耐热混凝土
c40耐热混凝土强度等级

c40耐热混凝土强度等级
(原创版)
目录
1.C40 混凝土强度等级的定义与意义
2.C40 混凝土的抗压强度标准值
3.C40 混凝土的养护条件
4.C40 混凝土的强度级别与概率保证
5.结论
正文
C40 耐热混凝土强度等级是一种用于描述混凝土抗压强度级别的指标,其意义在于为建筑行业提供一种统一的强度标准,以确保建筑结构的安全性和耐久性。
根据相关标准,C40 混凝土的抗压强度标准值为 40MPa,这意味着在标准养护条件下,该批混凝土立方体试件的抗压强度应该达到 40MPa。
而标准养护条件是指在温度为 20±2℃,相对湿度为 95% 以上的环境中养护,或者在温度为 20±2℃的不流动的 Ca(OH)2 饱和溶液中养护 28 天。
C40 混凝土的强度级别可以由十四个级别构成,分别为 c15、c20、c25、c30、c35、c40、c45、c50、c55、c60、c65、c70、c75、c80。
例如,c30 表示混凝土的抗压强度级别为 30MPa,其强度在 95% 的概率下不会低于 35MPa。
第1页共1页。
耐热混凝土介绍

耐热混凝土介绍
《耐热混凝土介绍》
嘿,朋友们!今天咱来聊聊耐热混凝土这玩意儿。
你可别小瞧它,这可是在高温环境下大显身手的“厉害角色”呢!
想象一下啊,在那些热得能烤熟人的地方,普通的混凝土可能早就“哭爹喊娘”热得不行啦,但耐热混凝土可不一样,它就像个坚强的“小战士”,稳稳地站在那里。
它为啥这么牛呢?这就得从它的构成说起啦。
它里面有各种特殊的材料,这些材料组合在一起,就给了它超强的耐热能力。
就好像是一群小伙伴齐心协力,共同抵抗炎热这个“大怪兽”。
在一些高温的工厂里,耐热混凝土可是大功臣呢!它能让那些设备稳稳地安置在那里,不用担心被高温给弄坏咯。
而且啊,它还特别耐用,不会说用着用着就“耍赖皮”不行了。
咱平时可能不太能注意到它,但它真的在很多地方默默发挥着重要作用呢。
就像一个低调的“幕后英雄”,虽然不常被提及,但却不可或缺。
说起来,耐热混凝土真的很了不起呀,它能承受住那么高的温度,还能一直坚守岗位。
感觉它就像是那种特别靠谱的朋友,不管啥时候都能靠得住。
哎呀呀,讲了这么多,总之呢,耐热混凝土就是个很厉害的存在啦!下次你要是在一些高温的地方看到一些坚固的建筑或者设施,说不定里面就有耐热混凝土的功劳呢!好啦,今天关于耐热混凝土的介绍就到这儿啦,朋友们,回见咯!可别忘记这个低调又厉害的家伙哟!。
c40耐热混凝土强度等级

c40耐热混凝土强度等级摘要:一、C40耐热混凝土的定义与特点二、C40耐热混凝土强度等级的划分与要求三、C40耐热混凝土的应用领域四、提高C40耐热混凝土强度等级的方法五、我国C40耐热混凝土发展现状与趋势正文:一、C40耐热混凝土的定义与特点C40耐热混凝土是一种具有较高耐热性能的混凝土,其强度等级为C40,即在标准养护条件下,28天抗压强度达到40MPa。
C40耐热混凝土具有较高的强度、良好的耐热稳定性、抗渗性能和耐久性。
在我国,C40耐热混凝土广泛应用于高温炉窑、热电站、核电站等领域。
二、C40耐热混凝土强度等级的划分与要求根据我国现行标准《普通混凝土强度等级及其验收规范》(GB/T 50080-2002),C40耐热混凝土强度等级分为三个阶段:1.早期强度:混凝土浇筑后3天内的抗压强度,要求不低于20MPa。
2.中期强度:混凝土浇筑后7天的抗压强度,要求不低于30MPa。
3.长期强度:混凝土浇筑后28天的抗压强度,要求不低于40MPa。
三、C40耐热混凝土的应用领域1.高温炉窑:C40耐热混凝土可用于建造高温炉窑的内衬,承受高温环境下的应力作用。
2.热电站:C40耐热混凝土可用于热电站的锅炉、烟囱、热交换器等高温部位。
3.核电站:C40耐热混凝土可用于核电站的高温、高压容器和设备基础。
4.其它领域:C40耐热混凝土还可应用于航空航天、军工、石油化工等高温、高压、高辐射环境。
四、提高C40耐热混凝土强度等级的方法1.优化原材料:选用高强度、高耐热性能的水泥、矿物掺合料和骨料。
2.调整配合比:适当增加水泥用量、矿物掺合料和骨料的比例,以提高混凝土的强度和耐热性能。
3.改进施工工艺:采用真空搅拌、高压泵送、模板支撑等先进施工技术。
4.加强养护措施:严格按照标准养护程序进行湿养护,确保混凝土强度和耐热性能的稳定发展。
五、我国C40耐热混凝土发展现状与趋势1.发展现状:近年来,我国C40耐热混凝土研究与应用取得了显著成果,已成功应用于多个领域。
c25耐热混凝土的介绍

c25耐热混凝土的介绍英文回答:C25 heat-resistant concrete is a type of concrete that is designed to withstand high temperatures. It is typically used in applications where the concrete will be exposed to temperatures in excess of 1,000 degrees Fahrenheit (538 degrees Celsius). C25 heat-resistant concrete is made with a blend of Portland cement, fly ash, and aggregates that are resistant to high temperatures. The concrete is also reinforced with steel fibers to improve its strength and durability.There are a number of different types of C25 heat-resistant concrete available. The most common type is ordinary Portland cement (OPC) concrete. OPC concrete is made with a blend of Portland cement, sand, gravel, and water. It is the most widely used type of concrete in the world.Another type of C25 heat-resistant concrete is high-strength concrete (HSC). HSC concrete is made with a blend of Portland cement, fly ash, and aggregates that are designed to produce a high-strength concrete. HSC concrete is typically used in applications where the concrete will be subjected to high loads.A third type of C25 heat-resistant concrete is fiber-reinforced concrete (FRC). FRC concrete is made with a blend of Portland cement, fly ash, aggregates, and steel fibers. The steel fibers improve the strength and durability of the concrete. FRC concrete is typically used in applications where the concrete will be subjected to impact loads.C25 heat-resistant concrete is a versatile material that can be used in a variety of applications. It is a durable and cost-effective solution for applications where the concrete will be exposed to high temperatures.中文回答:C25耐热混凝土是专为承受高温而设计的混凝土类型。
耐热混凝土标准-概述说明以及解释

耐热混凝土标准-概述说明以及解释1.引言概述部分的内容可以描述耐热混凝土标准的背景和意义。
以下是一个参考范例:1.1 概述耐热混凝土是一种在高温环境下具有出色性能的材料,它在许多领域具有广泛的应用。
耐热混凝土的研究和开发已经取得了显著的进展,为各种高温工况的工程提供了可靠的解决方案。
随着现代社会的发展,越来越多的工业领域对高温环境下的建筑材料提出了更高的要求。
例如,冶金、化工、电力等行业的生产设备和工艺过程往往会面临极端的高温条件。
在这些条件下,普通混凝土往往难以承受高温引起的热胀冷缩、热应力和热疲劳等问题,从而影响设备的稳定运行和使用寿命。
为了解决这一问题,研究人员开始开发具有出色耐热性能的混凝土材料,即耐热混凝土。
耐热混凝土与普通混凝土相比,在高温环境下表现出更好的抗裂性、抗压强度和耐久性。
这些优势使得耐热混凝土成为高温环境中各种工程项目的理想选择,如耐火材料、高温容器、炉窑衬里等。
然而,由于缺乏统一的标准和规范,耐热混凝土的开发和应用面临一些挑战。
不同的国家和地区使用不同的材料和试验方法,造成了耐热混凝土标准的不一致性。
为此,制定一套全面、科学、规范的耐热混凝土标准变得尤为重要。
本文将就耐热混凝土标准的概述、定义和特点进行探讨。
同时,本文还将介绍耐热混凝土的应用领域和其在工程中的重要性。
最后,将总结耐热混凝土标准的重要性和必要性,并展望未来耐热混凝土标准的发展方向。
通过建立健全的标准体系,有望推动耐热混凝土材料的进一步创新和应用,为高温工况的工程提供可持续、安全、可靠的解决方案。
文章结构部分的内容应该包括以下几方面的内容:1.2 文章结构本文主要以耐热混凝土标准为主题,对其定义、特点、应用领域和重要性等方面进行探讨。
文章结构如下:第一部分为引言部分,包括概述、文章结构以及目的的介绍。
这部分将为读者提供对耐热混凝土标准的整体了解,并引导读者理解文章的框架和内容。
第二部分为正文部分,主要分为两个小节。
耐热混凝土专项施工方案

耐热混凝土专项施工方案一、前言耐热混凝土在高温环境下具有较好的抗裂、抗渣蚀等性能,因此在高温窑炉、冶金炉、玻璃炉等场合中被广泛使用。
然而,由于其工艺性能较为特殊,需要在施工前做好详细的方案规划,否则将会影响到整个工程的质量。
本文将从耐热混凝土材料、施工方案等多个方面进行介绍,旨在提供一份完整的耐热混凝土专项施工方案。
二、耐热混凝土材料1. 耐热混凝土原材料耐热混凝土由水泥、高铝酸盐水泥、碳化硅、微晶玻璃等材料按一定比例拌和而成。
其中,水泥和高铝酸盐水泥为主要的黏合剂,碳化硅具有良好的耐高温性能,微晶玻璃使用可增强强度。
需要注意的是,原材料的选用应根据具体的使用环境和性能要求进行调整,以确保最终产品具有所需的性能。
2. 耐热混凝土制备耐热混凝土的制备过程包括称量、拌和、输送、浇筑和养护等步骤。
在这些过程中,需要注意保证材料的完整性、水泥的配合比例、拌合时间和方式、输送管路的清洗和养护等问题,以确保最终产品的质量。
三、耐热混凝土施工方案1. 施工准备(1)施工前的技术交底。
由施工方向业主、监理单位进行经验交流,明确施工工艺和施工要求,保证施工顺利进行。
(2)场地准备。
将施工现场清理干净,保证场地干净整洁,以便于施工。
2. 耐热混凝土浇筑(1)浇筑方法:采用自流平浇筑法。
这种浇筑方法的优点在于可以保证耐火材料的厚度均匀,避免气泡和夹杂物的产生,促进材料密实度的提高,避免后续施工中出现松动、开裂等问题。
(2)浇筑技术要求:不同的耐火材料有不同的浇筑技术要求,具体实施细节需要根据施工情况进行调整。
要求在浇筑的过程中,搅拌桶要保持转动,使混凝土的连续性和均匀性得到保证。
浇筑时应该将混凝土浇到指定位置,逐层压实,以保证硬度与密实度。
3. 耐热混凝土养护(1)养护期:在搭建耐火材料的过程中,需要采用适当的养护技术,以确保耐火材料在初期的硬化过程中能够获得充分的潮湿度,避免裂缝的产生。
养护期一般是根据耐火材料的特性、工艺要求和受力情况等因素的综合分析后确定的。
耐热混凝土专项施工方案

耐热混凝土专项施工方案
1. 项目背景
耐热混凝土在高温环境下具有良好的性能,广泛应用于炼钢、冶金、电力等行业的工程中。
本项目旨在介绍耐热混凝土的专项施工方案,以确保施工质量和工程安全性。
2. 施工材料选择
•水泥:选择高温抗裂水泥,确保混凝土在高温环境下的抗压性能。
•骨料:选用矿渣、膨胀岩等特殊骨料,提高混凝土的抗高温性能。
•外加剂:添加耐高温外加剂,改善混凝土的耐热性能。
3. 施工工艺
•浇筑前应提前进行模板加固和防火处理,确保模板的稳定性和耐高温性。
•搅拌混凝土时,应根据配合比严格控制水灰比,确保混凝土的强度和耐热性。
•浇筑后采取适当的养护措施,保证混凝土在高温环境下的早期强度和抗裂性能。
4. 施工质量控制
•对浇筑前的模板、配料和施工设备进行严格检查,保证施工质量。
•施工中应定期检测混凝土的强度和密实性,确保达到设计要求。
•施工过程中发现质量问题应及时整改,确保工程质量和安全。
5. 结束语
耐热混凝土在高温环境中具有重要的应用价值,正确的施工方案对确保工程质量和安全至关重要。
本文介绍了耐热混凝土专项施工方案的关键内容,希望能为相关工程提供参考,保障工程质量和安全性。
耐热混凝土

耐热混凝土耐热混凝土,是指能够长时间承受200~1300℃温度作用,并在高温下保持所需要的物理力学性质的特种混凝土。
耐热混凝土常用于热工设备、工业窑炉和受高温作用的结构物,如炉墙、炉坑、烟囱内衬及基础等。
具有生产工艺简单、施工效率高、易满足异形部位施工和热工要求,维修费用少、使用寿命长、成本低廉等优点。
1.耐热混凝土的分类耐热混凝土按其胶凝材料不同,一般可分为水泥耐热混凝土和水玻璃耐热混凝土。
(1)水泥耐热混凝土①普通硅酸盐水泥耐热混凝土。
普通硅酸盐水泥耐热混凝土是由普通硅酸盐水泥、磨细掺和料、粗骨料和水调制而成。
这种混凝土的耐热度为700~1200℃,强度等级为C10~C30,高温强度为3.5~20MPa,最高使用温度达1200℃或更高。
适用于温度较高,但无酸碱侵蚀的工程。
②矿渣硅酸盐水泥耐热混凝土。
矿渣硅酸盐水泥耐热混凝土是由矿渣硅酸盐水泥、粗细骨料,有时掺加磨细掺和料和水调制而成。
这种混凝土耐热度为700~900℃,强度等级为C15以上,最高使用温度可达900℃,适用于温度变化剧烈,但无酸碱侵蚀的工程。
③高铝水泥耐热混凝土。
高铝水泥耐热混凝土是由高铝水泥或低钙铝酸盐水泥、耐热度较高的掺和材料以及耐热骨料和水调制而成的。
这种混凝土耐热度为1300~1400℃,强度等级为C10~C30,高温强度为3.5~10MPa,最高使用温度可达1400℃,适用于厚度小于400mm的结构及无酸、碱、盐侵蚀的工程。
高铝水泥耐热混凝土虽然在300~400℃时强度会剧烈降低,但此后,残余部分的强度都能保持不变。
而在1100℃以后,结晶水全部脱出而烧结成陶瓷材料,其强度又重新提高。
因高铝水泥的熔化温度高于其极限使用温度,使用时,是不会被熔化而降低强度的。
(2)水玻璃耐热混凝土水玻璃耐热混凝土是由水玻璃、氟硅酸钠、磨细掺和料及粗细骨料按一定配合比例组成。
这种混凝土耐热度为600~1200℃,强度等级为C10~C20,高温强度为9.0~20MPa,最高使用温度可达1000~1200℃。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
耐热混凝土配合比设计及性能检验规程1总则针对工程的需要,编制该规程。
本规程中的耐热混凝土指用普通硅酸盐水泥(或硅酸盐水泥、矿渣硅酸盐水泥、铝酸盐水泥)、耐热粗细骨料、耐热掺和料、水以及根据需要选用合适混凝土外加剂搅拌均匀后采用振动成型的混凝土,它能够长时间承受200~1300℃温度作用,并在高温下保持需要的物理力学性能。
该混凝土不能使用于酸、碱侵蚀的部位。
2原材料要求根据耐热温度高低,温度变化的剧烈程度选用原材料的品种。
2.1水泥2.1.1硅酸盐水泥、普通硅酸盐水泥、矿渣硅酸盐水泥、铝酸盐水泥应相应符合国标GB175-1999、GB1344-1999、GB201-2000的要求。
对于高炉基础耐热混凝土使用的水泥,应压蒸安定性合格。
2.1.2对耐热温度高于700℃的混凝土,水泥中不能掺石灰岩类混合材。
低于700℃时,掺量亦不能超过5%。
2.1.3硅酸盐水泥,普通硅酸盐水泥的最高使用温度为1200℃,矿渣水泥的最高使用温度为700℃,且磨细水淬矿渣含量不大于50%,铝酸盐水泥最高使用温度为1400℃。
2.1.4每立方米耐热砼中的水泥用量不应超过450kg。
2.2掺和料2.2.1使用温度大于350℃的耐热砼,应掺加耐热掺和料。
2.2.2常用的耐热掺和料有粘土熟料、铝矾土熟料、粘土砖粉、粉煤灰(不低于Ⅱ级)等。
其技术要求见表1:表1 耐热砼用掺和料技术要求注:掺和料含水率不得大于1.5%。
2.3粗细骨料2.3.1耐热砼不宜采用石英质骨料。
如砂岩、石英等。
应选用粘土熟料、铝矾土熟料、耐火砖碎料、粘土砖碎料、高炉重矿渣碎石、安山岩、玄武岩、辉绿岩等。
且高炉重矿渣碎石、安山岩、玄武岩、辉绿岩仅限于温度变化不剧烈的部位。
2.3.2骨料的燃烧温度不低于1350~1450℃。
2.3.3对于已用过的粘土砖,应除去表面熔渣和杂质,且强度应大于10MPa。
高炉重矿渣应具有良好的安定性,不允许有大于25mm的玻璃质颗粒。
2.3.4一般粗骨料粒径不得大于20mm,在钢筋不密的厚大结构中不应大于40mm。
2.3.5骨料中严禁混有有害杂质,特别是石灰岩类碎块等。
2.3.6对于温度低于350℃,可使用河砂。
低于700℃,温度变化不剧烈时,优先选用高炉重矿渣骨料。
2.3.7高炉重矿渣碎石、安山岩、玄武岩、辉绿岩粗细骨料的级配应符合GB/T14684-2001《建筑用砂》、GB/T14685-2001《建筑用卵石、碎石要求》。
高炉重矿渣碎石还应符合YBJ205-84《混凝土用高炉矿渣碎石技术标准》的要求。
粗骨料最大粒径不宜超过31.5mm,最佳不超过25mm。
粘土质及高铝质骨料的颗粒粒级,级配及化学成分要求见下表:表2 耐热砼骨料的技术性质2.4拌合水符合JGJ63-89《普通砼拌合用水标准》。
2.5外加剂2.5.1符合GB8076-1997《普通砼用外加剂》2.5.2应通过试配符合耐热砼的各种指标要求。
3耐热砼配合比设计和试配耐热砼的配合比不但要满足耐热性能的要求,同时必须满足强度和施工和易性的要求。
在设计耐热砼配合比时,应根据极限使用温度和使用条件,选定合适的原材料,然后在参考经验配合比的前提下通过调整胶结材的用量、水灰比、骨料级配、掺和料及外加剂,并经过试验,从而优选出保证砼耐久性的经济、可靠配合比。
3.1胶结材的用量一般情况下,骨料的耐热性能比胶结料好,当胶结料的用量超过一定范围时,随着胶结料用量的增加耐热性能将降低,因此在满足施工和易性和常温强度的要求下,尽可能减少胶结料的用量。
水泥用量一般可控制在砼总重量10~20%范围内。
对荷重软化点和耐热度要求较高,而常温强度要求不高的水泥耐热砼,水泥用量可控制在10~15%以内。
3.2水灰比水灰比的增减对强度和残余变形的影响较显著。
在施工条件允许的前提下,应尽量减少用水量,降低水灰比,一般坍落度应小于20mm。
对于坍落度要求较大的耐热混凝土,必须掺用高效减水剂等外加剂。
3.3掺和料用量掺和料可以改善砼的耐高温性能,提高施工和易性,同时还可以减少水泥用量。
因此,对常温要求强度不高的耐热砼,掺和料用量可多些。
一般为水泥用量的30~100%。
3.4骨料级配及砂率骨料级配应满足2.3.7的要求,细骨料占骨料总量的40~60%。
3.5以经验配合比为初始配合比,进行试配,调整确定基准配合比。
3.6经验配合比见表3。
表3 耐热砼经验配合比3.7耐热砼试配3.7.1原材料称量及成型应符合GB/T50081-2002《普通砼力学性能试验方法标准》的要求。
3.7.2拌制水泥耐热砼时,水泥和掺和料必须预先拌合均匀,约拌2min。
3.7.3耐热砼的养护应遵守以下规定:成型完后应在15~25℃的潮湿环境中养护,其中普通水泥(硅酸盐水泥)耐热砼养护不少于7d,矿渣水泥耐热砼不少于14d;铝酸盐水泥耐热砼不少于3d。
4耐热砼的检验项目和技术要求用于检验耐热砼质量的试件,应在砼的浇筑地点随机抽取。
取样与试件留置应符合下列规定:1>每拌制100盘且不超过50m3的同配合比的砼取样不得少于一次;2>每工作班拌制的同一配合比的砼不足100盘时,取样不得少于一次;3>一次连续浇筑超过500m3时,同一配合比的砼每100m3取样不得少于1次;4>取样组数见表4。
表4 耐热砼的检验项目和技术要求注:试件尺寸见耐热砼性能检验相关要求。
5耐热砼性能检验5.1烘干耐压强度检验5.1.1目的及适用范围检验耐热砼在标准养护n d后的烘干耐压强度作为耐热砼强度等级。
(普通水泥、矿渣水泥、铝酸盐水泥分别养护7d、14d、3d)。
适用于测定耐热砼的烘干耐压强度。
5.1.2检验设备5.1.2.1材料试验机符合JGJ70-90中关于试验机的要求。
5.1.2.2电热干燥箱(300℃±1℃)。
5.1.2.3钢板尺,最小刻度0.05cm。
5.1.2.4试模70.7×70.7×70.7mm符合JGJ70-90第7.0.2条要求。
5.1.3试样制备。
在与生产工艺相同条件下,直接成型棱长为70.7±0.5mm的立方体试样3件。
当骨料最大粒径大于25mm时,直接成型棱长为100±1mm的立方体试样。
5.1.4检验步骤5.1.4.1养护龄期到达后及时在110±5℃条件下烘干8h以上,(烘干升温速度为20~30℃/h),然后自然冷却至室温后进行检验。
5.1.4.2用钢板尺分别测量并记录立方体试样上、下受压面的长度,准确至0.1mm。
5.1.4.3将试样受压面对准试验机上、下压板中心,以0.5~1MPa/s 的加压速度均匀地施压于试样,至试样破坏,并记录最大压力值。
5.1.5结果计算将测量数据代入下列公式,计算各个试样的烘干耐压强度,以三个试样的平均值为代表值,并精确至0.1 MPa。
A1=a1×a2A2=b1×b2A=(A1+A2)/2S=P÷A式中,A1、A2—试样上、下受压面的面积(mm2)a1、a2—试样上受压面的两维长度(mm)b1、b2—试样下受压面的两维长度(mm)A—试样受压面积(mm2)P—试样破坏时荷载(N)S—试样烘干耐压强度(MPa)5.2烧后抗压强度、残余抗压强度检验5.2.1目的及适用范围检验耐热砼在经过一定时间的高温加热后的耐压强度。
检验耐热砼在经过一定时间的高温加热后,随炉冷却到室温,放在干燥空气中养护,10d后的耐压强度。
适用于检验耐热砼的烧后抗压强度和残余抗压强度。
5.2.2检验设备5.2.2.1箱式加热炉5.2.2.2电热干燥箱(300℃±1℃)。
5.2.2.3材料试验机同5.1.2.1。
5.2.2.4钢板尺,最小刻度0.05cm。
5.2.3试样制备:同5.1.3。
5.2.4检验步骤5.2.4.1养护龄期到达后及时在110±5℃条件下烘干8h以上(烘干升温速度为20~30℃/h)。
5.2.4.2放在加热炉中以每小时不超过150℃的升温速度,升温至指定温度,恒温3h(残余强度恒温4h),随炉冷却至室温。
5.2.4.3取出经过恒温3h的冷却试样作烧后抗压强度检验。
5.2.4.4取出经过恒温4h的冷却试样,放在干燥空气中养护10d后,作残余抗压强度检验。
5.2.4.5用钢板尺分别测量并记录立方体试件上、下受压面的两维长度,准确至0.5mm。
5.2.4.6加压速度同烘干耐压强度检验。
5.2.5结果计算同5.1.5。
5.3烧后线变化检验5.3.1目的及适用范围测定耐热砼加热至高温后的长度增减变化。
适用于耐热砼的烧后线变化检验。
5.3.2试验设备5.3.2.1千分尺:量程50~75mm,精度0.01mm。
若试件尺寸为100mm 时,量程应为75~100 mm或100~125 mm。
5.3.2.2加热炉;应满足极限温度的要求。
且计量检定合格。
5.3.3试样制备5.3.3.1试样的检验数量为3个。
Y5.3.3.2同5.1.3。
5.3.3.3用氧化铬在试样成型面上编号。
5.3.4试验步骤5.3.4.1测量试样长度时,将试样成型面向上,并在试样的四个侧面划出对角线,在每个侧面上按图定出四个测点,加以标记,然后用螺旋百分尺测量试样在两个方向(X,Y)上的各对应点之间的距离。
每次测量应重复两遍,以平均值记录。
要保持加热前后所有测量操作条件的一致。
5.3.4.2装样5.3.4.2.1将试样成型面向上,放置在炉膛内的均温带,距发热体30mm 以上。
试样间至少应保持10mm的间距。
炉膛装样区的温差不得大于20℃.5.3.4.2.2试样可交错迭放两层。
试样之间及试样与炉底的接触面应用在高温下不与试样发生作用的细砂(如电熔刚玉砂,一等高铝矾土熟料砂等)垫平。
5.3.4.3升温速度:低于检验温度200℃前5~10℃/min。
然后以3~5℃/min升温至检验温度。
5.3.4.4到达检验温度后保温4 h,保温期间温差不可超过±10℃。
5.3.4.5应保持炉内为中性气氛或氧化气氛,不可使用还原气氛。
5.3.4.6保温结束后,试样随炉自然冷却至室温,然后进行测量。
允许在200℃以下装、出炉。
5.3.5结果计算5.3.5.1每个试样的烧后线变化百分率按下式计算:△L=((L1-L0)×100)/L0式中△L—试样烧后线变化(%)L0—加热前试样的平均长度(mm)L1—加热后试样的平均长度(mm)5.3.5.2试样烧后收缩以“-”号表示,烧后膨胀以“+”号表示。
“+”、“-”号均写在数字的前面。
5.3.5.3耐热砼烧后线变化的检验结果,以三个试样的平均值为代表值,精确至0.1%。
报告中应列出每个试样的测定值。
5.3.5.4加热后的试样当发现有熔洞、剥落、鼓凸等现象时,应在报告中注明。