数据仓库与数据挖掘考试习题汇总

合集下载

数据仓库与数据挖掘考试习题汇总 3

数据仓库与数据挖掘考试习题汇总 3

1、数据仓库就是一个面向主题的、集成的、相对稳定的、反映历史变化的数据集合。

2、元数据是描述数据仓库内数据的结构和建立方法的数据,它为访问数据仓库提供了一个信息目录,根据数据用途的不同可将数据仓库的元数据分为技术元数据和业务元数据两类。

3、数据处理通常分成两大类:联机事务处理和联机分析处理。

4、多维分析是指以“维”形式组织起来的数据(多维数据集)采取切片、切块、钻取和旋转等各种分析动作,以求剖析数据,使拥护能从不同角度、不同侧面观察数据仓库中的数据,从而深入理解多维数据集中的信息。

5、ROLAP是基于关系数据库的OLAP实现,而MOLAP是基于多维数据结构组织的OLAP实现。

6、数据仓库按照其开发过程,其关键环节包括数据抽取、数据存储于管理和数据表现等。

7、数据仓库系统的体系结构根据应用需求的不同,可以分为以下4种类型:两层架构、独立型数据集合、以来型数据结合和操作型数据存储和逻辑型数据集中和实时数据仓库。

8、操作型数据存储实际上是一个集成的、面向主题的、可更新的、当前值的(但是可“挥发”的)、企业级的、详细的数据库,也叫运营数据存储。

9、“实时数据仓库”以为着源数据系统、决策支持服务和仓库仓库之间以一个接近实时的速度交换数据和业务规则。

10、从应用的角度看,数据仓库的发展演变可以归纳为5个阶段:以报表为主、以分析为主、以预测模型为主、以运营导向为主和以实时数据仓库和自动决策为主。

1、调和数据是存储在企业级数据仓库和操作型数据存储中的数据。

2、抽取、转换、加载过程的目的是为决策支持应用提供一个单一的、权威数据源。

因此,我们要求ETL过程产生的数据(即调和数据层)是详细的、历史的、规范的、可理解的、即时的和质量可控制的。

3、数据抽取的两个常见类型是静态抽取和增量抽取。

静态抽取用于最初填充数据仓库,增量抽取用于进行数据仓库的维护。

4、粒度是对数据仓库中数据的综合程度高低的一个衡量。

粒度越小,细节程度越高,综合程度越低,回答查询的种类越多。

数据仓库与数据挖掘习题.doc

数据仓库与数据挖掘习题.doc

数据仓库与数据挖掘习题. .数据仓库与数据挖掘习题1.1什么是数据挖掘?在你的回答中,强调以下问题:(a) 它是又一个骗局吗?(b) 它是一种从数据库,统计学和机器学习发展的技术的简单转换吗?(c) 解释数据库技术发展如何导致数据挖掘(d) 当把数据挖掘看作知识发现过程时,描述数据挖掘所涉及的步骤。

1.2 给出一个例子,其中数据挖掘对于一种商务的成功至关重要的。

这种商务需要什么数据挖掘功能?他们能够由数据查询处理或简单的统计分析来实现吗?1.3 假定你是Big- (a) 它是又一个骗局吗?(b) 它是一种从数据库,统计学和机器学习发展的技术的简单转换吗?(c) 解释数据库技术发展如何导致数据挖掘(d) 当把数据挖掘看作知识发现过程时,描述数据挖掘所涉及的步骤。

1.2 给出一个例子,其中数据挖掘对于一种商务的成功至关重要的。

这种商务需要什么数据挖掘功能?他们能够由数据查询处理或简单的统计分析来实现吗?1.3 假定你是Big:每个学生的姓名,地址和状态(例如,本科生或研究生),所修课程,以及他们累积的GPA(学分平均)。

描述你要选取的结构。

该结构的每个成分的作用是什么?1.4 数据仓库和数据库有何不同?它们有那些相似之处?1.5简述以下高级数据库系统和应用:面向对象数据库,空间数据库,文本数据库,多媒体数据库和WWW。

1.6 定义以下数据挖掘功能:特征化,区分,关联,分类,预测,聚类和演变分析。

使用你熟悉的现实生活中的数据库,给出每种数据挖掘的例子。

1.7 区分和分类的差别是什么?特征化和聚类的差别是什么?分类和预测呢?对于每一对任务,它们有何相似之处?1.8 根据你的观察,描述一种可能的知识类型,它需要由数据挖掘方法发现,但未在本章中列出。

它需要一种不同于本章列举的数据挖掘技术吗?1. 9 描述关于数据挖掘方法和用户交互问题的三个数据挖掘的挑战。

1. 10 描述关于性能问题的两个数据挖掘的挑战。

2.1 试述对于多个异种信息源的集成,为什么许多公司宁愿使用更新驱动的方法(构造使用数据仓库),而不愿使用查询驱动的方法(使用包装程序和集成程序)。

数据仓库与数据挖掘考试试题

数据仓库与数据挖掘考试试题

一、填空题(15分)1.数据仓库的特点分别是面向主题、集成、相对稳定、反映历史变化。

2.元数据是描述数据仓库内数据的结构和建立方法的数据。

根据元数据用途的不同可将元数据分为技术元数据和业务元数据两类。

3.OLAP技术多维分析过程中,多维分析操作包括切片、切块、钻取、旋转等。

4.基于依赖型数据集市和操作型数据存储的数据仓库体系结构常常被称为“中心和辐射”架构,其中企业级数据仓库是中心,源数据系统和数据集市在输入和输出范围的两端。

5.ODS实际上是一个集成的、面向主题的、可更新的、当前值的、企业级的、详细的数据库,也叫运营数据存储。

二、多项选择题(10分)6.在数据挖掘的分析方法中,直接数据挖掘包括(ACD)A 分类B 关联C 估值D 预言7.数据仓库的数据ETL过程中,ETL软件的主要功能包括(ABC)A 数据抽取B 数据转换C 数据加载D 数据稽核8.数据分类的评价准则包括( ABCD )A 精确度B 查全率和查准率C F-MeasureD 几何均值9.层次聚类方法包括( BC )A 划分聚类方法B 凝聚型层次聚类方法C 分解型层次聚类方法D 基于密度聚类方法10.贝叶斯网络由两部分组成,分别是( A D )A 网络结构B 先验概率C 后验概率D 条件概率表三、计算题(30分)11.一个食品连锁店每周的事务记录如下表所示,其中每一条事务表示在一项收款机业务中卖出的项目,假定sup min=40%,conf min=40%,使用Apriori算法计算生成的关联规则,标明每趟数据库扫描时的候选集和大项目集。

(15分)解:(1)由I={面包、果冻、花生酱、牛奶、啤酒}的所有项目直接产生1-候选C1,计算其支持度,取出支持度小于sup min的项集,形成1-频繁集L1,如下表所示:(2)组合连接L1中的各项目,产生2-候选集C2,计算其支持度,取出支持度小于sup min的项集,形成2-频繁集L2,如下表所示:至此,所有频繁集都被找到,算法结束,所以,confidence({面包}→{花生酱})=(4/5)/(3/5)=4/3> conf minconfidence({ 花生酱}→{面包})=(3/5)/(4/5)=3/4> conf min所以,关联规则{面包}→{花生酱}、{ 花生酱}→{面包}均是强关联规则。

数据仓库与数据挖掘考试习题汇总3

数据仓库与数据挖掘考试习题汇总3

1、数据仓库就是一个面向主题的、集成的、相对稳定的、反映历史变化的数据集合。

2、元数据是描述数据仓库内数据的结构和建立方法的数据,它为访问数据仓库提供了一个信息目录,根据数据用途的不同可将数据仓库的元数据分为技术元数据和业务元数据两类。

3、数据处理通常分成两大类:联机事务处理和联机分析处理。

4、多维分析是指以“维”形式组织起来的数据(多维数据集)采取切片、切块、钻取和旋转等各种分析动作,以求剖析数据,使拥护能从不同角度、不同侧面观察数据仓库中的数据,从而深入理解多维数据集中的信息。

5、ROLAP 是基于关系数据库的OLAP 实现,而MOLAP 是基于多维数据结构组织的OLAP 实现。

实现。

6、数据仓库按照其开发过程,其关键环节包括数据抽取、数据存储于管理和数据表现等。

7、数据仓库系统的体系结构根据应用需求的不同,可以分为以下4种类型:两层架构、独立型数据集合、以来型数据结合和操作型数据存储和逻辑型数据集中和实时数据仓库。

8、操作型数据存储实际上是一个集成的、面向主题的、可更新的、当前值的(但是可“挥发”的)、企业级的、详细的数据库,也叫运营数据存储。

的数据库,也叫运营数据存储。

9、“实时数据仓库”以为着源数据系统、决策支持服务和仓库仓库之间以一个接近实时的速度交换数据和业务规则。

1010、从应用的角度看,数据仓库的发展演变可以归纳为、从应用的角度看,数据仓库的发展演变可以归纳为5个阶段:以报表为主、以分析为主、以预测模型为主、以运营导向为主和以实时数据仓库和自动决策为主。

1、调和数据是存储在企业级数据仓库和操作型数据存储中的数据。

2、抽取、转换、加载过程的目的是为决策支持应用提供一个单一的、权威数据源。

因此,我们要求ETL 过程产生的数据(即调和数据层)是详细的、历史的、规范的、可理解的、即时的和质量可控制的。

3、数据抽取的两个常见类型是静态抽取和增量抽取。

静态抽取用于最初填充数据仓库,增量抽取用于进行数据仓库的维护。

数据仓库与数据挖掘考试习题汇总

数据仓库与数据挖掘考试习题汇总

第一章12、元数据是描述数据仓库内数据的结构和建立方法的数据,它为访问数据仓库提供了一个34转等各种分析动作,以求剖析数据,使拥护能从不同角度、不同侧面观察数据仓库中的数据,从而深入理解多维数据集中的信息。

5、ROLAP OLAP实现,而MOLAP是基于多维数据结构组织的OLAP 实现。

678发”的)、企业级的、详细的数据库,也叫运营数据存储。

9、“实时数据仓库”意味着源数据系统、度交换数据和业务规则。

10、从应用的角度看,数据仓库的发展演变可以归纳为5个阶段:以报表为主、以分析为主、以预测模型为主、以运营导向为主和以实时数据仓库和自动决策为主。

11、什么是数据仓库?数据仓库的特点主要有哪些?数据仓库通常是指一个数据库环境,而不是支一件产品,它是提供用户用于决策支持的当前和历史数据,这些数据在传统的数据库中通常不方便得到。

数据仓库就是一个面向主题的(Subject Oriented)、集成的(Integrate)、相对稳定的(Non-Volatile)、反映历史变化(Time Variant)的数据集合,通常用于辅助决策支持。

数据仓库的特点包含以下几个方面:(1)面向主题。

操作型数据库的数据组织是面向事务处理任务,各个业务系统之间各自分离;而数据仓库中的数据是按照一定的主题域进行组织。

主题是一个抽象的概念,是指用户使用数据仓库进行决策时所关心的重点领域,一个主题通常与多个操作型业务系统或外部档案数据相关。

(2)集成的。

面向事务处理的操作型数据库通常与某些特定的应用相关,数据库之间相互独立,并且往往是异构的。

而数据仓库中的数据是在对原有分散的数据库数据作抽取、清理的基础上经过系统加工、汇总和整理得到的,必须消除源数据中的不一致性,以保证数据仓库内的信息是关于整个企事业单位一致的全局信息。

也就是说存放在数据仓库中的数据应使用一致的命名规则、格式、编码结构和相关特性来定义。

(3)相对稳定的。

操作型数据库中的数据通常实时更新,数据根据需要及时发生变化。

数据仓库与数据挖掘试题

数据仓库与数据挖掘试题

武汉大学计算机学院20XX级研究生“数据仓库和数据挖掘”课程期末考试试题要求:所有的题目的解答均写在答题纸上,需写清楚题目的序号。

每张答题纸都要写上姓名和学号。

一、单项选择题(每小题2分,共20分)1. 下面列出的条目中,()不是数据仓库的基本特征。

BA.数据仓库是面向主题的B.数据仓库是面向事务的C.数据仓库的数据是相对稳定的D.数据仓库的数据是反映历史变化的2. 数据仓库是随着时间变化的,下面的描述不正确的是()。

A.数据仓库随时间的变化不断增加新的数据内容B.捕捉到的新数据会覆盖原来的快照C.数据仓库随事件变化不断删去旧的数据内容CD.数据仓库中包含大量的综合数据,这些综合数据会随着时间的变化不断地进行重新综合3. 以下关于数据仓库设计的说法中()是错误的。

AA.数据仓库项目的需求很难把握,所以不可能从用户的需求出发来进行数据仓库的设计,只能从数据出发进行设计B.在进行数据仓库主题数据模型设计时,应该按面向部门业务应用的方式来设计数据模型C.在进行数据仓库主题数据模型设计时要强调数据的集成性D.在进行数据仓库概念模型设计时,需要设计实体关系图,给出数据表的划分,并给出每个属性的定义域4. 以下关于OLAP的描述中()是错误的。

AA.一个多维数组可以表示为(维1,维2,…,维n)B.维的一个取值称为该维的一个维成员C.OLAP是联机分析处理D.OLAP是数据仓库进行分析决策的基础5. 多维数据模型中,下列()模式不属于多维模式。

DA.星型模式B.雪花模式C.星座模式D.网型模式6. 通常频繁项集、频繁闭项集和最大频繁项集之间的关系是()。

CA.频繁项集⊂频繁闭项集⊂最大频繁项集B.频繁项集⊂最大频繁项集⊂频繁闭项集C.最大频繁项集⊂频繁闭项集⊂频繁项集D.频繁闭项集⊂频繁项集⊂最大频繁项集7. 决策树中不包含()结点。

CA.根结点B.内部结点C.外部结点D.叶结点8. 下面选项中t不是s的子序列的是()。

数据仓库与数据挖掘考试习题汇总 3(优.选)

数据仓库与数据挖掘考试习题汇总 3(优.选)

1、数据仓库就是一个面向主题的、集成的、相对稳定的、反映历史变化的数据集合。

2、元数据是描述数据仓库内数据的结构和建立方法的数据,它为访问数据仓库提供了一个信息目录,根据数据用途的不同可将数据仓库的元数据分为技术元数据和业务元数据两类。

3、数据处理通常分成两大类:联机事务处理和联机分析处理。

4、多维分析是指以“维”形式组织起来的数据(多维数据集)采取切片、切块、钻取和旋转等各种分析动作,以求剖析数据,使拥护能从不同角度、不同侧面观察数据仓库中的数据,从而深入理解多维数据集中的信息。

5、ROLAP是基于关系数据库的OLAP实现,而MOLAP是基于多维数据结构组织的OLAP实现。

6、数据仓库按照其开发过程,其关键环节包括数据抽取、数据存储于管理和数据表现等。

7、数据仓库系统的体系结构根据应用需求的不同,可以分为以下4种类型:两层架构、独立型数据集合、以来型数据结合和操作型数据存储和逻辑型数据集中和实时数据仓库。

8、操作型数据存储实际上是一个集成的、面向主题的、可更新的、当前值的(但是可“挥发”的)、企业级的、详细的数据库,也叫运营数据存储。

9、“实时数据仓库”以为着源数据系统、决策支持服务和仓库仓库之间以一个接近实时的速度交换数据和业务规则。

10、从应用的角度看,数据仓库的发展演变可以归纳为5个阶段:以报表为主、以分析为主、以预测模型为主、以运营导向为主和以实时数据仓库和自动决策为主。

1、调和数据是存储在企业级数据仓库和操作型数据存储中的数据。

2、抽取、转换、加载过程的目的是为决策支持应用提供一个单一的、权威数据源。

因此,我们要求ETL过程产生的数据(即调和数据层)是详细的、历史的、规范的、可理解的、即时的和质量可控制的。

3、数据抽取的两个常见类型是静态抽取和增量抽取。

静态抽取用于最初填充数据仓库,增量抽取用于进行数据仓库的维护。

4、粒度是对数据仓库中数据的综合程度高低的一个衡量。

粒度越小,细节程度越高,综合程度越低,回答查询的种类越多。

数据仓库与数据挖掘技术-试题答案

数据仓库与数据挖掘技术-试题答案

数据仓库与数据挖掘技术答案一、简答1.为什么需要对数据进行预处理?数据预处理主要包括哪些工作(需要对数据进行哪些方面预处理)?(1)现实世界的数据是杂乱的,数据多了什么问题会出现。

数据库极易受到噪音数据(包含错误或孤立点)、遗漏数据(有些感兴趣的属性缺少属性值或仅包含聚集数据)和不一致数据(在编码或者命名上存在差异)的侵扰,因为数据库太大,常常多达几G或更多。

进行数据预处理,提高数据质量,从而提高挖掘结果质量。

(2)数据预处理主要包括:数据清理:去除数据中的噪音、纠正不一致;数据集成:将数据由多个源合并成一致的数据存储,如数据仓库或数据方;数据交换:规范化或聚集可以改进涉及距离度量的挖掘算法精度和有效性;数据归约:通过聚集、删除冗余特征或聚类等方法来压缩数据。

数据离散化:属于数据归约的一部分,通过概念分层和数据的离散化来规约数据,对数字型数据特别重要。

2. 什么叫有监督学习?什么叫无监督学习?) 是通过发现数据属性和类别属性之间的关联模式,并通监督学习(Supervised learning或归纳过利用这些模式来预测未知数据实例的类别属性。

监督学习又称为分类Classification。

学习Inductive Learning无监督学习(Unsupervised learning)即聚类技术。

在一些应用中,数据的类别属性是缺失的,用户希望通过浏览数据来发现其的某些内在结构。

聚类就是发现这种内在结构的技术。

3.什么是数据仓库的星形模式?它与雪花模式有何不同?雪花模式与星形模式不同在于:雪花模式的维表可能是规范化形式,以便减少冗余。

这种表易于维护,并节省存储空间,因为当维结构作为列包含在内时,大维表可能非常大。

然而,与巨大的事实表相比,这种空间的节省可以忽略。

此外,由于执行查询更多的连接操作,雪花结构可能降低浏览的性能。

这样系统的性能可能受影响。

因此,在数据仓库设计中,雪花模式不如星形模式流行。

二、写出伪代码三答:(1)所有频繁项集为:[E,K,O] [K,M] [K,Y] (2) 关联规则:[O]->[E,K] 1.0[E,O] -> [K] 1.0[K,O] -> [E] 1.01.0[M] -> [K][Y] -> [K] 1.0答:a)决策树表示一种树型结构,它由它的分来对该类型对象依靠属性进行分类。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章1、数据仓库就是一个面向主题的、集成的、相对稳定的、反映历史变化的数据集合。

2、元数据是描述数据仓库内数据的结构和建立方法的数据,它为访问数据仓库提供了一个信息目录,根据数据用途的不同可将数据仓库的元数据分为技术元数据和业务元数据两类。

3、数据处理通常分成两大类:联机事务处理和联机分析处理。

4、多维分析是指以“维”形式组织起来的数据(多维数据集)采取切片、切块、钻取和旋转等各种分析动作,以求剖析数据,使拥护能从不同角度、不同侧面观察数据仓库中的数据,从而深入理解多维数据集中的信息。

5、ROLAP是基于关系数据库的OLAP实现,而MOLAP是基于多维数据结构组织的OLAP实现。

6数据仓库按照其开发过程,其关键环节包括数据抽取、数据存储于管理和数据表现等。

7、数据仓库系统的体系结构根据应用需求的不同,可以分为以下4种类型:两层架构、独立型数据集合、以来型数据结合和操作型数据存储和逻辑型数据集中和实时数据仓库。

8、操作型数据存储实际上是一个集成的、面向主题的、可更新的、当前值的(但是可“挥发”的)、企业级的、详细的数据库,也叫运营数据存储。

9、“实时数据仓库”以为着源数据系统、决策支持服务和仓库仓库之间以一个接近实时的速度交换数据和业务规则。

10、从应用的角度看,数据仓库的发展演变可以归纳为5个阶段:以报表为主、以分析为主、以预测模型为主、以运营导向为主和以实时数据仓库和自动决策为主。

第二章1、调和数据是存储在企业级数据仓库和操作型数据存储中的数据。

2、抽取、转换、加载过程的目的是为决策支持应用提供一个单一的、权威数据源。

因此,我们要求ETL过程产生的数据(即调和数据层)是详细的、历史的、规范的、可理解的、即时的和质量可控制的。

3、数据抽取的两个常见类型是静态抽取和增量抽取。

静态抽取用于最初填充数据仓库,增量抽取用于进行数据仓库的维护。

4、粒度是对数据仓库中数据的综合程度高低的一个衡量。

粒度越小,细节程度越高,综合程度越低,回答查询的种类越多。

5、使用星型模式可以从一定程度上提高查询效率。

因为星型模式中数据的组织已经经过预处理,主要数据都在庞大的事实表中。

6维度表一般又主键、分类层次和描述属性组成。

对于主键可以选择两种方式:一种是采用自然键,另一种是采用代理键。

7、雪花型模式是对星型模式维表的进一步层次化和规范化来消除冗余的数据。

8、数据仓库中存在不同综合级别的数据。

一般把数据分成4个级别:早期细节级、当前细节级、轻度综合级和高度综合级。

第三章1、SQL Server SSAS提供了所有业务数据的同意整合试图,可以作为传统报表、在线分析处理、关键性能指示器记分卡和数据挖掘的基础。

2、数据仓库的概念模型通常采用信息包图法来进行设计,要求将其5个组成部分(包括名称、维度、类别、层次和度量)全面地描述出来。

3、数据仓库的逻辑模型通常采用星型图法来进行设计,要求将星型的各类逻辑实体完整地描述出来。

4、按照事实表中度量的可加性情况,可以把事实表对应的事实分为4种类型:事务事实、快照事实、线性项目事实和事件事实。

5、确定了数据仓库的粒度模型以后,为提高数据仓库的使用性能,还需要根据拥护需求设计聚合模型。

6在项目实施时,根据事实表的特点和拥护的查询需求,可以选用时间、业务类型、区域和下属组织等多种数据分割类型。

7、当维表中的主键在事实表中没有与外键关联时,这样的维称为退化维。

它于事实表并无关系,但有时在查询限制条件(如订单号码、出货单编号等)中需要用至V。

8、维度可以根据其变化快慢分为元变化维度、缓慢变化维度和剧烈变化维度三类。

9、数据仓库的数据量通常较大,且数据一般很少更新,可以通过设计和优化索| 引结构来提高数据存取性能。

10、数据仓库数据库常见的存储优化方法包括表的归并与簇文件、反向规范化引入冗余、表的物理分割(分区)。

第四章1、关联规则的经典算法包括Apriori算法和FP-growth算法,其中FP-grownth 算法的效率更高。

2、如果L2={{a,b},{a,c},{a,d},{b,c},{b,d}},则连接产生的C3={{a,b,c},{a,b,d},{a,c,d},{b,c,d}} 再经过修剪,C3={{a,b,c},{a,b,d}}3、设定supmin=50%,交易集如则L仁{A},{B},{C} |L2={A,C}T1 A B CT2 ACT3 ADT4 B E F第五章1、分类的过程包括获取数据、预处理、分类器设计和分类决策。

2、分类器设计阶段包含三个过程:划分数据集、分类器构造和分类器测试。

3、分类问题中常用的评价准则有精确度、查全率和查准率和集合均值。

4、支持向量机中常用的核函数有多项式核函数、径向基核函数和S型核函数。

第六章1、聚类分析包括连续型、二值离散型、多值离散型和混合类型4种类型描述属性的相似度计算方法。

2、连续型属性的数据样本之间的距离有欧氏距离、曼哈顿距离和明考斯基距离。

3、划分聚类方法对数据集进行聚类时包含三个要点:选种某种距离作为数据样本减的相似性度量、选择评价聚类性能的准则函数和选择某个初始分类,之后用迭代的方法得到聚类结果,使得评价聚类的准则函数取得最优值。

4、层次聚类方法包括凝聚型和分解型两中层次聚类方法。

填空题20分,简答题25分,计算题2个(25分),综合题30分1、数据仓库的组成?P2数据仓库数据库,数据抽取工具,元数据,访问工具,数据集市,数据仓库管理,信息发布系统2、数据挖掘技术对聚类分析的要求有哪几个方面?P131可伸缩性;处理不同类型属性的能力;发现任意形状聚类的能力;减小对先验知识和用户自定义参数的依赖性;处理噪声数据的能力;可解释性和实用性3、数据仓库在存储和管理方面的特点与关键技术?P7数据仓库面对的是大量数据的存储与管理并行处理针对决策支持查询的优化支持多维分析的查询模式4、常见的聚类算法可以分为几类?P132基于划分的聚类算法,基于层次的聚类算法,基于密度的聚类算法,基于网格的聚类算法,基于模型的聚类算法等。

5、一个典型的数据仓库系统的组成?P12数据源、数据存储与管理、OLAP服务器、前端工具与应用6数据仓库常见的存储优化方法?P71表的归并与簇文件;反向规范化,引入冗余;表的物理分割。

7、数据仓库发展演变的5个阶段?P20以报表为主以分析为主以预测模型为主以运行向导为主以实时数据仓库、自动决策应用为主8、ID3算法主要存在的缺点?P116(1)ID3算法在选择根结点和各内部结点中的分枝属性时,使用信息增益作为评价标准。

信息增益的缺点是倾向于选择取值较多的属性,在有些情况下这类属性可能不会提供太多有价值的信息。

(2)ID3算法只能对描述属性为离散型属性的数据集构造决策树。

9、简述数据仓库ETL软件的主要功能和对产生数据的目标要求。

P30ETL软件的主要功能:数据的抽取,数据的转换,数据的加载对产生数据的目标要求:详细的、历史的、规范化的、可理解的、即时的、质量可控制的10、简述分类器设计阶段包含的3个过程划分数据集,分类器构造,分类器测试11、什么是数据清洗?P33*数据清洗是一种使用模式识别和其他技术,在将原始数据转换和移到数据仓库之前来升级原始数据质量的技术。

12、支持度和置信度的计算公式及数据计算(P90)找出所有的规则X 丫 ,使支持度和置信度分别大于门限支持度:事务中X和丫同时发生的比例,P(X ? 丫)置信度:项集X发生时,丫同时发生的条件概率P(Y|X) Example:13、利用信息包图设计数据仓库概念模型需要确定的三方面内容。

P57 确定指标,确定维度,确定类别14、K-近邻分类方法的操作步骤(包括算法的输入和输出)。

P128It* 1A:[悔集Xmu*未知美标号的数据祥本沪(5&J J Uih 输出;林类标号帧据祥本油类标号,(1)对于未知美标号的数据祥本X,拎购下式计算它与躺集X时,中每一个数睢紛匸迟仅厂號y ‘ E, 忆帖卜(2)将第(1)步中册所有廉氏距离挖照由小到大册顺序进厅U序,养且取前k 牛距爲AOtExffix中的k*近黑假设“「皿分别是k个近邻中属于粪别皿昇“的祥本散量.祕(9)如果p汁呼打if 二山则沛类标号为汕鮒圧处屮15、什么是技术元数据,主要包含的内容?P29技术元数据是描述关于数据仓库技术细节的数据,应用于开发、管理和维护Dvy 包含:DW结构的描述,如DW的模式、视图、维、层次结构和导出数据的定义,数据集市的位置和内容等业务系统、DW和数据集市的体系结构和模式汇总算法。

包括度量和维定义算法,数据粒度、主题领域、聚合、汇总和预定义的查询和报告。

由操作型业务环境到数据仓库业务环境的映射。

包括源数据和他们的内容、数据分割、数据提取、清洗、转换规则和数据刷新规则及安全(用户授权和存取控制)16、业务元数据主要包含的内容?P29业务元数据:从业务角度描述了DW中的数据,提供了介于使用者和实际系统之间的语义层,主要包括:使用者的业务属于所表达的数据模型、对象名和属性名访问数据的原则和数据的来源系统提供的分析方法及公式和报表的信息。

17、K-means算法的基本操作步骤(包括算法的输入和输出)。

P138*输入;数据集 AbdkbN…说其中的数据样本只包含描述属性,不包含类别属性/聚类个数k n P输出:修渓差平方和准则最小的k个廉类・2(1)从敢据集X中随机地选择k个数据样本作沟聚类的初始代表点,每一吓代表点表示一个类别.*(2)对于葢中的任一数据样本孟total),计算它与k个初始代表点的距离,井且将它划分到距离最近的初始代表点所表示的类别中.仪(3)完戚数据祥本的划分之后,对于每一个聚类,计茸其中所有数据样本的均值,并且将其作为该聚类的新的代蔻点,由此需到k个均值代裘点° P(d)对于X中的任一数据样本x. ( total),计算它'与k个均值代表点的距离’开且将它划分到距离最近的均信代表点所表示的类别中"(□)重复歩骤(3)和<4)f直到各个聚黄不再发主变化丸止,即误差平為和准则函数的值达到最就-屮18、数据从集结区加载到数据仓库中的主要方法?P36SQL命令(如Insert 或Update)由DW供应商或第三方提供专门的加载工具由DW管理员编写自定义程序19、多维数据模型中的基本概念:维,维类别,维属性,粒度P37维:人们观察数据的特定角度,是考虑问题的一类属性,如时间维或产品维维类别:也称维分层。

即同一维度还可以存在细节程度不同的各个类别属性(如时间维包括年、季度、月等维属性:是维的一个取值,是数据线在某维中位置的描述。

粒度:DW中数据综合程度高低的一个衡量。

粒度低,细节程度高,回答查询的种类多??20、Apriori算法的基本操作步骤P93^Apriori使用一种称作逐层搜索的迭代方法,K项集用于探索K+1项集。

相关文档
最新文档