
此外,离子交换法还可以去除水中的有害离子,如重金属离子、铵离子等。
制药在制药过程中,离子交换法常用于药物的纯化和提纯。
药物中常常存在各种离子杂质,通过选择性吸附这些离子杂质的离子交换树脂,可以有效地将其从溶液中去除,并得到纯净的药物。
饮料工业离子交换法在饮料工业中也发挥着重要作用。
饮料中常常存在着对人体健康有害的重金属离子和有机物。
通过使用离子交换树脂,可以去除饮料中的这些有害成分,提高饮料的质量和安全性。
实施步骤离子交换法的具体实施步骤如下:1.选择适当的离子交换树脂。
根据需要从阳离子交换树脂和阴离子交换树脂中选择合适的材料。
2.准备离子交换树脂。
将离子交换树脂按照要求进行预处理,如清洗、活化等。
三种离子交换法处理重金属废水的工艺介绍

三种离子交换法处理重金属废水的工艺介绍重金属废水来自矿山选矿、机械加工、钢铁冶炼、稀有贵金属和一些化工企业。
不可降解,排放不合格废水会造成严重的环境污染。
艾柯重金属废水处理设备是一种高效、稳定的废水处理设备,采用离子交换法进行处理,可以有效去除水中的重金属离子,是一种环保、节能、经济的废水处理解决方案。
离子交换法工艺原理:离子交换法是利用重金属离子与离子交换树脂进行交换,降低废水中重金属浓度,达到净化废水的方法。
离子交换树脂为粒状材料,其结构单元由三部分组成,即不溶性的三维空间网络骨架、与骨架相连的官能团和官能团所携带的电荷相反的可交换离子。
常见的离子交换树脂有阳离子交换树脂、阴离子交换树脂、螯合树脂和腐殖酸树脂。
阳离子交换树脂法:阳离子交换树脂分为强酸性离子交换树脂(R-SO3-)和弱酸性离子交换树脂(R-COO-)。
前者离解性强,适应于在强碱和强酸条件下产生离子交换作用,可以交换所有金属离子;后者的离子性质不太明显,在酸碱值较低的条件下进行离解和离子交换相对比较困难,只有处理碱性,中性或微酸性溶液效果较好。
仅可交换弱碱性中的阳离子如Ca2+、Mg2+,对于强碱中的离子如Na+、K+等无法进行交换。
阳离子交换树脂几乎适用于所有重金属阳离子的去除,如Cu2+、Pb2+、Zn2+等。
阴离子交换树脂法:重金属阴离子交换树脂分为强碱性离子交换树脂(-NR3OH)和弱碱性离子交换树脂(-NH2、-NHR、NR2)。
同样地,前者离解性强,适应于在强碱和强酸条件下产生离子交换作用,可以交换所有阴离子;后者离子性较弱,只能在中性或酸性条件(如pH1~9)下工作。
阴离子交换树脂可适用于金属络合阴离子的吸附交换,如金属氰化络合阴离子、金属氯化络合阴离子、铬酸根等的去除。
螯合离子树脂法:螯合离子树脂法区别于上述所述阴阳离子交换树脂法,其离子交换作用是通过化学键力,而不是通过静电吸附作用力。
螯合离子交换树脂是借助具有螯合能力的基团,通过螯合作用能对特定离子进行选择性吸附并进行离子交换的树脂。
4 离子交换

二阶对一阶离子交换反应通式为:
2RA B2 R2 B 2 A
其离子交换选择系数为
K
B* A
[ R 2 B][ [RA]2[
A ]2 B2 ]
y (1 y)2
. (1 x)2 x
E C
0 0
.K
B A
式中
K
B* A
—表观选择性系数;
✓ 按设备的功能分为:阳离子交换器、阴离子交换器和混
合比离子交换器
✓ 固定床离子交换器间歇工作过程
1. 离子交换过程
在床层穿透以前,树脂分属于饱和区、交换区和未用区,真 正工作的只有交换区内树脂交换区的厚度取决于所用的树脂、 离子种类和浓度以及工作条件。
从交换带来讲, 要经历两个阶段: 1)形成阶段; 2)下移阶段。
Na+
Na+
OH Na+
CO+lH--++OOH+H-Cl-+ +
ClOH
-
OH-Cl- Na+
交换前
交换达到平衡后
强酸性苯乙烯型阳离子交换树脂
大孔弱碱性苯乙烯型阴离子交换树脂
阳离子交换树脂的强弱顺序:
R—SO3H>R—CH2SO3H>R—PO3H2>R—COOH>R—OH 磺酸基 次甲基磺酸基 磷酸基 羧酸基 酚基
1.非中性盐的分解反应:
R(COOH)2+Ca(HCO3)2 → R(COO)2Ca+2H2CO3 R=NH2OH+NH4CL → R=NH2CL+ NH4OH
2.强酸或强碱的中和反应:
第四章离子交换法

离子交换树脂的结构 离子交换树脂是具有特殊网状结构的高分子化合物,由空间
网状结构骨架(即母体)和附着在骨架上的许多活性基团所构成。 活性基团遇水电离,分成:固定部分和活动部分
2020/7/9/00:29:39
5
树脂的网络骨架
2020/7/9/00:29:38
6
2.2离子交换树脂的分类 一般按树脂所带功能团的性质不同分为阳离子交换树
2020/7/9/00:29:38
1
离子交换法的应用: (1)从贫液中富集和回收有价金属:贵金属和稀有金属; (2)提纯化合物和分离性质相似的元素:稀土分离; (3)处理某些工厂的废水; (4)生产软化水。
2020/7/9/00:29:38
2
第二节 离子交换树脂及其性能
2.1离子交换树脂的结构
(1)高分子部分:聚苯乙烯或聚丙烯酸酯等。连接树脂 的功能团的作用。
柱上离子交换分为运动树脂床和固定树脂床。
交换柱内离子交换过程:B A B A
柱上中层为交换层。
2020/7/9/00:29:39
28
漏穿容量 (V V1 )C mol / L
废水中只有一种离子B+
V2
V 至漏穿时流过的料液体积;V1 树脂床的空隙体积;
进水(C0)
C V2 树脂床的体积;C 料液中金属离子浓度。
(c V)Na OH 交换容量=
(c
V)
HCl
100 25
m 树脂(g)
100
0.1100 0.112.5
25 5(mmol.g 1 )
1
阳离子交换树脂: 交换容量= c V NaOH NaOH c HCl VHCl
干树脂质量 (g)
水污染治理中的离子交换法

主要内容: 主要内容:
离子交换剂 离子交换工艺和设备 L 离子交换法的应用及问题 L
2012-4-15
2
一、离子交换剂
• 1、离子交换剂的分类 L • 2、离子交换树脂的结构 L 离子交换树脂的结构 • 3、离子交换树脂的种类 L • 4、离子交换树脂的性能 L 离子交换树脂的性能
平衡交换容量> 全(总)交换容量 > 平衡交换容量 工作交换容量
2012-4-15 10
2)选择性
• 离子交换树脂对水中某种离子能优先交换的性能称 离子交换树脂对水中某种离子能优先交换的性能称 优先交换 为选择性。 选择性。 • 它表征树脂对不同离子亲和力的差别,是决定离子 它表征树脂对不同离子亲和力的差别, 亲和力的差别 交换法处理效率的一个主要因素。 交换法处理效率的一个主要因素。 • 选择性大小用选择性系数来表征。以A型树脂交换溶 选择性大小用选择性系数来表征。 选择性系数来表征 液中的B离子的反应为例: 液中的B离子的反应为例:RA + B ⇔ RB + A,交换 , 反应达动态平衡时, 交换B的选择性系数为: 反应达动态平衡时,A交换B的选择性系数为:
R-SO3 -
- H+
固定离子: 固定离子: SO3-
活性基团: 活性基团: SO3-H+
2012-4-15
活动离子(可交换离子) 活动离子(可交换离子): H+
6
3、离子交换树脂的种类
• 按功能基团的性质分: 按功能基团的性质分:
阳离子交换树脂 阴离子交换树脂 强酸性阳离子交换树脂( 强酸性阳离子交换树脂(如-SO3H) 阳离子交换树脂 弱酸性阳离子交换树脂 阳离子交换树脂( 弱酸性阳离子交换树脂(如-COOH) 强碱性阴离子交换树脂( 强碱性阴离子交换树脂(如R4NOH) 阴离子交换树脂 弱碱性阴离子交换树脂 阴离子交换树脂( 弱碱性阴离子交换树脂(如-NH3OH)
离子交换法和反渗透
离子交换法和反渗透离子交换法和反渗透是两种常见的水处理技术,用于去除水中的杂质和提高水质。
本文将分别介绍离子交换法和反渗透的原理、应用和优缺点。
一、离子交换法离子交换法是一种通过固液相之间离子交换的方法来实现水处理的技术。
其原理是利用具有交换性能的固体材料,将水中的离子与固体材料上的离子进行交换,从而去除水中的杂质。
离子交换法主要通过离子交换树脂来实现。
离子交换树脂是一种高分子化合物,具有很强的离子交换能力。
当水流经过离子交换树脂时,树脂上的离子与水中的离子发生交换,从而实现水质的净化。
离子交换法广泛应用于水处理领域。
例如,它可以用于软化水、去除重金属离子、去除放射性物质等。
离子交换法可以有效地去除水中的硬度离子,使水质变软,减少水垢的形成。
此外,离子交换法还可以去除水中的有害物质,提高水质。
离子交换法有一些优点和缺点。
其优点是操作简单、效果好、处理效率高。
离子交换法可以去除水中的杂质,改善水质,使水变得更加清洁。
然而,离子交换法也存在一些缺点,例如成本较高、耗能较多、产生废水等问题。
二、反渗透反渗透是一种利用半透膜来实现水处理的技术。
其原理是通过施加一定的压力,将水通过半透膜,从而去除水中的溶质和杂质。
反渗透主要通过反渗透膜来实现。
反渗透膜是一种具有特殊结构的薄膜,可以选择性地让水分子通过,而阻止溶质和杂质的通过。
当水流经过反渗透膜时,溶质和杂质被滞留在膜的一侧,而纯净水则通过膜的另一侧。
反渗透广泛应用于饮用水处理、工业废水处理等领域。
例如,它可以用于去除水中的盐分、有机物、细菌等。
反渗透可以有效地提高水质,得到符合饮用水标准的纯净水。
反渗透技术有一些优点和缺点。
其优点是处理效果好、水质高、操作简单。
反渗透可以彻底去除水中的溶质和杂质,获得纯净水。
然而,反渗透也存在一些缺点,例如设备成本高、能耗较大、产水量较低等问题。
离子交换法和反渗透是常见的水处理技术,可以有效地去除水中的杂质和提高水质。
离子交换法通过离子交换树脂实现,适用于软化水、去除重金属离子等应用。
离子交换法
离子交换法
离子交换法是吸附过程的一种特殊过程,离子交换法是通过向水中添加一种含正电荷或负电荷的化学物质并将其替换成另一种带电的化合物来清除水中有害物质的一种水处理技术。
一般而言,这种技术需要吸附和离子交换同时发生。
本质上,这种技术是由于离子交换效应而能够进行的污水处理过程。
它的原理是将有机污染物的负荷取代成水性溶质,这些水性溶质与水中的质子或氧离子结合,从而将有机污染物通过和水互换的方式从水中移除,从而达到净水的效果。
离子交换也可以对水中的有害离子进行去除,可以利用离子交换法去除水中的有害离子,比如氯离子、镁离子、硫酸根离子等。
此外,为了提高水质,改善水形,在离子交换处理过程中,可以使用添加剂来改变水的质量,改变离子的类型,从而达到良好的污染物去除效果。
离子交换法具有良好的选择性,可以把有害离子由水中分离,从而达到净化水质的效果。
离子交换是目前应用最广的污水处理技术之一,它的使用可以彻底去除水中的小分子有机物和颜料,也可以去除水中的有害离子,从而达到水质净化的目的。
离子交换技术采用了前期准备技术,可以提高净化效率,降低出水水质和能耗,从而大大提高离子交换法的净化效果。
离子交换法去除硝酸盐原理
离子交换法去除硝酸盐原理
离子交换法去除硝酸盐的原理是:溶液中的NO3-通过与离子交换树脂上的Cl-或HCO3-发生交换而去除。
当离子交换树脂上的Cl-或HCO3-与水中的NO3-接触时,这些阴离子会与NO3-发生交换,从而将NO3-从水中去除。
树脂交换饱和后,需要用NaCl或NaHCO3溶液对树脂进行再生,以恢复
其交换能力。
值得注意的是,阴离子交换树脂对几种阴离子的选择性顺序为:HCO3-<
Cl-<NO3-<SO42-,因此,用常规的离子交换树脂处理含硫酸盐水中的硝酸盐是困难的。
因为树脂几乎交换了水中的所有的硫酸盐后,才与水中的硝酸盐交换。
也就是说,硫酸盐的存在会降低树脂对硝酸盐的去除能力。
此外,在树脂官能团NR3+中的N原子周围增加碳源子数目可以提高树脂
对硝酸盐的选择性。
这种类型的树脂对硝酸盐的选择性顺序依次为:
HCO3-<Cl-<SO42-<NO3-。
当树脂上NR3+中的氮原子周围的甲基变
为乙基时,树脂对硝酸盐与硫酸盐的选择性系数KSN从100增加到1000。
以上信息仅供参考,建议咨询专业人士获取帮助。
第六章离子交换分离技术
第六章离子交换分离技术1.离子交换法是应用离子交换剂作为吸附剂通过静电引力吸附在离子交换器上,然后用洗脱剂洗脱下来从而达到分离、浓缩、纯化的目的。
现已广泛应用于生物分离过程在原料液脱色、除臭、目标产物的提取,浓缩和粗分离等方面发挥着重要作用。
2.离子交换法要使用离子交换剂,常用的离子交换剂有两种:使用人工高聚物作载体的离子交换树脂是使用多糖做载体的多糖基离子交换剂3.离子交换树脂是一种不溶于酸、碱和有机溶剂的固态高分子聚合物。
4.离子交换树脂的构成:载体或骨架:功能基团;平衡离子或可交换离子5.离子交换反应是可逆的,符合质量作用定律6.离子交换树脂按照活性离子的分类树脂活性离子带正电荷,可与溶液中的阳离子发生交换,称为阳离子交换树脂树脂活性离子带负电荷,可以溶液中的阴离子发生交换,称为阴离子离子交换树脂7.离子交换树脂分离纯化物质主要通过选择性吸附(进行吸附时具有较强的结合力)和分步洗脱这两个过程来实现8.强酸性阳离子交换树脂洗脱顺序:酸性<中性<碱性9.离子交换树脂的分类方法有4种按树脂骨架的主要成分分:聚苯乙烯型树脂;聚苯烯酸型树脂;多乙烯多氨-环氧氯苯烷树脂;酚-醛型树脂;按骨架的物理结构来分:凝胶型树脂(微孔树脂,呈透明状态,高分子骨架);大网格树脂(大树树脂,填充剂);均孔树脂(等孔树脂);按活性基团分类:阳离子交换树脂,对阳离子具有交换能力强酸性阳离子交换树脂:活性基团为硫酸基团(-SO3H)和次甲酸磺酸基团(-CH2SO3H)。
都是强酸性基团能在溶液中解离出H+。
弱酸性阳离子交换树脂:活性基团由羧基(-COOH)和酚羟基(-OH),交换能力差。
阴离子交换树脂:活性基团为碱性,对阴离子具有交换能力强碱性阴离子交换树脂:活性基团为季铵基团(-NR3OH),能在水中解离出OH-而呈碱性弱碱性阴离子交换树脂:伯氨基(-NH2)仲氨基(-NHR)或叔氨基(-NR2),能在水中解离出OH-,但解离能力较弱,交换能力差以上4种树脂是树脂的基本类型,各种树脂的强弱最好用其活性基团的pK来表示11.大孔型离子交换树脂的特点载体骨架交联度高,有较好的化学和物理稳定性和机械强度孔径大表面积大,表面吸附强孔隙率大,密度小12.离子交换树脂的命名由3位阿拉伯数字组成:第一位数字代表产品的分类,第二位数字代表骨架,第三位数字微顺序号13.离子交换树脂的理化性能:交联度;交换容量;粒度和形状(色谱用50到100目树脂,一般提取纯化用20到60目树脂);滴定曲线(是检验和测定离子交换树脂性能的重要数据);稳定性;膨胀性(膨胀度)14.交换容量(名解):是每克干燥的离子交换树脂或每毫升完全溶胀的离子交换树脂所能吸附的一价离子的毫摩尔数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018/11/13/16:46:01
1
第二节 离子交换树脂及其性能 2.1离子交换树脂的结构
(1)高分子部分:聚苯乙烯或聚丙烯酸酯等。连接树脂 的功能团的作用。 (2)交联剂部分:把整个线状高分子链交联起来,形成 三度空间的网状结果。 (3)功能团部分:固定在树脂高分子部分上的活性离子 基团。 交联剂质量 交联度(D V B) 100% 高分子质量 交联剂质量 交联度的大小决定了树脂的机械强度、交换容量和 溶胀性等性质。
练习:称取某OH-型阴离子交换树脂1.00 g置于锥形瓶中,加入0.100 mol/L HCl 100 mL浸泡一昼夜。用移液管吸取25.00 mL 上层清液,以甲基红为指示剂,用 0.1000 mol/L NaOH溶液滴定,耗用12.5.00 mL,计算树脂的交换容量。
2018/11/13/16:46:01 14
2018/11/13/16:46:01 2
离子交换树脂
固体球形颗粒,多孔网状 结构;不溶于水;具有离子交换 特性的有机高分子聚电解质。 (一) 组成
母体(骨架)
Hale Waihona Puke 苯乙烯(单体) + 二乙烯苯(交联剂)
共聚
母体
功 能 H2SO4 基 反 应
离子交 换树脂
固定离子
R —SO3 H
母体 固定离子 可交换离子
交联度(D V B) 交联剂质量 100% 高分子质量 交联剂质量
因交联度小,高分子质量大,功能团多。 操作容量:指在一定的交换条件下所达到的实际交换容量, 即树脂中实际参加交换反应的离子摩尔数。 漏穿容量:指柱上作业时溶液中的离子开始出现在流出液 时单位体积中树脂中实际参加交换的摩尔数。
交联度为树脂合成时交联剂的用量,一般为7%~10%。 交联度越高,孔隙度越低,密度越大,对半径较大的 离子和水合离子扩散速度越低,交换量越小。 在水中浸泡,形变小,较稳定。
2018/11/13/16:46:01 10
(五) 溶胀性
吸水后体积增大的现象。溶胀程度用溶胀率表示:
溶胀率
溶胀的原因
5
2.2离子交换树脂的分类 一般按树脂所带功能团的性质不同分为阳离子交换树 脂和阴离子交换树脂。 细分: ①强酸性阳离子交换树脂;②弱酸性阳离子交换树脂; ③强碱性阴离子交换树脂;④弱碱性阴离子交换树脂; ⑤螯合树脂;⑥两性树脂;⑦氧化还原树脂。
2018/11/13/16:46:01
6
离子交换树脂的命名方法
2018/11/13/16:46:01
7
离子交换树脂命名法中分类代号和骨架代号
代号 0
分类名称 强酸性
骨架名称 苯乙烯系
1
2 3 4 5 6
2018/11/13/16:46:01
弱酸性
强碱性 弱碱性 螯合性 两性 氧化还原
丙烯酸系
酚醛系 环氧系 乙烯哌啶系 脲醛系 氯乙烯系
8
2.3树脂的基本性能 (1)物理性能:溶胀性,粒度,密度。 (2)化学性能:交换容量。 交换容量:以每克干树脂或每毫升湿树脂上的交换离子的摩 尔数表示。总交换容量,操作容量,漏穿容量,全容量。
100 (cV) ( cV ) NaOH HCl 25 交换容量= m 树脂 ( g )
100 0.1 100 0.1 12.5 25 5(mmol .g 1 ) 1 c V c HCl VHCl 阳离子交换树脂: 交换容量= NaOH NaOH 干树脂质量(g)
V后 V前 V前
100 %
水扩散到树脂交联网孔发生溶胀; 活性基团离解形成水合离子。 影响因素 树脂交联度:交联度越大,溶胀率越低。 活性基团:离解程度越大,溶胀率越大; 可交换离子:水合半径越大,溶胀率越高。
2018/11/13/16:46:01 11
树脂的化学性能
总交换容量:指单位树脂中所含功能团上可交换离子的总 摩尔数。与交联度有关,交联度小,总交换容量就大。
(V V1 )C 漏穿容量 m ol/ L V2 V 至漏穿时流过的料液体 积;V1 树脂床的空隙体积; V2 树脂床的体积; C 料液中金属离子浓度。
2018/11/13/16:46:01 12
全容量:离子交换树脂除了通过功能团进行交换外,还能 通过链节结构上的特点,以分子间吸引力即范德华力吸 引其他分子,结果树脂的容量往往超过总交换容量,故 把总交换容量和范德华力吸引的量之和称为全容量。
3
活性基团 可交换离子
2018/11/13/16:46:01
离子交换树脂的结构
离子交换树脂是具有特殊网状结构的高分子化合物,由空间 网状结构骨架(即母体)和附着在骨架上的许多活性基团所构成。 活性基团遇水电离,分成:固定部分和活动部分
2018/11/13/16:46:01
4
树脂的网络骨架
2018/11/13/16:46:01
2018/11/13/16:46:01
13
例、称取1g干树脂,置于250mL锥形瓶中,准确加入0.1 mol.L-1 NaOH标准溶 液100 mL,塞紧后振荡,放置过夜,移取上层清液25 mL,以酚酞为指示剂, 用0.1mol.L-1HCl标液12.5 mL滴定至红色消失,计算树脂交换容量。
解:干树脂(强酸型)与Na+交换,剩余NaOH用HCl滴定
树脂的物理性能
(一) 外观 形状:透明或半透明的球状珠体。 颜色:白、浅黄、赤褐色。 (二) 含水率 树脂孔隙内所含的水分,一般在40%~69%。 与树脂的胶联度有关,交联度低,空隙率高,含水率高。
2018/11/13/16:46:01 9
(三) 密度 干真密度:干燥状态下,树脂材料本身具有的密度。 湿真密度:在水中充分溶胀后湿树脂本身的密度。 表观密度:树脂在水中充分溶胀后的堆积密度(视密 度) 。 单位均为mg/L. (四) 交联度
第三节 离子交换平衡
3.1选择系数
2 H Ca 2 Ca 2 H
2 2Cl SO4 SO4 2Cl