磁介质题

合集下载

《电磁场理论》5.6 磁介质分界面上的边界条件

《电磁场理论》5.6 磁介质分界面上的边界条件

J ms | a M 2 (e ) 0 I ]e z J ms | b M 2 e [( 1) 0 2 b
在垂直于z轴平面内的磁化电流为
Im

S
Jm dS
2 b
J ms dl (
1) I ( 1) I 0 0 0

B


B
0
B
I
0 I B e ( 0 )
0 I H e (0 ) B I H0 e 0 (0 )
13
(2)磁介质中的磁化强度为 ( 0 ) I M ( 1) H e 0 ( 0 ) 则磁化电流密度为 1 d 1 d ( 0 ) I ( M )e z [ ]e z 0 J m M d d ( 0 ) 在磁介质的表面上,当 0时,磁化电流面密度为
8
求磁化电流:
( 1 0 ) I 介质磁化强度为: M e H 20 0
B
体磁化电流为:
e

e
ez

J m M M rM
面磁化电流为:
0 z Mz
J sm
( 1 0 ) I ( 1 0 ) I e e ez M n 20 20

l
H 1 dl H 2 2 I
H1 I 2 e
I b

O a
3
2
1
0 I B1 H 1 e 2
11
0 a时 (3 )
H
l
3
dl H 3 2 0
H3 0
I b

电磁学练习题(电磁介质)

电磁学练习题(电磁介质)

电磁介质1.对各向同性非铁磁介质而言,下列说法不正确的是:( )(A) 顺磁质一定是分子固有磁矩不为零的媒质;(B) 顺磁性来在自分子的固有磁矩;(C) 抗磁性起因于电子的轨道运动在外磁场作用下的变化; 只有抗磁质才具有抗磁性。

2. 同轴电缆由两同心导体组成,内层是半径为R 1的导体圆柱,外层是半径分别为R 2、R 3的导体圆筒。

两导体内电流I 等量而反向,均匀分布在横截面上,导体的相对磁导率为1r μ,两导体间充满相对磁导率为2r μ的不导电的均匀磁介质。

则磁场强度H 在r ›R 3区域中的分布为:( )(A );)(2)(2223223R R r Ir R H --=π (B )H=0; (C )22R rIH π=; (D )rI H π2=。

3.工程上把铁磁质分为软磁材料(软铁)和硬磁材料(硬铁)两大类,下列答案正确的是:( )(A )软铁适合制造电磁铁,硬铁适合制造永磁铁;(B )硬铁适合制造永磁铁,硬铁适合制造变压器;(C )硬铁适合制造变压器,硬铁适合制造电机;(D )硬铁适合制造电机,软铁适合制造电磁铁。

4.一无限长圆柱形直导线,外包一层相对磁导率为r μ的圆筒形磁介质,导线半径为R 1,磁介质的外半径为R 2,导线内有电流I 通过,在横截面上是均匀分布的。

则导线内(0<r <R 1)的磁场强度的分布为:( )(A )2102R rI H π=; (B )r I H π20=; (C )rI H πμ200=; (D )0=H 5.某种磁介质在外磁场0B 中被磁化后,其磁化强度M 总与外磁场方向相反,则该介质必是:(A )顺磁质; (B )铁磁质; (C )抗磁质;(D )以上三种介质都可以。

6.对介质中高斯定理:⎰⎰=∙Sq S d D 0 ,如有下列一些说法,其中正确的是:(A )D 仅与自由电荷有关;(B )若高斯面上处处D=0,则面内必不存在电荷;(C )若高斯面内00=q ,则高斯面上处处0=D ;(D )D 的通量仅与面内自由电荷的电量有关。

大学物理辅导 磁场磁力磁介质等

大学物理辅导 磁场磁力磁介质等

2 (b a)
5.被电势差U加速的电子从电子枪口T发射出来,其初速 度指向x方向,如图所示。为使电子束能击中目标M点(直线 TM与x轴间夹角为θ),在电子枪外空间加一均匀磁场B,其方 向与TM平行。已知从T到M的距离为d,电子质量为m,带电量 为e。为使电子恰能击中M点,应使磁感应强度B= 。
(C)L
B
dl
0
且环路上任意一点B≠0;
(D)L B dl 0 且环路上任意一点B=0。
LI O·
解:由
Bdl L
0
Iin ,环
路L不包围电流,得到环路积
分为0。但任一点的磁场由电流
I 产生,不为0.
8.边长为a的正方形4 个角上固定有4个电量为q的点电荷, 如图,当正方形以角速度ω绕联结AC的轴旋转时,在正方形中 心O点产生磁场为B1,若以同样的角速度ω绕过O点垂直于正方 形平面的轴旋转时,在O点产生的磁场为B2。则B1与B2的数值 关系为(C) (A)B1=B2;(B)B1=2B2;(C)B1=1/2B2;(D)B1=1/4B2
心O点产生的磁感应强度分别为B1、B2和B3,则O点的磁感 应强度大小( D)
(A)B=0,因为B1=B2=B3=0; (B)B=0,因为B1+B2=0,B3=0; (C)B≠0,因为虽然B1+B2=0,但B3≠0; (D)B≠0,因为虽然B3=0,但B1+B2≠0。
解析: ac和bc的电流强度应为I/3,ab的电
解析:电场力和磁场力平衡时离子不偏转。
磁场力为
qv
B
大小为 qvB
方向为 +z方向
所加电场 E 满足力:qE qvB 方向为 -z方向
5.载电流为I、磁矩为Pm的线圈,置于磁感应强度为B的均匀 磁场中。若Pm与B方向相同,则通过线圈的磁通Φ与线圈所 受的磁力矩M的大小为( B) (A) Φ =IBPm,M=0; (B)Φ=BPm/I ,M=0; (C)Φ=IBPm,M=BPm; (D)Φ=BPm/I ,M=BPm。

第七章 磁介质习题与答案

第七章 磁介质习题与答案
2、把一铁磁物质制的空腔放在磁场中,则磁场的磁感应线集中在铁芯内部,空腔中几乎没有磁场,这就提供了制造磁屏蔽壳的可能。试用并联磁路的概念说明磁屏蔽的原理。
答:将一个铁壳放在外磁场中,则铁壳的壁与空腔中的空气可以看成是并联的磁路。由于空气的磁导率 接近于1,而铁壳的磁导率至少有几千,所以空气的磁阻比铁壳壁的磁阻大得多,这样一来,外磁场的磁感应通量的绝大部分将沿着空腔两侧的铁壳壁内“通过”,“进入”空腔内部的磁通量是很小的。这就可以达到磁屏蔽的目的。
磁化球内外B线和H线的分布如图所示。
7、相对磁导率为 和 的两种均匀磁介质,分别充满x>0和x<0的两个半空间,其交界面上为oyz平面,一细导线位于y轴上,其中通以电流为 ,求空间各点B和H。

二、选择题
1、在一无限长螺线管中,充满某种各向同性的均匀线性介质,介质的磁化率为 设螺线管单位长度上绕有N匝导线,导线中通以传导电流I,则螺线管内的磁场为:
(A)
(B)
(C)
(D)
C
2、在均匀介质内部,有传导电流处,一定有磁化电流,二者关系如下:
(A)
(B)
(C)
(D)
A
3、图是一根沿轴向均匀磁化的细长永久磁棒,磁化强度为M图中标出的1点的B是:
2×10-2T32A/m 497.6 1.6×104A/m
15、一铁芯螺环由表面绝缘的导线在铁环上密绕而成,环的中心线是500mm,横截面积是1×10-3m2,现在要在环内产生B=1.0T的磁场,由铁的B—H曲线得到这时的 =796,则所需的安匝数是()。如果铁环上有一个2.0mm宽的空气隙所需的安匝数是()。
3、在工厂里,搬运烧红的钢锭,为什么不能用电磁铁的起重机。
答:钢是一种铁磁质,在外场作用下,内部的磁畴定向排列,本身为强磁体,能被电磁铁吸引。但是钢锭烧红,温度超过居里点( ),内部的磁畴结构被破坏,丧失其铁磁质的特性,在外场作用下,磁化程度极微弱,与外场的相互作用力很小,电磁铁不能被它吸引起来,因此搬移它时不能采用电磁铁的起重机。

第15章磁介质

第15章磁介质

第15章磁介质一、物质的磁化1、磁介质中的磁场设真空中的磁感应强度为的磁场中,放进了某种磁介质,在磁场和磁介质的相互作用下,磁介质产生了附加磁场,这时磁场中任意一点处的磁感应强度2、磁导率由于磁介质产生了附加磁场磁介质中的磁场不再等于原来真空中的磁场,定义和的比值为相对磁导率:介质中的磁导率:式中为真空中的磁导率3、三种磁介质(1)顺磁质:顺磁质产生的与方向相同,且。

略大于1(2)抗磁质:抗磁质产生的与方向相反,且。

略小于1(3)铁磁质:铁磁质产生的与方向相同,且。

远大于1二、磁化强度1、磁化强度定义为单位体积中分子磁矩的矢量和即:2、磁化强度与分子面电流密度的关系:式中为磁介质外法线方向上的单位矢量。

3、磁化强度的环流即磁化强度对闭合回路的线积分等于通过回路所包围面积内的总分子电流三、磁介质中的安培环路定律1、安培环流定律在有磁介质条件下的应用即:2、磁场强度定义为:3、磁介质中的安培环路定律:4、应用磁介质中的安培环路定律的注意点:(1)的环流只与传导电流有关,与介质(或分子电流)无关。

(2)的本身()既有传导电流也与分子电流有关。

既描写了传导电流磁场的性质也描写了介质对磁场的影响。

(3)要应用磁介质中的安培环路定律来计算磁场强度时,传导电流和磁介质的分布都必须具有特殊的对称性。

5、磁介质中的几个参量间的关系:(1)磁化率(2)与的关系(3)与等之间的关系四、磁场的边界条件(界面上无传导电流)ေ、壁介蔨分界面伤边磁感应强度的法向分量连廭,即Ҩ2、磁介谨分界面两龹的磁场强嚦纄切向分量连续,即:Ƞ3 磃感应线的折射定律ā*怎义如图15-1所示)五、铁磁物贩q、磁畴:电子ꇪ旋磁矩取向相同的對区域。

2、磁化曲线(图55-2中曲线)ေ磁导率曲线(图15-2中??曲线)4、磁滞回线ေ图17耩3)图中乺矫끽嚛㠂5、铁磁质与非铁㳁质的主要区别:铁磁物质产生的附加磁场错误!未定义书签。

的比原来真空中的磁场大得多。

大学物理 第十五章 磁介质的磁化

大学物理 第十五章 磁介质的磁化
22
临界温度Tc。在Tc以上,铁磁性完全消失而 成为顺磁质,Tc称为居里温度或居里点。不 同 的 铁 磁 质 有 不 同 的 居 里 温 度 Tc 。 纯 铁 : 770ºC,纯镍:358ºC。
居里
装置如图所示:将悬挂着的镍片移近永 久磁铁,即被吸住,说明镍片在室温下 具有铁磁性。用酒精灯加热镍片,当镍 片的温度升高到超过一定温度时,镍片 不再被吸引,在重力作用下摆回平衡位 置,说明镍片的铁磁性消失,变为顺磁 性。移去酒精灯,稍待片刻,镍片温度 下降到居里点以下恢复铁磁性,又被磁 铁吸住。
第15章 磁介质的磁化
§15.1 磁介质的磁化 磁化强度矢量 §15.2 磁场强度 有磁介质时的安培环路定理 §15.3 铁磁质 §15.4 磁路定理
作业:练习册 选择题:1 — 5 填空题:1 — 6 计算题:1 — 4
1
§1 磁介质的磁化 磁化强度矢量
1. 磁介质 磁介质:实体物质在磁场作用下呈现磁性,该物体称磁介质。 磁化:磁介质在磁场中呈现磁性(在磁场的作用下产生附加 磁场)的现象称为磁化。
B B0 B
I
I
磁介质
抗磁质: r 1, B B0
B与B0 反方向,
如氮、水、铜、银、金、铋等。
I
I
铁磁质: r 1, B B0 B与B0 同方向,
如铁、钴、镍等,
超导体是理想的抗磁体。
B0 B
3
2.分子电流模型和分子磁矩
原子中电子参与两种运动:自
pm B
旋及绕核的轨道运动,对应有轨道
矢量和为零。
极化、位移极化。
4
加外磁场时 : M Pm B
B B0 B
当外磁场存在时,各分子固有磁矩受磁场力矩的作用,或

求介质中磁场强度和磁感应强度

求介质中磁场强度和磁感应强度
电磁场旳波动方程指出电磁波在真空中旳传播速度是c,后来光 速旳测量得到惊人旳成果就是光在真空中传播旳速度也是c。由 这惊人旳一致性,麦克斯韦提出光是一种电磁波,这也被试验 所证明,确立了光旳电磁理论。
电磁波旳波速与介质旳性质有关,即电磁场与物质旳相互作用是决 定波速旳原因之一。所以,电磁波旳波长因传播介质而异。一般所 说旳波长是指真空中旳波长(空气中旳波长与真空中波长很接近)
算出磁通
B
NI Rm1 Rm2
计算磁感应强度
B B
S
自己算一下,和书上旳成果比较
§6.4.4磁分流
既然有了磁路旳概念,当然也就有磁路旳并联与串联构造。
前面旳例子就是一种串联磁路
Rm1
磁屏蔽是一种并联磁路旳例子
NI
Rm2
把一种高磁导率旳介质圆筒壳放在 磁场中,磁力线将集中在介质壳中, 圆筒中旳空间中旳磁场变弱。这就 是磁屏蔽旳成果。
B BS I
Rmi
li
ri 0 S
Ri
ri 0 i
磁位降落 H ili B Rmi IRi
磁路定理
闭合环路旳磁动势等于各段磁路上磁位降落旳和

线圈5000匝,电流4安培 L
铁芯截面 0.01m2, 总长度 2.0 m,
r 10000
气隙宽度 0.05m
求气隙中旳磁感应强度
I
分别求出铁芯和气隙旳磁阻 Rm1 , Rm2
做一环路L, 如图:
NI H dl L
i
Hili
i
Bi
ri 0
li
i
Bi ri 0Si
li
L
忽视漏磁,全部旳磁通都是相同旳
NI B s i
li
ri 0

磁介质

磁介质

B~H r ~ H
16:58
H 23
3、磁滞回线
饱和磁感应强度 剩 磁
B
BS . Br . b
f . HC
a
初始磁 化曲线
矫顽力
HS
.
HC . c O
.
HS
磁滞回线
H
e . Br
d
16:58
BS
24
①磁化过程不可逆 磁滞回线--不可逆过程 H c B的变化落后于H,从而具有 剩磁,即磁滞效应。
Hc
B
Hc
H ②
r 大,易磁化,也易退磁
用途:适用于交变磁场中 电子设备中的各种电感元件、变压器、 镇流器,电动机和发电机中的铁芯等。 继电器、电磁铁的铁芯也用软磁材料。
16:58
纯铁,硅钢坡莫合金(Fe,Ni),铁氧体等。
30
2、硬磁材料——作永久磁铁
B
Hc
矫顽力(Hc)大(>102A/m),剩磁Br大 H c 磁滞回线的面积大,损耗大。
例1 一环形螺线管,管内充满磁导率为μ,相对磁导 率为μr的顺磁质。环的横截面半径远小于环的半径。 单位长度上的导线匝数为n。
求:环内的磁场强度和磁感应强度
解: H dl H 2r NI L
NI H nI 2r
r
O
B H 0 r H
16:58 13
SB dS 0 LH dl I 0 B H
21
12-3 铁磁质
一、铁磁质的磁化规律 1、铁磁质的特性 (1)能产生特别强的附加磁场 B ,使磁介质中的 B (2)铁磁质的磁导率 不是常量,B 与 H 不是线 性关系 (3) 磁化强度随外磁场而变,其变化落后于外磁 场的变化,而且在外磁场停止作用后,仍保 留部分磁性 (4)一定的铁磁材料存在一特定的临界温度—居 里点,当温度超过居里点时,铁磁质转变为 16:58 22 顺磁质。 远大于 B0 ,其 r B 值可达几百、甚至几千以上 0
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第六章 磁介质
§1.分子电流观点 (P560习题)
3.附图所示是一根沿轴向均匀磁化的细长永磁棒,磁化强度为M ,求图中标出各点的B 和H 。

解:在磁棒内外,B B B '+=0,M B
H -=
μ.
无传导电流,00=B .对细长永磁棒,在两端的4、5、6、7点M B 02
1
μ≈
',在中点1, M B 0μ≈',在棒外的2、3点0='B ,所以
M B 01μ= 032==B B M B B B B 076542
1
μ==== 注意到在磁棒内M=常数,在磁棒外M=0,根据M B
H -=
μ立即可得:
0321===H H H M H H 2174=
= M H H 2
165-== 4.附图所示是一个带有很窄缝隙的永磁环,磁化强度为M,求图中所标各点的B 和H. 解: 由B B B '+=0, 其中00=B ,因缝隙很窄,
M i B B B 00321μμ='='='=' 故
M B B B 0321μ===
由M B
H -=
μ注意到在环内M=常数,在缝隙中M=0, 所以 M H =1,032==H H
§3.介质的磁化规律 (P605习题)
1.一环形铁芯横截面的直径为4.0毫米,环的平均半径R=15毫米,环上密绕着200匝线圈(见附图),当线圈导线通有25毫安的电流时,铁芯的(相对)磁导率300=μ求通过铁芯横截面的磁通量φ.
解: 由S nI BS 00ημφ==,其中 3
2
1012.210
5.12200⨯=⨯⨯=
-πn 米1-,所以 762337105.21044
10251012.2104300----⨯=⨯⨯⨯
⨯⨯⨯⨯⨯⨯=π
πφ韦伯
4.一无穷长圆柱形直导线外包一层磁导率为μ的圆筒形磁介质,导线半径为1R ,磁介质的外半径为2R (见附图),导线内有电流I 通过.(1)求介质内、外的磁场强度和磁感应强度的分布,并画r H - 、r B =曲线;(2) 介质内、外表面的束缚面电流密度i ';(3) 从磁荷观点来看,介质表面有无磁荷?
解: (1)在横截面内分别在导线内外取以导线轴线为中心的圆形回路,应用安培环路定理可得
2
7
4
212/R Ir H π=, )(1R r <, r I H π2/=, )(21R r R <<
r I H π2/= )(2R r > 再由
H B 0μμ=可得 2102/R Ir B πμ=
)(1R r < r
I
B πμμ20=
)(
21R r R << )R (r 2/20>=r I B πμ
(2) 由n M i ⨯=', 在 1R r =处,
n 指向内,
12/)1(R I H x M i m πμ-==='在2R r =处, n 指向外, 22/)1(R I H x M i m πμ-=-=-=' (3)按磁荷观点, n m n n m H x M J 00μμσ===,在介质内外表面,H 和表面相切,0=n H ,

0=m σ.
§3.边界条件 磁路定理 (P621习题) 11.证明两磁路并联时的磁阻服从下列公式:
2
11
11m m m R R R +
= 解:参见附图,设总磁通为0B φ,并联支路的磁通为1B φ和2B φ;并联磁路的磁阻分别为1m R 和
2m R ,总磁阻为m R .按磁路定理:
,11m B m R φε= 22m B m R φε=
,/ 1B1m m R εφ=∴ ,/ 2B2m m R εφ=

021B B B φφφ=+
m m B m m R R R /)/ ()/( 02m 1m εφεε==+∴
21/1/1/1m m m R R R +=
12.一电磁铁铁芯的形状如附图所示,线圈的匝为1000,空气隙长度0.2=l 毫米.磁路的、、、c b a 三段长度与截面都相等,,气隙的磁阻比它们每个大30倍,当线圈中有电流I=1.8安培时,气隙中的磁场强度为多少奥斯特?
解: 参看附图,设各支路中的磁通为Ba φ、Bb φ和Bc φ气隙中的磁场强度为H,气隙磁阻为0m R ,磁路总磁阻为m R ,按磁阻串并联的公式
12
12
2
m 1m R
)/()(00m m a m b m m a m b m c m R R R R R R R R ++++= 又 30/0m m c m b m a R R R R === 所以 960/630m m R R = 按磁路定理 m BC R NI φ= (1)
)(0m m a Ba m b Bb R R R +=φφ (2) 又
Bc Bb Ba φφφ=+ (3)
SH Ba 0μφ= (4)
联立(1)-(4)式.解得:
奥斯特
米安35330000104.5/ 103.4102638
.1103063306330⨯=⨯=⨯⨯⨯⨯=
==⋅++=
-l NI SR NI SR NI R R R R H m m m mb ma
mb μμ
§5.磁场的能量和能量密度 (P631习题)
2.利用高磁导率的铁磁体,在实验室产生B=5000高斯的磁场并不空难.(1) 求这磁场的能量密度m w ; (2) 要想产生能量密度等于这个值的电场,问电场强度E 的值应为多少? 这在实验上容易作到吗?
解: (1) 按 022/2/)(μB H B w m =⋅=
得: 3572/101)108/(5.0米焦耳⨯=⨯=-πm w (2) 按 3520/1012/米焦耳⨯==E w e ε
得: 8125105.11085.8/102⨯=⨯⨯=
-E 伏/米
显然这个场强在实验室中是较难实现的.
6.一根长直导线载有电流I, I 均匀分布在它的横截面上.证明:这导线内部单位长度的磁场能
量为: π
μ162
0I .
证: 因在电流密度均匀分布的长直导线内部
)R I r /(2H ),2/()(2
2
0ππμ==R Ir B 其中R 为导线的半径,所以 )8/2/)(4
2
2
20R r I H B w m πμ=⋅=, 单位长导线内的总磁能为
π
μπ1622
00
I rdr w W R
m m =⋅=⎰
.。

相关文档
最新文档