基于集合经验模式分解的火灾时间序列预测

基于集合经验模式分解的火灾时间序列预测
基于集合经验模式分解的火灾时间序列预测

EMD经验模式分解信息汇总资料

EMD Empirical Mode Decomposition 经验模态分解 美国工程院院士黄锷1998年提出 一种自适应数据处理或挖掘方法,适用于非线性、非平稳时间序列的处理。 1.什么是平稳和非平稳 时间序列的平稳,一般是宽平稳,即时间序列的方差和均值是和时间无关的常数,协方差与与时间间隔有关、与时间无关。未来样本时间序列,其均值、方差、协方差必定与已经获得的样本相同,理解为平稳的时间序列是有规律且可预测的,样本拟合曲线的形态具有“惯性”。 而非平稳信号样本的本质特征只存在于信号所发生的当下,不会延续到未来,不可预测。 严格来说实际上不存在理想平稳序列,实际情况下都是非平稳。 2.什么是EMD经验模态分解方法? EMD理论上可以应用于任何类型时间序列信号的分解,在实际工况中大量非平稳信号数据的处理上具有明显优势。这种优势是相对于建立在先验性假设的谐波基函数上的傅里叶分解和小波基函数上的小波分解而言的。EMD分解信号不需要事先预定或强制给定基函数,而是依赖信号本身特征自适应地进行分解。 相对于小波分解:EMD克服了基函数无自适应性的问题,小波分析需要选定一个已经定义好的小波基,小波基的选择至关重要,一旦选定,在整个分析过程中无法更换。这就导致全局最优的小波基在局部的表现可能并不好,缺乏适应性。而EMD不需要做预先的分析与研究,可以直接开始分解,不需要人为的设置和干预。 相对于傅里叶变换:EMD克服了传统傅里叶变换中用无意义的谐波分量来表示非线性、非平稳信号的缺点,并且可以得到极高的时频分辨率。 EMD方法的关键是将复杂信号分解为有限个本征模函数IMF,Intrinsic Mode Function。分解出来的IMF分量包含了原信号的不同时间尺度上的局部特征信号。 这句话中:不同时间尺度=局部平稳化,通过数据的特征时间尺度来获得本征波动模式,然后分解or筛选数据。 本质上,EMD将一个频率不规则的波化为多个单一频率的波+残波的形式。 原波形=ΣIMFs+余波 信号()t f 筛选出的本征模函数IMF包括余波,对应有实际的物理成因。 现实中的信号分量IMF不会保持完全稳定的频率和振幅,也常常无法从各个分量中直接看出信号规律。EMD分解经常被用作信号特征提取的一个预先处理手段,将各IMF分量作为后续分析方法的输入,以完成更加复杂的工作。 3.IMF的筛选过程 第一步: Get原数据曲线f(t)所有极大值点,三次样条插值函数拟合成原数据的上包络线; Get原数据曲线f(t)所有极小值点,三次样条插值函数拟合成原数据的下包络线。

经验模态分解和算法

经验模态分解和算法 摘要——黄提出了经验模态分解(EMD)的数据处理方法,也对这种技术应用的有效性进行了讨论。许多变种算法(新的停止准则,即时版本的算法)也产生出来。数值模拟用来作经验性的评估执行单元运用于语音识别和分离方面,得出的实验结果认为这种方法是根据自适应的常数Q的滤波器组提出的。 1.介绍 近来,一种被称为EMD的新的非线性方法被黄等人提出,这种方法能够自适应的把非平稳信号分解成一系列零均值的AMFM信号(调频调幅) 的总和。尽管这种方法经常有着显著的效果,但是这个方法在算法方面的定义是困难的,因此这种方法没有作为一种分析方法得到承认,一般一种分析方法是需要有理论分析和性能评估。因此本文的目的是用实验的方式使得该算法更容易理解,并且提出了基于原算法的各种各样的改进的算法。设置实验性能评估的许多初始条件是为了获取一种有效的分解并且使得该算法更容易理解。 2.EMD基础 EMD的出发点是把信号内的震荡看作是局部的。实际上,如果我们要看评估信号x(t)的2个相邻极值点之间的变化(2个极小值,分别在t-和t+处),我们需要定义一个(局部)高频成分{d(t),t-<=t<=t+}(局部细节),这个高频成分与震荡相对应,震荡在2个极小值之间并且通过了极大值(肯定出现在2极小值之间)。为了完整这个图形,我们还需要定义一个(局部)低频成分m(t)(局部趋势),这样x(t)=m(t)+d(t),(t-<=t<=t+)。对于整个信号的所有震动成分,如果我们能够找到合适的方法进行此类分解,这个过程可以应用于所有的局部趋势的残余成分,因此一个信号的构成成分能够通过迭代的方式被抽离出来。 对于一个给定的信号x(t),进行有效的EMD分解步骤如下: 1)找出想x(t)的所有极值点 2)用插值法对极小值点形成下包络emint(t),对极大值形成上包络emax(t) 3)计算均值m(t)=(emint(t)+emax(t))/2 4)抽离细节d(t)=x(t)-m(t) 5)对残余的m(t)重复上诉步骤 在实际中,上述过程需要通过一个筛选过程进行重定义,筛选过程的第一个迭代步骤是对细节信号d(t)重复从1-4步,直到d(t)的均值是0,或者满足某种停止准则才停止迭代。一旦满足停止准则,此时的细节信号d(t)就被称为IMF,d(t)对应残量信号用第5步计算。通过以上过程,极值点的数量伴随着残量信号的产生而越来越少,整个分解过程会产生有限个模函数(IMF)。 模函数和残量信号可以进行谱分析,但是这个谱分析不能从狭隘的角度来看。首先,需要强调一下,即使是谐振荡,应用上述方法产生的高频和低频也只是局部的,没办法产生一个预设的频带过滤(例如小波变换)进行辨识。选择的模函数对应了一个自适应(依赖于信号自身的)的时变滤波器。一个这方面的例子:一个信号由3个部分组成(这3个部分是时间频率上都明显叠加的信号),用上述方法成功的分解了。分解如图1所示。这个例子的程序是emd_fmsin2.m 另外一个例子(emd_sawtooth.m)强调了EMD潜在的非谐振性质如图2所示。在这些例子中,线性的非线性的震荡都能被有效的识别和分离。因而,任何谐振分析(傅里叶,小波,…)可能结束在同类文章中,更少的紧凑和更少的实际意义的分解。 3.算法的改进 正如第二部分所定义的,EMD算法依赖于一系列的选项,这些选项需要用户控制,并且需要专业的知识。在此我们的目的找出更准确的选项,并且给予原来的算法进行改进。3.1采样率,插值方法和边缘效应

第十章时间序列分析

第十章 时间序列分析 Ⅰ.学习目的 本章阐述常规的时间序列分析方法,通过学习,要求:1.理解时间序列的概念和种类,掌握时间序列的编制方法;2.掌握时间序列分析中水平指标和速度指标的计算及应用;3.掌握时间序列中长期趋势、季节变动、循环变动及不规则变动等因素的基本测定方法;4.掌握基本的时间序列预测方法。 Ⅱ.课程内容要点 第一节 时间序列分析概述 一、时间序列的概念 将统计指标的数值按时间先后顺序排列起来就形成了时间序列。 二、时间序列的种类 反映现象发展变化过程的时间序列按其统计指标的形式不同,可分为总量指标时间序列、相对指标时间序列和平均指标时间序列三种类型。其中总量指标时间序列是基础序列,相对指标和平均指标时间序列是派生序列。 根据总量指标反映现象的时间状况不同,总量指标时间序列又可分为时期指标时间序列和时点指标时间序列。 三、时间序列的编制方法:(一)时间长短应一致;(二)经济内容应一致;(三)总体范围应一致;(四)计算方法与计量单位要一致。 第二节 时间序列的分析指标 一、时间序列分析的水平指标 (一)发展水平。发展水平是时间序列中与其所属时间相对应的反映某种现象发展变化所达到的规模、程度和水平的指标数值。 (二)平均发展水平。将一个时间序列各期发展水平加以平均而得的平均数,叫平均发展水平,又称为动态平均数或序时平均数。 1.总量指标时间序列序时平均数的计算 (1)时期序列:n y n y y y y i n ∑= +++=Λ21 (2)时点序列 ①连续时点情况下,又分为两种情形: a .若掌握的资料是间隔相等的连续时点 (如每日的时点) 序列,则n y n y y y y i n ∑= +++=Λ21 b .若掌握的资料是间隔不等的连续时点序列,则 ∑∑=++++++=i i i n n n f f y f f f f y f y f y y ΛΛ212211 ②间断时点情况下。间断时点也分两种情况: a .若掌握的资料是间隔相等的间断时点,则采用首末折半法:

经验模态分解及其雷达信号处理

0引言 当今信息时代,快速、高效的数据处理技术在科学研究、 工程应用乃至社会生活的方方面面都起着重要的作用。伴随着计算机技术的兴起,频谱分析被广泛应用于工程实践。但 Fourier 变换要求信号满足Dirichlet 条件,即对信号进行平稳 性假设,而现实中大量存在的是非平稳信号。针对Fourier 变换的不足,短时Fourier 变换(Short Time Fourier Transform , STFT ),即通过对一个时间窗内的信号进行Fourier 变换,分 析非平稳信号。虽然STFT 具有时频分析能力,但它具有固定 的时频分辨率,且难以找到合适的窗函数。而时频分析方法中的Wigner-Ville 分布存在严重的交叉项,会造成虚假信息的出现。小波变换具有可变的时频分析能力,在图像压缩和边缘检测等领域得到成功应用。但小波基不能自动更换,而且对众多小波基的合理选取也是一个难题。小波变换本质上是一种可变窗的Fourier 变换[1]。总之,这些方法没有完全摆脱 Fourier 变换的束缚,从广义上说都是对Fourier 变换的某种修 正,而且其时频分辨能力受到Heisenberg 不确定原理的制约。 Huang 等[1]在1998年提出了经验模态分解(Empirical 经验模态分解及其雷达信号处理 摘要 为了准确估计信号的瞬时频率,可用经验模态分解(EMD )将信号分解成有限个窄带信号。该方法因具有很强的自适应性及 处理非平稳信号的能力而引起广泛关注,已在众多工程领域得到应用。但EMD 是基于经验的方法,数值仿真和试验研究仍是分析 EMD 算法的主要方法。本文总结了EMD 算法存在的问题,并指出深入挖掘支持该方法的理论基础是消除制约EMD 算法进一步发 展和应用推广的关键。针对所存在的问题,从改进筛分停止准则、抑制端点效应、改进包络生成方法和解决模态混叠问题等诸方面阐述了改进EMD 算法的研究进展。综述了EMD 在雷达信号处理领域的应用。最后分析指出了进一步研究EMD 的几个主要方向。 关键词经验模态分解(EMD );希尔伯特-黄变换(HHT );时频信号分析;雷达信号处理 中图分类号TN911.7文献标识码A 文章编号1000-7857(2010)10-0101-05 杨彦利,邓甲昊 北京理工大学机电学院;机电工程与控制重点实验室,北京100081 Empirical Mode Decomposition and Its Application to Radar Signal 收稿日期:2010-03-24 作者简介:杨彦利,博士研究生,研究方向为探测、制导与控制,电子信箱:yyl070805@https://www.360docs.net/doc/5813665786.html, ;邓甲昊(通信作者),教授,研究方向为中近程目标探测、 信号处理及感知与自适应控制,电子信箱:bitdjh@https://www.360docs.net/doc/5813665786.html, YANG Yanli,DENG Jiahao Laboratory of Mechatronic Engineering &Control,School of Mechatronical Engineering,Beijing Institute of Technology,Beijing 100081,China Abstract In order to better estimate the instantaneous frequency of signals,the empirical mode decomposition (EMD)algorithm,proposed by Huang et al.,is used to break multi-component signals into several narrow subbands.EMD is an adaptive method and can be used to analyze nonstationary signals,so it has been widely applied to many engineering fields.However,EMD is still considered as an empirical method because it lacks a rigorous mathematical foundation,and its analysis depends largely on numerical simulations and experimental investigations.In this paper,related problems of the EMD algorithm are discussed,including its theoretical foundation and its applications.Some modified EMD algorithms are considered to overcome problems,such as stopping criterion,end effect,envelope of signals and mode aliasing.The applications of EMD to the processing of radar signals are reviewed.Some directions for further research on the EMD algorithm are suggested. Keywords empirical mode decomposition (EMD);Hilbert-Huang transform (HHT);time-frequency signal processing;radar signal processing 综述文章(Reviews )

EMD分解

clc clear all close all % [x, Fs] = wavread('Hum.wav'); % Ts = 1/Fs; % x = x(1:6000); Ts = 0.001; Fs = 1/Ts; t=0:Ts:1; x = sin(2*pi*10*t) + sin(2*pi*50*t) + sin(2*pi*100*t) + 0.1*randn(1, length(t)); imf = emd(x); plot_hht(x,imf,1/Fs); k = 4; y = imf{k}; N = length(y); t = 0:Ts:Ts*(N-1); [yenvelope, yfreq, yh, yangle] = HilbertAnalysis(y, 1/Fs); yModulate = y./yenvelope; [YMf, f] = FFTAnalysis(yModulate, Ts); Yf = FFTAnalysis(y, Ts); figure subplot(321) plot(t, y) title(sprintf('IMF%d', k)) xlabel('Time/s') ylabel(sprintf('IMF%d', k)); subplot(322) plot(f, Yf) title(sprintf('IMF%d的频谱', k)) xlabel('f/Hz') ylabel('|IMF(f)|'); subplot(323) plot(t, yenvelope)

title(sprintf('IMF%d的包络', k)) xlabel('Time/s') ylabel('envelope'); subplot(324) plot(t(1:end-1), yfreq) title(sprintf('IMF%d的瞬时频率', k)) xlabel('Time/s') ylabel('Frequency/Hz'); subplot(325) plot(t, yModulate) title(sprintf('IMF%d的调制信号', k)) xlabel('Time/s') ylabel('modulation'); subplot(326) plot(f, YMf) title(sprintf('IMF%d调制信号的频谱', k)) xlabel('f/Hz') ylabel('|YMf(f)|'); findpeaks.m文件 function n = findpeaks(x) % Find peaks. 找极大值点,返回对应极大值点的坐标 n = find(diff(diff(x) > 0) < 0); % 相当于找二阶导小于0的点u = find(x(n+1) > x(n)); n(u) = n(u)+1; % 加1才真正对应极大值点 % 图形解释上述过程 % figure % subplot(611) % x = x(1:100); % plot(x, '-o') % grid on %

(整理)Excel时间序列预测操作.

时间序列分析预测EXCEL操作 一、长期趋势(T)的测定预测方法 线性趋势→:: 用回归法 非线性趋势中的“指数曲线”:用指数函数LOGEST、增长函数GROWTH(针对指数曲线) 多阶曲线(多项式):用回归法 (一)回归模型法-------长期趋势(线性或非线性)模型法: 具体操作过程:在EXCEL中点击“工具”→“数据分析”→“回归”→分别在“Y值输入区域”和“X值输入区域”输人数据和列序号的单元格区域一选择需要的输出项目,如“线性拟合图”。回归分析工具的输出解释: 计算结果共分为三个模块: 1)回归统计表: Multiple R(复相关系数R):R2的平方根,又称为相关系数,它用来衡量变量xy之间相关程度的大小。R Square(复测定系数R2 ):用来说明用自变量解释因变量变差的程度,以测量同因变量y的拟合效果。Adjusted R Square (调整复测定系数R2):仅用于多元回归才有意义,它用于衡量加入独立变量后模型的拟合程度。当有新的独立变量加入后,即使这一变量同因变量之间不相关,未经修正的R2也要增大,修正的R2仅用于比较含有同一个因变量的各种模型。 标准误差:又称为标准回归误差或叫估计标准误差,它用来衡量拟合程度的大小,也用于计算与回归有

关的其他统计量,此值越小,说明拟合程度越好。 2)方差分析表:方差分析表的主要作用是通过F检验来判断回归模型的回归效果。 3)回归参数:回归参数表是表中最后一个部分: ?Intercept:截距a ?第二、三行:a (截距) 和b (斜率)的各项指标。 ?第二列:回归系数a (截距)和b (斜率)的值。 ?第三列:回归系数的标准误差 ?第四列:根据原假设Ho:a=b=0计算的样本统计量t的值。 第五列:各个回归系数的p值(双侧) 第六列:a和b 95%的置信区间的上下限。 (二)使用指数函数LOGEST和增长函数GROWTH进行非线性预测 在Excel中,有一个专用于指数曲线回归分析的LOGEST函数,其线性化的全部计算过程都是自动完成的。如果因变量随自变量的增加而相应增加,且增加的幅度逐渐加大;或者因变量随自变量的增加而相应减少,且减少的幅度逐渐缩小,就可以断定其为指数曲线类型。 具体操作过程: 1.使用LOGEST函数计算回归统计量 ①打开“第3章时间数列分析与预测.xls”工作簿,选择“增长曲线”工作表如下图所示。 ②选择E2:F6区域,单击工具栏中的“粘贴函数”快捷键,弹出“粘贴函数”对话框,在“函数分类”中选择 “统计”,在“函数名”中选择“LOGEST”函数,则打开LOGEST对话框,如下图11.20所示。

什么是时间序列预测法

什么是时间序列预测法? 一种历史资料延伸预测,也称历史引伸预测法。是以所能反映的社会经济现象的发展过程和规律性,进行引伸外推,预测其发展趋势的方法。 时间序列,也叫时间数列、历史复数或。它是将某种的数值,按时间先后顺序排到所形成的数列。时间序列预测法就是通过编制和分析时间序列,根据时间序列所反映出来的发展过程、方向和趋势,进行类推或延伸,借以预测下一段时间或以后若干年内可能达到的水平。其内容包括:收集与整理某种社会现象的历史资料;对这些资料进行检查鉴别,排成数列;分析时间数列,从中寻找该社会现象随时间变化而变化的规律,得出一定的模式;以此模式去预测该社会现象将来的情况。 时间序列预测法的步骤 第一步收集历史资料,加以整理,编成时间序列,并根据时间序列绘成。时间序列分析通常是把各种可能发生作用的因素进行分类,传统的分类方法是按各种因素的特点或影响效果分为四大类:(1)长期趋势;(2)季节变动;(3);(4)不规则变动。 第二步分析时间序列。时间序列中的每一时期的数值都是由许许多多不同的因素同时发生作用后的综合结果。 第三步求时间序列的长期趋势(T)季节变动(s)和不规则变动(I)的值,并选定近似的数学模式来代表它们。对于数学模式中的诸未知参数,使用合适的技术方法求出其值。 第四步利用时间序列资料求出长期趋势、季节变动和不规则变动的数学模型后,就可以利用它来预测未来的值T和季节变动值s,在可能的情况下预测不规则变动值I。然后用以下模式计算出未来的时间序列的预测值Y: 加法模式T+S+I=Y 乘法模式T×S×I=Y 如果不规则变动的预测值难以求得,就只求和季节变动的预测值,以两者相乘之积或相加之和为时间序列的预测值。如果经济现象本身没有季节变动或不需预测分季分月的资料,则长期趋势的预测值就是时间序列的预测值,即T=Y。但要注意这个预测值只反映现象未来的发展趋势,即使很准确的在按时间顺序的观察方面所起的作用,本质上也只是一个的作用,实际值将围绕着它上下波动。 []

经验模态分解算法

经验模态分解 摘要——黄提出了经验模态分解(EMD)的数据处理方法,也对这种技术应用的有效性进行了讨论。许多变种算法(新的停止准则,即时版本的算法)也产生出来。数值模拟用来作经验性的评估执行单元运用于语音识别和分离方面,得出的实验结果认为这种方法是根据自适应的常数Q的滤波器组提出的。 1.介绍 近来,一种被称为EMD的新的非线性方法被黄等人提出,这种方法能够自适应的把非平稳信号分解成一系列零均值的AMFM信号(调频调幅) 的总和。尽管这种方法经常有着显著的效果,但是这个方法在算法方面的定义是困难的,因此这种方法没有作为一种分析方法得到承认,一般一种分析方法是需要有理论分析和性能评估。因此本文的目的是用实验的方式使得该算法更容易理解,并且提出了基于原算法的各种各样的改进的算法。设置实验性能评估的许多初始条件是为了获取一种有效的分解并且使得该算法更容易理解。 2.EMD基础 EMD的出发点是把信号内的震荡看作是局部的。实际上,如果我们要看评估信号x(t)的2个相邻极值点之间的变化(2个极小值,分别在t-和t+处),我们需要定义一个(局部)高频成分{d(t),t-<=t<=t+}(局部细节),这个高频成分与震荡相对应,震荡在2个极小值之间并且通过了极大值(肯定出现在2极小值之间)。为了完整这个图形,我们还需要定义一个(局部)低频成分m(t)(局部趋势),这样x(t)=m(t)+d(t),(t-<=t<=t+)。对于整个信号的所有震动成分,如果我们能够找到合适的方法进行此类分解,这个过程可以应用于所有的局部趋势的残余成分,因此一个信号的构成成分能够通过迭代的方式被抽离出来。 对于一个给定的信号x(t),进行有效的EMD分解步骤如下: 1)找出想x(t)的所有极值点 2)用插值法对极小值点形成下包络emint(t),对极大值形成上包络emax(t) 3)计算均值m(t)=(emint(t)+emax(t))/2 4)抽离细节d(t)=x(t)-m(t) 5)对残余的m(t)重复上诉步骤 在实际中,上述过程需要通过一个筛选过程进行重定义,筛选过程的第一个迭代步骤是对细节信号d(t)重复从1-4步,直到d(t)的均值是0,或者满足某种停止准则才停止迭代。一旦满足停止准则,此时的细节信号d(t)就被称为IMF,d(t)对应残量信号用第5步计算。通过以上过程,极值点的数量伴随着残量信号的产生而越来越少,整个分解过程会产生有限个模函数(IMF)。 模函数和残量信号可以进行谱分析,但是这个谱分析不能从狭隘的角度来看。首先,需要强调一下,即使是谐振荡,应用上述方法产生的高频和低频也只是局部的,没办法产生一个预设的频带过滤(例如小波变换)进行辨识。选择的模函数对应了一个自适应(依赖于信号自身的)的时变滤波器。一个这方面的例子:一个信号由3个部分组成(这3个部分是时间频率上都明显叠加的信号),用上述方法成功的分解了。分解如图1所示。这个例子的程序是emd_fmsin2.m 另外一个例子(emd_sawtooth.m)强调了EMD潜在的非谐振性质如图2所示。在这些例子中,线性的非线性的震荡都能被有效的识别和分离。因而,任何谐振分析(傅里叶,小波,…)可能结束在同类文章中,更少的紧凑和更少的实际意义的分解。 3.算法的改进 正如第二部分所定义的,EMD算法依赖于一系列的选项,这些选项需要用户控制,并且需要专业的知识。在此我们的目的找出更准确的选项,并且给予原来的算法进行改进。3.1采样率,插值方法和边缘效应

时间序列分析法原理及步骤

时间序列分析法原理及步骤 ----目标变量随决策变量随时间序列变化系统 一、认识时间序列变动特征 认识时间序列所具有的变动特征, 以便在系统预测时选择采用不同的方法 1》随机性:均匀分布、无规则分布,可能符合某统计分布(用因变量的散点图和直方图及其包含的正态分布检验随机性, 大多服从正态分布 2》平稳性:样本序列的自相关函数在某一固定水平线附近摆动, 即方差和数学期望稳定为常数 识别序列特征可利用函数 ACF :其中是的 k 阶自 协方差,且 平稳过程的自相关系数和偏自相关系数都会以某种方式衰减趋于 0, 前者测度当前序列与先前序列之间简单和常规的相关程度, 后者是在控制其它先前序列的影响后,测度当前序列与某一先前序列之间的相关程度。实际上, 预测模型大都难以满足这些条件, 现实的经济、金融、商业等序列都是非稳定的,但通过数据处理可以变换为平稳的。 二、选择模型形式和参数检验 1》自回归 AR(p模型

模型意义仅通过时间序列变量的自身历史观测值来反映有关因素对预测目标的影响和作用,不受模型变量互相独立的假设条件约束,所构成的模型可以消除普通回归预测方法中由于自变量选择、多重共线性的比你更造成的困难用 PACF 函数判别 (从 p 阶开始的所有偏自相关系数均为 0 2》移动平均 MA(q模型 识别条件

平稳时间序列的偏相关系数和自相关系数均不截尾,但较快收敛到 0, 则该时间序列可能是 ARMA(p,q模型。实际问题中,多数要用此模型。因此建模解模的主要工作时求解 p,q 和φ、θ的值,检验和的值。 模型阶数 实际应用中 p,q 一般不超过 2. 3》自回归综合移动平均 ARIMA(p,d,q模型 模型含义 模型形式类似 ARMA(p,q模型, 但数据必须经过特殊处理。特别当线性时间序列非平稳时,不能直接利用 ARMA(p,q模型,但可以利用有限阶差分使非平稳时间序列平稳化,实际应用中 d (差分次数一般不超过 2. 模型识别 平稳时间序列的偏相关系数和自相关系数均不截尾,且缓慢衰减收敛,则该时间序列可能是 ARIMA(p,d,q模型。若时间序列存在周期性波动, 则可按时间周期进

经验模式分解

经验模式分解 摘要 近些年来,随着计算机技术的高速发展与信号处理技术的不断提高,人们对图像的分析结构的要求也越来越高。目前图像处理已经发展出很多分支,包括图像分割、边缘检测、纹理分析、图像压缩等。经验模式分解(EMD)是希尔伯特-黄变换(Hilbert-HuangTransform)中的一部分,它是一种新的信号处理方法,并且在非线性、非平稳信号处理中取得了重大进步,表现出了强大的优势与独特的分析特点。该方法主要是将复杂的非平稳信号分解成若干不同尺度的单分量平稳信号与一个趋势残余项,所以具有自适应性、平稳化、局部性等优点。鉴于EMD方法在各领域的成功应用以及进一步的发展,国外很多学者开始将其扩展到了二维信号分析领域中,并且也取得的一定的进展。但是由于二维信号不同于一种信号,限于信号的复杂性和二维数据的一些处理方法的有限性,二维经验模式分解(BEMD)在信号分析和处理精度上还存在一些问题,这也是本文要研究和改善的重点。 关键词:图像处理;信号分解;BEMD

Abstract In recent years, with the rapid development of computer technology and the continuous improvement of signal processing technology, the demand for the analysis structure of the image is becoming more and more high. At present, many branches have been developed in image processing, including image segmentation, edge detection, texture analysis, image compression and so on. Empirical mode decomposition (EMD) is a part of Hilbert Huang transform (Hilbert-HuangTransform). It is a new signal processing method, and has made significant progress in nonlinear and non-stationary signal processing, showing strong advantages and unique analysis points. This method mainly decomposes the complex non-stationary signals into several single scale stationary signals with different scales and a trend residual term, so it has the advantages of adaptability, stationarity and locality. In view of the successful application and further development of EMD method in many fields, many scholars at home and abroad have expanded it to the two-dimensional signal analysis field, and have made some progress. However, because two dimensional signal is different from one signal, it is limited to the complexity of signal and the processing methods of two-dimensional data. Two-dimensional empirical mode decomposition (BEMD) still has some problems in the accuracy of signal analysis and processing, which is also the important point of research and improvement in this paper. Key words: image processing; signal decomposition; BEMD

时间序列分析讲义第10章协方差平稳向量过程

第十章 协方差平稳向量过程和向量自回归模型 在时间序列理论当中,涉及到向量时间序列的主要有两部分内容,一部分是多元动态系统,另一部分是向量自回归模型的估计和检验。在本章当中,我们主要讨论一些基本概念。 §10.1 向量自回归导论 仍然利用小写字母表示随机变量或者实现,只是现在讨论1?n 向量之间的动态交互作用。假设一个p 阶向量自回归模型可以表示为)(p VAR : t p t p 2t 21t 1t εY ΦY ΦY Φc Y +++++=--- (10.1) 其中p 1ΦΦ ,是n n ?阶系数矩阵,t ε是白噪声向量,满足: ? ? ?≠=Ω=t s t s E ,0,)(t s εε 其中Ω是n n ?阶正定矩阵。 可以利用分量形式将上述方程组的第一个方程表示为: t p t n p n p t p p t p t n n t t t n n t t t y y y y y y y y y c y 1,)(1,2)(12,1)(112,) 2(12,2)2(122,1)2(111 ,) 1(11,2)1(121,1)1(1111εφφφφφφφφφ++++++++++++++=--------- (10.2) 由此可见,在)(p VAR 模型当中,每个变量都表示成为常数项和其他所有变量的p 阶自回归的形式。此时与一元情形的一个显著的不同是,每个方程的残差项之间可能是相关的。 利用滞后算子形式,可以将)(p VAR 模型表示成为: t t p 21εc ΦΦΦ+=----y L L L I p n ][2 (10.3) 其中滞后算子多项式的元素可以表示成为: p p ij ij ij ij ij L L L L )(2)2()1()(φφφδ----= Φ 其中j i ij ==,1δ,j i ij ≠=,0δ 定义10.1 如果一个向量过程的一阶矩和二阶矩与时间无关,则称其是协方差平稳过程。此时下述变量与初始时间t 无关: )(t E y 和)(j t t E -'y y 命题10.1 如果一个向量过程满足)(p VAR 模型,且该过程是向量协方差平稳过程,则该过程的性质有: (1) 该过程的均值向量可以表示成为: c ΦΦΦI μp 211][-----= n (10.4) (2) )(p VAR 模型可以表示成为中心化形式: 12()()()()t t t t p t ----=-+-++-+12p y μΦy μΦy μΦy με (10.5) §10.2 向量自回归方程的表示和平稳性条件 与将高阶线性差分方程表示为一阶差分方程一样,我们也可以将一个普通的VAR (p )模型表示成为VAR (1) 的形式。为此,我们定义更高阶的向量为: 1(,,,)np ?'=t t-1t-p+1ξy -μy -μy -μ )0,,0,(1'=? t np V ε

经验模态分解(EEMD)、Fourier变换、HHT

10总体经验模态分解(EEMD)、Fourier变换、HHT EEMD实际就是噪声分析法和EMD方法的结合,抑制模态混叠。 Fourier变换是将任何信号分解为正弦信号的加权和,而每一个正弦信号对应着一个固定的频率(Fourier频率)和固定的幅值,因此,用Fourier 变换分析频率不随时间变化的平稳信号是十分有效的。但对于频率随时间变化的非平稳信号,Fourier 变换就无能为力了。 HHT是历史上首次对Fourier变换的基本信号和频率定义作的创造性的改进。他们不再认为组成信号的基本信号是正弦信号,而是一种称为固有模态函数的信号,也就是满足以下两个条件的信号: (1) 整个信号中,零点数与极点数相等或至多相差1 ; (2) 信号上任意一点,由局部极大值点确定的包络线和由局部极小值点确定的包络线的均值均为零,即信号关于时间轴局部对称。 无论Hilbert谱中的频率还是边际谱中的频率(即瞬时频率) ,其意义都与Fourier分析中的频率(即Fourier 频率) 完全不同,但在Fourier分析中,某一频率处能量的存在,代表一个正弦或余弦波在整个时间轴上的存在,而边际谱h中某一频率处能量的存在仅代表在整个时间轴上可能有这样一个频率的振动波在局部出现过,h越大,代表该频率出现的可能性越大。 11、HHT时频灰度谱转黑白谱 MATLAB作HHT时频谱时出来的是彩色的时频图。请问有办法在MATLAB上面将彩色谱图调成白色底黑色线的黑白图吗哎,因为老师说彩色图普通印出来的话不好看,一片黑的,谢谢大家啊 答:后面加上这个就可以了colormap(flipud(gray)) 12、HHT谱图怎么会这样呢 小弟刚刚接触HHT,也不是学信号的,只是用HHT这个工具处理信号,在处理过程中遇到了这样的问题: 对实测信号直接EMD,然后作HHT谱图如下:

时间序列分析法缺点

时间序列分析预测法有两个特点: ①时间序列分析预测法是根据市场过去的变化趋势预测未来的发展,它的前提是假定事物的过去会同样延续到未来。事物的现实是历史发展的结果,而事物的未来又是现实的延伸,事物的过去和未来是有联系的。市场预测的时间序列分析法,正是根据客观事物发展的这种连续规律性,运用过去的历史数据,通过统计分析,进一步推测市场未来的发展趋势。市场预测中,事物的过去会同样延续到未来,其意思是说,市场未来不会发生突然跳跃式变化,而是渐进变化的。 时间序列分析预测法的哲学依据,是唯物辩证法中的基本观点,即认为一切事物都是发展变化的,事物的发展变化在时间上具有连续性,市场现象也是这样。市场现象过去和现在的发展变化规律和发展水平,会影响到市场现象未来的发展变化规律和规模水平;市场现象未来的变化规律和水平,是市场现象过去和现在变化规律和发展水平的结果。 需要指出,由于事物的发展不仅有连续性的特点,而且又是复杂多样的。因此,在应用时间序列分析法进行市场预测时应注意市场现象未来发展变化规律和发展水平,不一定与其历史和现在的发展变化规律完全一致。随着市场现象的发展,它还会出现一些新的特点。因此,在时间序列分析预测中,决不能机械地按市场现象过去和现在的规律向外延伸。必须要研究分析市场现象变化的新特点,新表现,并且将这些新特点和新表现充分考虑在预测值内。这样才能对市场现象做出既延续其历史变化规律,又符合其现实表现的可靠的预测结果。 ②时间序列分析预测法突出了时间因素在预测中的作用,暂不考虑外界具体因素的影响。时间序列在时间序列分析预测法处于核心位置,没有时间序列,就没有这一方法的存在。虽然,预测对象的发展变化是受很多因素影响的。但是,运用时间序列分析进行量的预测,实际上将所有的影响因素归结到时间这一因素上,只承认所有影响因素的综合作用,并在未来对预测对象仍然起作用,并未去分析探讨预测对象和影响因素之间的因果关系。因此,为了求得能反映市场未来发展变化的精确预测值,在运用时间序列分析法进行预测时,必须将量的分析方法和质的分析方法结合起来,从质的方面充分研究各种因素与市场的关系,在充分分析研究影响市场变化的各种因素的基础上确定预测值。 需要指出的是,时间序列预测法因突出时间序列暂不考虑外界因素影响,因而存在着预测误差的缺陷,当遇到外界发生较大变化,往往会有较大偏差,时间序列预测法对于中短期预测的效果要比长期预测的效果好。因为客观事物,尤其是经济现象,在一个较长时间内发生外界因素变化的可能性加大,它们对市场经济现象必定要产生重大影响。如果出现这种情况,进行预测时,只考虑时间因素不考虑外界因素对预测对象的影响,其预测结果就会与实际状况严重不符。

时间序列分解Decompose

时间序列分解算法和d ecompose函数实现 李思亮 55531469@https://www.360docs.net/doc/5813665786.html, 目录 时间序列分解算法和decompose函数实现 (1) 1 数据读入并生成时间序列 (2) 2 数据可视化 (4) 3 时间序列分解 (7)

在时间序列分析的过程中,往往需要对时间序列作出初步分析,本文主要采用R语言作为分析平台,从数据的读入,可视化图,分解(decompose)为趋势项,季节项,随机波动等角度对数据开展分析的几个案例。最后对分解算法作出初步描述并探讨其预测预报中的潜在应用。本文的数据和部分内容主要采用https://www.360docs.net/doc/5813665786.html,/en/latest/中的内容,感兴趣的读者可以参考。 1 数据读入并生成时间序列 对于数据分析来讲,数据读入是一个比较关键的步骤。常用的数据读入函数有scan,read.table 等。下面列举了几种常见的数据。 首先是https://www.360docs.net/doc/5813665786.html,/tsdldata/misc/kings.dat,中包含了英国国王的寿命从William开始,数据来源(Hipel and Mcleod, 1994)。 > kings <- scan("https://www.360docs.net/doc/5813665786.html,/tsdldata/misc/kings.dat",skip=3) Read 42 items > kings [1] 60 43 67 50 56 42 50 65 68 43 65 34 47 34 49 41 13 35 53 56 16 43 69 59 48 59 86 55 68 51 33 49 67 77 81 67 71 81 68 70 77 56 上述例子中,读入了连续42个公国国王的寿命并将其赋给变量‘kings’ 如果我们希望对读入数据开展分析,下一步就是将其转化为时间序列对象(时间序列类),R提供了很多函数用于分析时间序列类数据。可以使用ts函数将变量转化为时间序列类。 > kingsts <- ts(kings) > kingsts Time Series: Start = 1 End = 42 Frequency = 1 [1] 60 43 67 50 56 42 50 65 68 43 65 34 47 34 49 41 13 35 53 56 16 43 69 59 48 59 86 55 68 51 33 49 67 77 81 67 71 81 68 70 77 56 对于上述数据操作的好处是将数据转化为特定的“时间序列类”便于我们使用R中的函数分析数据。 有时候我们会按照一定的时间周期来收集数据,这个周期可能是季度,月,日,小时,分。在大数据时代,有些情况下的数据是按照秒来采集收集。这种情况下,我们需要对数据的周期或频率进行设置。这里采用ts函数中的frequency参数可以实现这种功能。比方说,若按1年为一个周期,我们的月度时间

经验模态分解EMD

经验模态分解EMD 经验模态分解是一种基于信号局部特征的信号分解方法。是一种自适应的信号分解方法 任何复杂的信号都是由简单的固有模态函数(intrinsic mode function,IMF)组成,且每一个IMF 都是相互独立的。该方法可以将风速数据时间序列中真实存在的不同尺度或趋势分量逐级分解出来,产生一系列具有相同特征尺度的数据序列,分解后的序列与风速原始数据序列相比具有更强的规律性。 EMD的基本思想认为任何复杂的信号都是由一些相互不同的、简单非正弦函数的分量信号组成。 EMD将非平稳序列分解为数目不多的IMF 分量c和一个趋势项r(残余函数),r是原序列经过逐级分离出IMF 分量后,最终剩下来的“分量”,是单调的和光滑的。 信号的EMD 分解本质上是通过求包络线对信号不断进行移动平均的迭代过程,包络线的不准确将导致信号分解的不完全。传统算法在求包络线时在信号端点处易产生飞翼现象, 即在端点处会产生过大或过小振幅, 若不先对信号进行端点延拓, EMD 分解将无法继续。 确定信号决定了交通流变化的总体趋势,不确定性干扰信号使实际交通流变化在趋势线附近呈现大小不一的波动。 信号从高到低不同频段的成分,具有不等带宽的特点,并且EMD 方法是根据信号本身固有特征的自适应分解。

EMD分解的目的是根据信号的局部时间特征尺度,按频率由高到低把复杂的非线性、非平稳信号分解为有限经验模态函数(IMF)之和 r(t)为残余函数,一般为信号的平均趋势。是非平稳函数的单调趋势项。 风速时间序列的EMD 分解步骤如下: 1)识别出信号中所有极大值点并拟合其包络线eup(t)。 2 )提取信号中的极小值点和拟合包络线elow(t),计算上下包络线的平均值m1(t)。 up low 1 ( ) ( ) ( ) 2 e t e t m t + = (1) 3)将x(t)减去m1(t)得到h1(t),将h1(t)视为新的信号x(t),重复第1)步,经过k 次筛选,直到h1(t)=x(t)?m1(t)满足IMF 条件,记c1(t)=h1(t),则c1(t)为风速序列的第1 个IMF 分量,它包含原始序列中最短的周期分量。从原始信号中分离出IMF 分量c1(t),得

相关文档
最新文档