小学奥数教程-乘法原理之染色问题.教师版 (139) 全国通用(含答案)
小学思维数学讲义:乘法原理之染色问题-带详解

乘法原理之染色问题教学目标1.使学生掌握乘法原理主要内容,掌握乘法原理运用的方法;2.使学生分清楚什么时候用乘法原理,分清有几个必要的步骤,以及各步之间的关系.3.培养学生准确分解步骤的解题能力;乘法原理的数学思想主旨在于分步考虑问题,本讲的目的也是为了培养学生分步考虑问题的习惯.知识要点一、乘法原理概念引入老师周六要去给同学们上课,首先得从家出发到长宁上8点的课,然后得赶到黄埔去上下午1点半的课.如果说申老师的家到长宁有5种可选择的交通工具(公交、地铁、出租车、自行车、步行),然后再从长宁到黄埔有2种可选择的交通工具(公交、地铁),同学们,你们说老师从家到黄埔一共有多少条路线?我们看上面这个示意图,老师必须先的到长宁,然后再到黄埔.这几个环节是必不可少的,老师是一定要先到长宁上完课,才能去黄埔的.在没学乘法原理之前,我们可以通过一条一条的数,把线路找出来,显而易见一共是10条路线.但是要是老师从家到长宁有25种可选择的交通工具,并且从长宁到黄埔也有30种可选择的交通工具,那一共有多少条线路呢?这样数,恐怕是要耗费很多的时间了.这个时候我们的乘法原理就派上上用场了.二、乘法原理的定义完成一件事,这个事情可以分成n个必不可少的步骤(比如说老师从家到黄埔,必须要先到长宁,那么一共可以分成两个必不可少的步骤,一是从家到长宁,二是从长宁到黄埔),第1步有A种不同的方法,第二步有B种不同的方法,……,第n步有N种不同的方法.那么完成这件事情一共有A×B×……×N种不同的方法.结合上个例子,老师要完成从家到黄埔的这么一件事,需要2个步骤,第1步是从家到长宁,一共5种选择;第2步从长宁到黄埔,一共2种选择;那么老师从家到黄埔一共有5×2个可选择的路线了,即10条.三、乘法原理解题三部曲1、完成一件事分N个必要步骤;2、每步找种数(每步的情况都不能单独完成该件事);3、步步相乘四、乘法原理的考题类型1、路线种类问题——比如说老师举的这个例子就是个路线种类问题;2、字的染色问题——比如说要3个字,然后有5种颜色可以给每个字然后,问3个字有多少种染色方法;包括几个部分的地图有几种染色的方法;4、排队问题——比如说6个同学,排成一个队伍,有多少种排法;5、数码问题——就是对一些数字的排列,比如说给你几个数字,然后排个几为数的偶数,有多少种排法.【例 1】 地图上有A ,B ,C ,D 四个国家(如下图),现有红、黄、蓝三种颜色给地图染色,使相邻国家的颜色不同,但不是每种颜色都必须要用,问有多少种染色方法?DC B A【考点】乘法原理之染色问题 【难度】3星 【题型】解答【解析】 A 有3种颜色可选;当B ,C 取相同的颜色时,有2种颜色可选,此时D 也有2种颜色可选.根据乘法原理,不同的涂法有32212⨯⨯=种;当B ,C 取不同的颜色时,B 有2种颜色可选,C 仅剩1种颜色可选,此时D 也只有1种颜色可选(与A 相同).根据乘法原理,不同的涂法有32116⨯⨯⨯=种.综上,根据加法原理,共有12618+=种不同的涂法.【答案】18【巩固】 如果有红、黄、蓝、绿四种颜色给例题中的地图染色,使相邻国家的颜色不同,但不是每种颜色都必须要用,问有多少种染色方法?【考点】乘法原理之染色问题 【难度】3星 【题型】解答【解析】 第一步,首先对A 进行染色一共有4种方法,然后对B 、C 进行染色,如果B 、C 取相同的颜色,有三种方式,D 剩下3种方式,如果B 、C 取不同颜色,有326⨯=种方法,D 剩下2种方法,对该图的染色方法一共有43332284⨯⨯+⨯⨯=()种方法.【注意】给地图染色问题中有的可以直接用乘法原理解决,有的需要分类解决,前者分类做也可以解决问题.【答案】84【例 2】 在右图的每个区域内涂上A 、B 、C 、D 四种颜色之一,使得每个圆里面恰有四种颜色,则一共有__________种不同的染色方法.7654321【考点】乘法原理之染色问题 【难度】4星 【题型】解答【解析】 因为每个圆内4个区域上染的颜色都不相同,所以一个圆内的4个区域一共有43224⨯⨯=种染色方法.如右图所示,当一个圆内的1、2、3、4四个区域的颜色染定后,由于6号区域的颜色不能与2、3、4三个区域的颜色相同,所以只能与1号区域的颜色相同,同理5号区域只能与4号区域的颜色相同,7号区域只能与2号区域的颜色相同,所以当1、2、3、4四个区域的颜色染定后,其他区域的颜色也就相应的只有一种染法,所以一共有24种不同的染法.【答案】24【例 3】 如图,地图上有A ,B ,C ,D 四个国家,现用五种颜色给地图染色,要使相邻国家的颜色不相同,有多少种不同染色方法?例题精讲DCB A【考点】乘法原理之染色问题 【难度】3星 【题型】解答【解析】 为了按要求给地图上的这四个国家染色,我们可以分四步来完成染色的工作:第一步:给A 染色,有5种颜色可选.第二步:给B 染色,由于B 不能与A 同色,所以B 有4种颜色可选.第三步:给C 染色,由于C 不能与A 、B 同色,所以C 有3种颜色可选.第四步:给D 染色,由于D 不能与B 、C 同色,但可以与A 同色,所以D 有3种颜色可选.根据分步计数的乘法原理,用5种颜色给地图染色共有5433180⨯⨯⨯=种不同的染色方法.【答案】180【巩固】 如图,一张地图上有五个国家A ,B ,C ,D ,E ,现在要求用四种不同的颜色区分不同国家,要求相邻的国家不能使用同一种颜色,不同的国家可以使用同—种颜色,那么这幅地图有多少着色方法?ED C BA【考点】乘法原理之染色问题 【难度】3星 【题型】解答【解析】 第一步,给A 国上色,可以任选颜色,有四种选择;第二步,给B 国上色,B 国不能使用A 国的颜色,有三种选择;第三步,给C 国上色,C 国与B ,A 两国相邻,所以不能使用A ,B 国的颜色,只有两种选择;第四步,给D 国上色,D 国与B ,C 两国相邻,因此也只有两种选择;第五步,给E 国上色,E 国与C ,D 两国相邻,有两种选择. 共有4322296⨯⨯⨯⨯=种着色方法.【答案】96【例 4】 如图:将一张纸作如下操作,一、用横线将纸划为相等的两块,二、用竖线将下边的区块划为相等的两块,三、用横线将最右下方的区块分为相等的两块,四、用竖线将最右下方的区块划为相等的两块……,如此进行8步操作,问:如果用四种颜色对这一图形进行染色,要求相邻区块颜色不同,应该有多少种不同的染色方法?【考点】乘法原理之染色问题 【难度】3星 【题型】解答【解析】 对这张纸的操作一共进行了8次,每次操作都增加了一个区块,所以8次操作后一共有9个区块,我们对这张纸,进行染色就需要9个步骤,从最大的区块从大到小开始染色,每个步骤地染色方法有:4、3、2、2、2……,所以一共有:4322222221536⨯⨯⨯⨯⨯⨯⨯⨯=种.【答案】1536【巩固】 用三种颜色去涂如图所示的三块区域,要求相邻的区域涂不同的颜色,那么共有几种不同的涂法?ABC【考点】乘法原理之染色问题【难度】2星【题型】解答【解析】涂三块毫无疑问是分成三步.第一步,涂A部分,那么就有三种颜色的选择;第二步,涂B部分,由于要求相邻的区域涂不同的颜色,A和B相邻,当A确定了一种颜色后,B只有两种颜色可选择了;第三步,涂C部分,C和A、B都相邻,A和B确定了两种不相同的颜色,那么C只有一种颜色可选择了.然后再根据乘法原理.3216⨯⨯=【答案】6【例 5】如图,有一张地图上有五个国家,现在要用四种颜色对这一幅地图进行染色,使相邻的国家所染的颜色不同,不相邻的国家的颜色可以相同.那么一共可以有多少种染色方法?【考点】乘法原理之染色问题【难度】3星【题型】解答【解析】这一道题实际上就是例题,因为两幅图各个字母所代表的国家的相邻国家是相同的,如果将本题中的地图边界进行直角化就会转化为原题,所以对这幅地图染色同样一共有4322296⨯⨯⨯⨯=种方法.【讨论】如果染色步骤为----C A BD E,那么应该该如何解答?答案:也是4322296⨯⨯⨯⨯=种方法.如果染色步骤为----C AD B E那么应该如何解答?答案:染色的前两步一共有4×3种方法,但染第三步时需要分类讨论,如果D与A颜色相同,那么B有2种染法,E也有2种方法,如果D与A染不同的颜色,那么D有2种染法那么B只有一种染法,E有2种染法,所以一共应该有43(122212)96⨯⨯⨯⨯+⨯⨯=种方法,(教师应该向学生说明第三个步骤用到了分类讨论和加法原理,加法原理在下一讲中将会讲授),染色步骤选择的经验方法:每一步骤所染的区块应该尽量和之前所染的区块相邻.【答案】96【巩固】某沿海城市管辖7个县,这7个县的位置如右图.现用红、黑、绿、蓝、紫五种颜色给右图染色,要求任意相邻的两个县染不同颜色,共有多少种不同的染色方法?【考点】乘法原理之染色问题【难度】4星【题型】解答【解析】为了便于分析,把地图上的7个县分别编号为A、B、C、D、E、F、G(如左下图).GF DC B AE为了便于观察,在保持相邻关系不变的情况下可以把左图改画成右图.那么,为了完成地图染色这件工作需要多少步呢?由于有7个区域,我们不妨按A 、B 、C 、D 、E 、F 、G 的顺序,用红、黑、绿、蓝、紫五种颜色依次分7步来完成染色任务.第1步:先染区域A ,有5种颜色可供选择;第2步:再染区域B ,由于B 不能与A 同色,所以区域B 的染色方式有4种;第3步:染区域C ,由于C 不能与B 、A 同色,所以区域C 的染色方式有3种;第4步:染区域D ,由于D 不能与C 、A 同色,所以区域D 的染色方式有3种;第5步:染区域E ,由于E 不能与D 、A 同色,所以区域E 的染色方式有3种;第6步:染区域F ,由于F 不能与E 、A 同色,所以区域F 的染色方式有3种;第7步:染区域G ,由于G 不能与C 、D 同色,所以区域G 的染色方式有3种.根据分步计数的乘法原理,共有54333334860⨯⨯⨯⨯⨯⨯=种不同的染色方法.【答案】4860【例 6】 用3种颜色把一个33⨯的方格表染色,要求相同行和相同列的3个格所染的颜色互不相同,一共有 种不同的染色法.【考点】乘法原理之染色问题 【难度】3星 【题型】解答【解析】 根据题意可知,染完后这个33⨯的方格表每一行和每一列都恰有3个颜色.用3种颜色染第一行,有336P =种染法;染完第一行后再染第一列剩下的2个方格,有2种染法;当第一行和第一列都染好后,再根据每一行和每一列都恰有3个颜色对剩下的方格进行染色,可知其余的方格都只有唯一一种染法.所以,根据乘法原理,共有326⨯=种不同的染法.【答案】6【例 7】 如右图,有A 、B 、C 、D 、E 五个区域,现用五种颜色给区域染色,染色要求:每相邻两个区域不同色,每个区域染一色.有多少种不同的染色方式?EDC BA 【考点】乘法原理之染色问题 【难度】3星 【题型】解答【解析】 先采用分步:第一步给A 染色,有5种方法;第二步给B 染色,有4种方式;第三步给C 染色,有3种方式;第四步给D 染色,有3种方式;第五步,给E 染色,由于E 不能与A 、B 、D 同色,但可以和C 同色.此时就出现了问题:当D 与B 同色时,E 有3种颜色可染;而当D 与B 异色时,E 有2种颜色可染.所以必须从第四步就开始分类:第一类,D 与B 同色.E 有3种颜色可染,共有5433180⨯⨯⨯=(种)染色方式;第二类,D 与B 异色.D 有2种颜色可染,E 有2种颜色可染,共有54322240⨯⨯⨯⨯=(种)染色方式.根据加法原理,共有180240420+=(种)染色方式.【注意】给图形染色问题中有的可以直接用乘法原理解决,但如果碰到有首尾相接的图形往往需要分类解决.【答案】420【巩固】 如右图,有A ,B ,C ,D 四个区域,现用四种颜色给区域染色,要求相邻区域的颜色不同,每个区域染一色.有多少种染色方法?D C B A【考点】乘法原理之染色问题 【难度】3星 【题型】解答【解析】 A 有4种颜色可选,然后分类:第一类:B ,D 取相同的颜色.有3种颜色可染,此时D 也有3种颜色可选.根据乘法原理,不同的染法有43336⨯⨯=(种);第二类:当B ,D 取不同的颜色时,B 有3种颜色可染,C 有2种颜色可染,此时D 也有2种颜色可染.根据乘法原理,不同的染法有432248⨯⨯⨯=(种).根据加法原理,共有364884+=(种)染色方法.【答案】84【巩固】用四种颜色对右图的五个字染色,要求相邻的区域的字染不同的颜色,但不是每种颜色都必须要用.问:共有多少种不同的染色方法?学奥而思数【考点】乘法原理之染色问题【难度】3星【题型】解答【解析】第一步给“而”上色,有4种选择;然后对“学”染色,“学”有3种颜色可选;当“奥”,“数”取相同的颜色时,有2种颜色可选,此时“思”也有2种颜色可选,不同的涂法有32212⨯⨯=种;当“奥”,“数”取不同的颜色时,“奥”有2种颜色可选,“数”剩仅1种颜色可选,此时“思”也只有1种颜色可选(与“学”相同),不同的涂法有32116⨯⨯⨯=种.所以,根据加法原理,共有43(222)72⨯⨯⨯+=种不同的涂法.【答案】72【例 8】分别用五种颜色中的某一种对下图的A,B,C,D,E,F六个区域染色,要求相邻的区域染不同的颜色,但不是每种颜色都必须要用.问:有多少种不同的染法?【考点】乘法原理之染色问题【难度】4星【题型】解答【解析】先按A,B,D,C,E的次序染色,可供选择的颜色依次有5,4,3,2,3种,注意E与D的颜色搭配有339⨯=(种),其中有3种E和D同色,有6种E和D异色.最后染F,当E与D同色时有3种颜色可选,当E与D异色时有2种颜色可选,所以共有542(3362)840⨯⨯⨯⨯+⨯=种染法.【答案】840【例 9】将图中的○分别涂成红色、黄色或绿色,要求有线段相连的两个相邻○涂不同的颜色,共有多少种不同涂法?D CBA【考点】乘法原理之染色问题【难度】3星【题型】解答【解析】如右上图,当A,B,C,D的颜色确定后,大正方形四个角上的○的颜色就确定了,所以只需求A,B,C,D有多少种不同涂法.按先A,再B,D,后C的顺序涂色.按---A B D C的顺序涂颜色:A有3种颜色可选;当B,D取相同的颜色时,有2种颜色可选,此时C也有2种颜色可选,不同的涂法有32212⨯⨯=种;当B,D取不同的颜色时,B有2种颜色可选,D仅剩1种颜色可选,此时C也只有1种颜色可选(与A相同),不同的涂法有32116⨯⨯⨯=(种).所以,根据加法原理,共有12618+=种不同的涂法.【答案】18【例 10】用4种不同的颜色来涂正四面体(如图,每个面都是完全相同的正三角形)的4个面,使不同的面涂有不同的颜色,共有________种不同的涂法.(将正四面体任意旋转后仍然不同的涂色法,才被认为是不同的)【考点】乘法原理之染色问题【难度】4星【题型】填空【关键词】迎春杯,中年级,复赛,第9题【解析】不旋转时共有4×3×2×1=24种染色方式,而一个正四面体有4×3=12种放置方法(4个面中选1个作底面,再从剩余3个面中选1个作正面),所以每种染色方式被重复计算了12次,则不同的染色方法有24÷12=2种。
五年级下册奥数试题-组合数学之染色与覆盖 全国通用(含答案)

组合数学之染色与覆盖例1.有一次车展共36个展室,如下图,每个展室与相邻的展室都有门相通,入口和出口如图所示。
参观者 (填“能”或“不能”)从人口进去,不重复地参观完每个展室再从出口出来。
解:答:不能;如图将展室黑白相间染色,入口为白色,出口也是白色,而走遍36个展室,从白到黑,再从黑到白,共走了35步,最后应该走到黑格,而出口仍然是白格,矛盾,所以无法完成。
例2.棋盘由下图所示的9个小圆圈排列而成,用1~9编号,在3号和9号的小圆圈中各方一枚棋子,分别代表警察和小偷。
若两个小圆圈之间有线相连,则棋子可以从其中一格走入另一格,现在由警察先走,两人轮流,每人每次走一步,每步可以从一格走到有线相连的临格之中。
如果在6步之内警察走入小偷所在的格子中,就算警察抓住了小偷而立功获胜;如果警察走了6步还没有抓住小偷,就算他失职而失败。
问警察应如何取胜。
解:警察先从3走到1,则小偷从9走到7(或8);第2步,警察走到2,小偷走到6(或9); 第3步,警察走到3,小偷走到7或8;第4步,警察走到4,小偷走到9;第5步,警察6,小偷无论是走到7(或8),警察在第6步一定可以获胜。
例3.空间六点任三点不共线,任四点不共面,成对地连接它们得到十五条线段,用红色或蓝色染这些线段(一条线段只染一种颜色),求证:无论这么染,总存在一个同色的三角形。
解:设六点为A 、B 、C 、D 、E 、F ,从A 点出发的五条线段AB 、AC 、AD 、AE 、AF 中至少有3条是同色的,不妨设AB 、AC 、AD 为红色,我们再看△BCD 的三边,如果都是蓝色,那么存在同为蓝色的△BCD ,若△BCD 中有一条边不是蓝色,而是红色,不妨设BC 是红色,则AB 、AC 、BC 都是红色,这是一个红色三角形。
所以总存在一个同色的三角形。
例4.下图是由14个大小相同的方格组成的图形,试问 (“能”或“不能”)剪裁成7个由相邻两个方格组成的长方形。
小学奥数染色与操作问题教师版

标准文档第十一讲:染色与操作问题一、染色问题这里的染色问题不是要求怎样染色,尔后问有多少种染色方法的那类题目,它指的是一种解题方法.染色方法是一种将题目研究对象分类的形象化方法,经过将问题中的对象合适染色,我们能够更形象地观察解析出其中所包括的关系,再经过必然的逻辑推理,便能得出问题的答案. 这类问题不需要太多的数学知识,但技巧性,逻辑性较强,要注意学会几种典型的染色问题.二、操作问题本质操作与策略问题这类题目能够很好的提高学生思虑问题的能力,激发学生研究数学规律的兴趣,并经过搜寻最正确策掠过程,培养学生的创立性思想能力,这也是各样考试命题者喜欢的这类题目的原因。
模块一、染色问题【例1】六年级一班全班有35 名同学,共分成 5 排,每排 7 人,坐在教室里,每个座位的前后左右四个地址都叫做它的邻座.若是要让这35 名同学各人都恰好坐到他的邻座上去,能办到吗?为什么?【解析】划一个 5×7的方格表,其中每一个方格表示一个座位.将方格黑白相间地染上颜色,这样黑色座位与白色座位都成了邻座.所以每位同学都坐到他的邻座相当于所有白格的坐到黑格,所有黑格的坐到白格.而本质图中有 17 个黑格 18 个白格,个数不等,故不能够办到.【牢固】右图是某一湖泊的平面图,图中所有曲线都是湖岸.(1)若是 P 点在岸上,那么 A 点是在岸上还是在水中?(2)某人过此湖泊,他下水时脱鞋,登陆时穿鞋 . 若是他从 A 点出发走到某点 B,他穿鞋与脱鞋的总次数是奇数,那么 B 点是在岸上还是在水中?为什么?【解析】( 1)已知 P 点在陆地上,若是在图上用阴影表示陆地,就可以看出 A 点在水中 .( 2)从水中经过一次陆地到水中,脱鞋与穿鞋的次数的和为2,由于 A 点在水中,所以无论怎么走,走在水中时,脱鞋、穿鞋的次数的和总是偶数. 既然题中说“脱鞋的次数与穿鞋的次数的和是个奇数”,那么 B 点必然在岸上.【牢固】某班有45名同学按9 行 5 列坐好.老师想让每位同学都坐到他的邻座( 前后左右 ) 上去,问这能否办到 ?【解析】将 5× 9 方形自然染色,黑格的座都是白格,白格的座都是黑格,所以每位同学都坐到他的座相当于所有白格的坐到黑格,所有黑格的坐到白格.而中有23 个黑格 22 个白格,个数不等,故不能够到.【例2】右是某一套房子的平面,共12 个房,每相两房都有相通.:你能从某个房出,不重复地走完每个房?【解析】如所示,将房黑白相染色,只有 5 个白格, 7 个黑格.因每次只能由黑到白或由白到黑,路必然黑白相,然从多的白格开始.但路上1白 1黑 1白 1黑⋯⋯直到 5 白5 黑后余 2 黑,不能够能从黑格到黑格,故无法不重复走遍.【牢固】有一次展共6× 6=36 个展室,如右,每个展室与相的展室都有相通,入口和出口如所示.参者可否从入口去,不重复地参完每个展室再从出口出来?【解析】如右下,每个展室黑白相染色,同每次只能黑格到白格或白格到黑格.入口和出口都是白格,故路黑白相,首尾都是白格,于是白格比黑格多 1 个,而上白格、黑格都是 18 个,故不能够能做到不重复走遍每个展室.【例3】在一个正方形的果园里,种有63 棵果,加上右下角的一小屋,整地排列成八行八列,如( 1). 守园人从小屋出每一棵,不重复也不漏( 不斜走 ) ,最后又回到小屋,行?若是有80 棵果,如(2),小屋排成九行九列呢?【解析】下(1) 中能够回到小屋,守园人只能黑白相地走,走到的第奇数棵是白的,第偶数棵是黑的,走到第63 棵是白的,在小屋相的都注白色,所以能够回到小屋. (2) 不能够 , 从【例4】右图是半张中国象棋盘,棋盘上已放有一只马.众所周知,马是走“日”字的.请问:这只马可否不重复地走遍这半张棋盘上的每一个点,尔后回到出发点?【解析】马走“日”字,在中国象棋盘上走有什么规律呢?为方便研究规律,以以下图所示,先在棋盘各交点处相间标上○和●,图中共有22 个○和 23 个● .由于马走“日”字,每步只能从○跳到●,或由●跳到○,所以马从某点跳到同色的点(指○或●),要跳偶数步;跳到不一样色的点,要跳奇数步。
奥数染色问题doc资料

如有侵权请联系网站删除1.如右图,对A,B,C,D,E五个区域分别用红黄绿蓝白五种颜色中的某一种来着色,规定相邻的区域着不同色,问有多少种不同的着色方案?【组合十讲P37】2用红黄蓝三种颜色涂在右图的圆圈中,每个圆圈中,每个圆圈只涂一种颜色,并且要使每条连线两端的圆圈涂上不同颜色,问一共有多少种不同的涂法?3•某植物园计划在A,B,C,D,E五个地块栽种四种不同颜色的郁金香,每个地块内的郁金香必须同色,相邻的(有公共边界的)地块郁金香不能同色,不相邻可以同色,问共有多少种不同的方案?4. 如图对A,B,C,D,E,F,Gb个区域分别采用红,黄,绿,蓝,白五种颜色中的某一种来着色,规定相邻的区域不能同色,那么有多少种不同的着色方案?5. 用红,黄,蓝,三种颜色把如图的8个小圆圈涂上颜色,每个圆圈只涂一种颜色,并且有连线的两个圆圈不能同色,那么有多少种不同涂色方案?【希望杯P107】6. 一根划分成相等5段的钢管,若要用红,白两种颜色分别对每一段着色,问共有几种不同的涂色方案? (倒置后相同的两种涂色方案视为同种)8. 如图用4种颜色对A,B,C,D,E五个区域涂色,要求相邻的区域涂不同的颜色,那么,共有几种涂法?9. 用三种颜色染正方体的6条边,相邻边不同色,有多少种染法?【教程P133】10. 如图,用红,黄,蓝三种颜色给一个五边形的各个顶点染色,同一边的两段点不能同色,且顶点A 必须染红色,请问:有多少种不同的染色方案?【高斯导引P76】如有侵权请联系网站删除11. 如图一个圆环被分成8部分,先将每一部分染上红,黄,蓝三种颜色之一,要求相邻两部分颜色不同,共有多少种不同染色方案?/厂12. 如图,用4种不同的颜色将图中的圆圈分别涂色,要求有线段连接的两个相邻的圆圈必须涂不颜色,共有几种涂法?(不许旋转翻转)13给一个正四面体的4个面染色,每个面只允许用一种颜色,且4个面的颜色互不相同,现有5种颜色可选,共有多少种不同的染色方案?14.用4种颜色为一个正方体的6个面染色,要求每个面只能用1种颜色,且乡邻面的颜色必须不同, 如果将正方体经过反转后颜色相同视为同一种,那么共有多少种不同的染色方案?17.用红,黄,蓝三种颜色对右图进行染色,要求相邻两块颜色不同,共有多少种不同的染色方案? 【简明读本P191】1.某影院有31排,每排29个座位.某天放映了两场电影,每个座位上都坐了一个观众.如果要求每个观众在看第二场电影时必须跟他(前、后、左、右)相邻的某一观众交换座位,这样能办到吗?为什么?2•如图是一所房子的示意图,图中数字表示房间号码,每间房子都与隔壁的房间相通•问能否从1号房间开始,不重复的走遍所有房间又回到1号房间?1123456J823•在一个正方形的果园里,种有63棵果树、加上右下角的一间小屋,整齐地排列成八行八列(见图(a)).守园人从小屋出发经过每一棵树,不重复也不遗漏(不许斜走),最后又回到小屋,行吗?如果有80棵果树,连小屋O OOOOO OOO OOOOO OOO OOOOO OO O OOOOO OO o ooooo oD OO O OOO OOO OO O OOO OOo OOO OOO OOo OOO OOO OOO OOO OOO OOO OOO OOO OOO OOO OOO OOO OOO OOO OOO在内排成九行九列(图(b))呢?O OOO OO O OO OOOOO OOO OOOOO OO如有侵权请联系网站删除(a) 4•一个8 8国际象棋(下图)去掉对角上两格后,是否可以用31个2 1的骨牌”形如(b))把象棋盘。
五年级奥数:染色问题

五年级奥数:染色问题染色问题的解题思路染色问题是数奥解题中的难点,这类问题初看起来好像无从着手,其实只要认真思考问题也很容易解决,下面就染色问题的解题思路说一下。
图一首先,拿到一道题先认真观察,看这个题的突破点。
什么是染色问题的突破点呢?那就是找染色区域中的一个最多,这个最多是指一个区域,其他区域与它连接的最多。
例如图一中A区域A与B、C、D、E、 F连接最广所以A为特殊区域。
找到这个区域问题就容易解决了。
这个区域可以任意添色就是染最多的颜色。
本题中有4种颜色那么A可以染4种颜色了。
完成这个事件需要A、B、C、D、E、F6步所以用乘法原理。
这道题找到了最特殊的A区域第二特殊区域和第三区域的确定也就容易了,C区域是与A相连,连接区域的数量仅次于A区域图一中的C和E区域都可以做第二个特殊区域了,但只能选一个,我们把C当成第二特殊的区域,则C可以染3种颜色。
区域B跟A、C相连那么 B可以染2种。
D与A、C、E相连则只能选1种,对吗?我们仔细观察,按顺序说A----4,C------3,B-------2,D则连接A、C当A 选色后C有3种可能,D在A、C选色后只有2种可能。
E连接A、D也有两种可能。
F也是连接着A、E有两种可能。
这道题就解出来了。
有4×3×2×2×2=96种可能。
这道题跟以下一道题有异曲同工之效,大家不妨一起看下图二。
图二图中A与B、C相连有4种染色方式,为第一特殊区域。
而B是与A相连的第二特殊区域(切记,此时选第二特殊区域,乃是跟第一特殊区域相连的一个区域)B有3种可能,C连接A、B则有2种可能,D连接B、C则有2种可能,同理E也有2种可能。
所以此题有4×3×2×2×2=96种可能的染色。
再来看一个稍微复杂点的问题如图三 图三图中A有5种染色方式C------ 4,B-----3,D-----3,E------3,F------3,G------3。
六年级下册奥数讲义-奥数方法:染色法 全国通用

在解决某些数学问题时,我们常常需要把有关元素适当分类.为了使这种分类更为形象,我们可以设想把元素分别涂上不同的颜色.这类用涂色的方法来寻求解题思路的方法叫做染色法.根据染色对象的不同,染色法一般分为方格染色、线段染色和点染色三种,在运用染色法解题的过程中,常结合抽屉原理等组合知识和图论初步知识.解题步骤一般分为:(1)审题,把实际问题用染色图表示出来;(2)运用抽屉原理或图论知识对染色图进行分析;(3)找出问题的答案.[例1] 在平面上有一个27×27的方格棋盘,在横盘的正中间摆好81枚棋子,它们被摆成一个9×9的正方形.按下面的规则进行游戏:每一枚棋子都可沿水平方向或竖直方向越过相邻的棋子,放进紧挨着这枚棋子的空格中,并把越过的这枚棋子取出来.问:是否存在一种方法,使棋盘上最后恰好剩下一枚棋子?思路剖析本题的游戏规则是一枚棋子越过相邻的棋子进行移动,故每一次移动会影响3个棋盘方块的棋子数,可考虑用3种颜色对棋盘染色,研究其变动规律,推出答案.解答如图1所示,将整个棋盘的每一格都分别染上红、白、黑三种颜色,这种染色方式将棋盘按颜色分成了三个部分.按照游戏规则,每走一步,有两部分中的棋子数各减少了一个,而第三部分的棋子数的奇偶性都要改变.因为一开始时,81个棋子摆成一个9×9的正方形,显然三个部分的棋子数是相同的,故每走一步,三部分中的棋子数的奇偶性是一致的.但如果在走了若干步以后,棋盘上恰好剩下一枚棋子,则两部分上的棋子数为偶数,而另—部分的棋子数为奇数,这种结局是不可能的,即不存在一种走法,使棋盘上最后恰好剩下一枚棋子.[例2]在5×5的方格棋盘中的A格里放一颗棋子,规定每次棋子可向左右或上下移动一格,问这颗棋子走25步后能否回到原处?思路剖析如图2所示,棋子从A出发,每一步都有2┉4种走法,25步以后出现的情况很多.从表面上看,似乎找不到棋子行走的规律,若利用染色法,对棋格作相间染色,很容易发现规律,找到本题答案.解答如图3所示,对棋格作相间染色,则棋子从白格A出发,走l步进入黑格,走2步进入白格,走3步进入黑格,……,显然,棋子从白格A出发. 走奇数步落在黑格,走偶数步落在白格,所以,走25步一定落在黑格,而原处为白格,故本题答案为:这颗棋子走25步后不能回到原处.[例3】如图4所示,把正方体分割成27个相等的小正方体,在中心的那个小正方体中有一只小甲虫,甲虫能从每个小正方体走到与这个正方体相邻的6个小正方体中的任何一个中去.如果要求甲虫只能走到每个小正方体一次,那么甲虫能走遍所有的正方体吗?思路剖析先将正方体进行黑白相间染色(见图5),则小甲虫每移动一次,会改变一次方格的颜色,对小甲虫走过不同颜色的方格数进行考虑,问题便迎刃而解了.解答我们如图5所示,将正方体分割成27个小正方体,涂上黑白相间的两种颜色,使得中心的小正方体染成白色,再使两个相邻的小正方体染上黑色.显然,在27个小正方体中,14个是黑的,13个是白的.甲虫从中间的白色小正方体出发,每走一步,方格就改变一种颜色.故它走27步,应该经过14个白色的小正方体、13个黑色的小正方体.因此在27步中至少有一个小正方体,甲虫进去过两次.由此可见,如果要求甲虫到每一个小正方体只去一次,那么甲虫不能走遍所有的小正方体.[例4] 如图6所示,平面上给定6个点,没有三个点在一条直线上. 证明:用这些点做顶点所组成的一切三角形中,必定有一个三角形,它的最大边同时是另一个三角形的最小边.思路剖析在一般情况下,三角形的三条边互不相等,因此存在一个最大边和最小边,考虑特殊情况,在等腰三角形(或等边三角形)中,最大边可能有2 条(或3条).同样,可用涂色法解决.证明先将每一个三角形中的最大边涂成红色,然后将其余的边染成绿色.(1)先证明这些三角形中至少有一个同色三角形.根据抽屉原理,从A出发的5条线,至少有3条线同色,设有3条红线AB、AC、AD,再分析BC、BD、CD三条线段,若有l条为红色,问题得证,若3条全是绿色.问题也得证.(2)由(1)可知,全部三角形中必有一个为同色三角形,若为红色三角形,则这红色三角形中的最小边必定是某个三角形的最大边;若为绿色三角形,则这个绿色三角形中的最大边必定是某一三角形的最小边,问题得证.[例5】用15个“T"字形纸片和1个“田”字形纸片(如图7所示),能否覆盖一个8×8的棋盘?思路剖析本题看起来无从下手,但我们可以将棋盘的方格进行染色,然后寻找T字形纸片与棋盘方格之间的关系,综合运用假设法,导出本题答案.解答如图8所示,先将棋盘染成黑白相间的形状.假设15个T字形纸片和1个田字形纸片可以盖住棋盘,则它们盖住的白格数为32个.显然1个田字形纸片盖住2个白格,故15个T字形纸片盖住30个白格.再来看每个T字形纸片只能盖住1个或3个白格,设有,n(n为自然数)张T字纸片盖住1个白格,则15张T字纸片一共盖住n×1+(15-n)×3=,n+45-3n=45-2n,对45-2n=30求解,显然n没有自然数解,所以不能覆盖棋盘.[例6】6个人参加一个集会,每两个人或者互相认识或者互相不认识.证明:存在两个“三人组”,在每一个“三人组”中的三个人,或者互相认识,或者互相不认识(这两个“三人组”可以有公共成员).思路剖析本题是一个生活中的小问题,可先进行适当转化,使其变成一个纯粹的数学题,可考虑用点表示每个人,利用染色法,对每个人之间的不同关系用点与点之间不同颜色的线段来区分.问题就迎刃而解了.解答现在我们将每个人用一个点表示(A、B、C、D、E、F),如果两人认识就在相应的两个点之间连一条红色线段,否则就连一条蓝色线段.本题即证明图9中是否存在两个同色的三角形.我们先证明存在一个同色的三角形(图9):考虑由A点引出五条线段AB、AC、AD、AE,AF、其中必然有三条被染成了相同的颜色,我们不妨设AB、AC、AD同为红色.再考虑ABCD的三边:若其中有一条是红色,则存在一个红色三角形;若这三条都不是红色,则存在一个蓝色三角形.我们不妨再假设△ABC的三条边都是红色的.若△DEF也是三边同为红色,则显然就有两个同色三角形;若△DEF三边中有一条边为蓝色,设其为DE,再考虑DA,DB,DC三条线段:若其中有两条为红色,则显然有一个红色三角形;若其中有两条是蓝色的,则设其为DA,DB.此时在EA,EB中若有一边为蓝色,则存在一个蓝色三角形;而若两边都是红色,则又存在一个红色三角形.(请读者参照上图作图)答:不论如何染色,总可以找到两个同色的三角形.[例7】某展览馆是由5×5个小方形房组成的25间展室,相邻的两展室之间有一门相通且只有一间展室为进出口房间.一小朋友打算从进口间开始,不重复地依次看完每一展室,然后出来.试问,这位小朋友的希望能实现吗?思路剖析如果我们一条一条地把所有可能的走法都来试验,显然是不明智的,因为走法太多,而且容易发生遗漏.可以考虑染色法,将25个展室用黑白相间的办法涂色,再进行奇偶性分析.解答如图10所示,把25个展室用黑白相间的办法涂色,根据小朋友的愿望,他必须依次由白室走入黑室,经过25道门,最后再到白室.然而,无论他选择什么路线,按其要求走的结果必然是:即,经过25道门后,所到的展室一定是黑室而不是白室,所以,这位小朋友的愿望不能实现.点津染色法是由染色问题引申出来的一类解题方法,其实质也是将一个数学问题转化为一个染色问题.运用它解题的关键在于染色对象和染色方式的选择,一般采用黑白相间的方式,在解答一些更难的问题时可能要用到多种颜色.在题中数量关系发生变动时,考虑这种变动在涂色图形上的反应时,要有较严密的逻辑思维和想像能力.1.如图11所示,正方形被分成6块区域,若给每一块区域都染色,并且相邻的区域颜色不同,问至少需要几种不同的颜色?2.将4x4的正方形剪去两个小正方形,剪法不同得出图12和图13.现用7块l x 2的小矩形去覆盖,问覆盖能否完成.3.如图14用红、黄、蓝、绿4种颜色给一个五边形着色,使相邻两边的颜色不同.问共有多少种不同的着色方法?4.在正方体的每一个面取中心,将这些点两两相连,有些用红线,有些用蓝线,求证:在这些连线中,必然有同一种颜色的线组成的三角形.5.将图15中的点染色,要求相邻的(即有线段连结的)点染成不同的颜色.问至少需要几种颜色?6.一个车间安装了5行缝纫机,每行7台,每台缝纫机由一名工人操作,一个月后,要求每个工人和它相邻的同伴交换工作,这可能吗?为什么?7.线段AB的两个端点一个染黑色,一个染白色.在线段AB内任意取100个点,将AB分成101条首尾相接的线段,请判断,如果将这100个点任意染成黑色点或白色点,那么这101条线段中,两端点不同色的线段的条数是奇数还是偶数?8.在一张白纸上,随着画上一些红色点和一些蓝色点,它们的总和不少于5点.画完之后发现,任意3个红点不共线,任意3个蓝点也不共线. 求证,一定存在3个顶点同颜色的三角形,它至少有一条边(不包括延长线)不含另一种颜色的点.9.一批现成的木箱,尺寸是6 x 6 x 6,现有一批商品,每件都是长方体,尺寸为l x2x4.能不能用这样的商品将木箱填满?。
(小学奥数)乘法原理之染色法

7-2-3乘法原理之染色問題教學目標1.使學生掌握乘法原理主要內容,掌握乘法原理運用的方法;2.使學生分清楚什麼時候用乘法原理,分清有幾個必要的步驟,以及各步之間的關係.3.培養學生準確分解步驟的解題能力;乘法原理的數學思想主旨在於分步考慮問題,本講的目的也是為了培養學生分步考慮問題的習慣.知識要點一、乘法原理概念引入老師週六要去給同學們上課,首先得從家出發到長寧上8點的課,然後得趕到黃埔去上下午1點半的課.如果說申老師的家到長寧有5種可選擇的交通工具(公交、地鐵、計程車、自行車、步行),然後再從長寧到黃埔有2種可選擇的交通工具(公交、地鐵),同學們,你們說老師從家到黃埔一共有多少條路線?我們看上面這個示意圖,老師必須先的到長寧,然後再到黃埔.這幾個環節是必不可少的,老師是一定要先到長寧上完課,才能去黃埔的.在沒學乘法原理之前,我們可以通過一條一條的數,把線路找出來,顯而易見一共是10條路線.但是要是老師從家到長寧有25種可選擇的交通工具,並且從長寧到黃埔也有30種可選擇的交通工具,那一共有多少條線路呢?這樣數,恐怕是要耗費很多的時間了.這個時候我們的乘法原理就派上上用場了.二、乘法原理的定義完成一件事,這個事情可以分成n個必不可少的步驟(比如說老師從家到黃埔,必須要先到長寧,那麼一共可以分成兩個必不可少的步驟,一是從家到長寧,二是從長寧到黃埔),第1步有A種不同的方法,第二步有B種不同的方法,……,第n步有N種不同的方法.那麼完成這件事情一共有A×B×……×N種不同的方法.結合上個例子,老師要完成從家到黃埔的這麼一件事,需要2個步驟,第1步是從家到長寧,一共5種選擇;第2步從長寧到黃埔,一共2種選擇;那麼老師從家到黃埔一共有5×2個可選擇的路線了,即10條.三、乘法原理解題三部曲1、完成一件事分N個必要步驟;2、每步找種數(每步的情況都不能單獨完成該件事);3、步步相乘四、乘法原理的考題類型1、路線種類問題——比如說老師舉的這個例子就是個路線種類問題;2、字的染色問題——比如說要3個字,然後有5種顏色可以給每個字然後,問3個字有多少種染色方法;3、地圖的染色問題——同學們可以回家看地圖,比如中國每個省的染色情況,給你幾種顏色,問你一張包括幾個部分的地圖有幾種染色的方法;4、排隊問題——比如說6個同學,排成一個隊伍,有多少種排法;5、數碼問題——就是對一些數字的排列,比如說給你幾個數字,然後排個幾為數的偶數,有多少種排法.例題精講【例 1】地圖上有A,B,C,D四個國家(如下圖),現有紅、黃、藍三種顏色給地圖染色,使相鄰國家的顏色不同,但不是每種顏色都必須要用,問有多少種染色方法?D C B A【考點】乘法原理之染色問題 【難度】3星 【題型】解答【解析】 A 有3種顏色可選;當B ,C 取相同的顏色時,有2種顏色可選,此時D 也有2種顏色可選.根據乘法原理,不同的塗法有32212⨯⨯=種;當B ,C 取不同的顏色時,B 有2種顏色可選,C 僅剩1種顏色可選,此時D 也只有1種顏色可選(與A 相同).根據乘法原理,不同的塗法有32116⨯⨯⨯=種.綜上,根據加法原理,共有12618+=種不同的塗法.【答案】18【巩固】 如果有紅、黃、藍、綠四種顏色給例題中的地圖染色,使相鄰國家的顏色不同,但不是每種顏色都必須要用,問有多少種染色方法?【考點】乘法原理之染色問題 【難度】3星 【題型】解答【解析】 第一步,首先對A 進行染色一共有4種方法,然後對B 、C 進行染色,如果B 、C 取相同的顏色,有三種方式,D 剩下3種方式,如果B 、C 取不同顏色,有326⨯=種方法,D 剩下2種方法,對該圖的染色方法一共有43332284⨯⨯+⨯⨯=()種方法.【注意】給地圖染色問題中有的可以直接用乘法原理解決,有的需要分類解決,前者分類做也可以解決問題.【答案】84【例 2】 在右圖的每個區域內塗上A 、B 、C 、D 四種顏色之一,使得每個圓裏面恰有四種顏色,則一共有__________種不同的染色方法.7654321【考點】乘法原理之染色問題 【難度】4星 【題型】解答【解析】 因為每個圓內4個區域上染的顏色都不相同,所以一個圓內的4個區域一共有43224⨯⨯=種染色方法.如右圖所示,當一個圓內的1、2、3、4四個區域的顏色染定後,由於6號區域的顏色不能與2、3、4三個區域的顏色相同,所以只能與1號區域的顏色相同,同理5號區域只能與4號區域的顏色相同,7號區域只能與2號區域的顏色相同,所以當1、2、3、4四個區域的顏色染定後,其他區域的顏色也就相應的只有一種染法,所以一共有24種不同的染法.【答案】24【例 3】 如圖,地圖上有A ,B ,C ,D 四個國家,現用五種顏色給地圖染色,要使相鄰國家的顏色不相同,有多少種不同染色方法?D CB A【考點】乘法原理之染色問題 【難度】3星 【題型】解答【解析】 為了按要求給地圖上的這四個國家染色,我們可以分四步來完成染色的工作:第一步:給A 染色,有5種顏色可選.第二步:給B 染色,由於B 不能與A 同色,所以B 有4種顏色可選.第三步:給C 染色,由於C 不能與A 、B 同色,所以C 有3種顏色可選.第四步:給D 染色,由於D 不能與B 、C 同色,但可以與A 同色,所以D 有3種顏色可選.根據分步計數的乘法原理,用5種顏色給地圖染色共有5433180⨯⨯⨯=種不同的染色方法.【答案】180【巩固】 如圖,一張地圖上有五個國家A ,B ,C ,D ,E ,現在要求用四種不同的顏色區分不同國家,要求相鄰的國家不能使用同一種顏色,不同的國家可以使用同—種顏色,那麼這幅地圖有多少著色方法?ED C BA【考點】乘法原理之染色問題 【難度】3星 【題型】解答【解析】 第一步,給A 國上色,可以任選顏色,有四種選擇;第二步,給B 國上色,B 國不能使用A 國的顏色,有三種選擇;第三步,給C 國上色,C 國與B ,A 兩國相鄰,所以不能使用A ,B 國的顏色,只有兩種選擇;第四步,給D國上色,D國與B,C兩國相鄰,因此也只有兩種選擇;第五步,給E國上色,E國與C,D兩國相鄰,有兩種選擇.共有⨯⨯⨯⨯=種著色方法.4322296【答案】96【例 4】如圖:將一張紙作如下操作,一、用橫線將紙劃為相等的兩塊,二、用豎線將下邊的區塊劃為相等的兩塊,三、用橫線將最右下方的區塊分為相等的兩塊,四、用豎線將最右下方的區塊劃為相等的兩塊……,如此進行8步操作,問:如果用四種顏色對這一圖形進行染色,要求相鄰區塊顏色不同,應該有多少種不同的染色方法?【考點】乘法原理之染色問題【難度】3星【題型】解答【解析】對這張紙的操作一共進行了8次,每次操作都增加了一個區塊,所以8次操作後一共有9個區塊,我們對這張紙,進行染色就需要9個步驟,從最大的區塊從大到小開始染色,每個步驟地染色方法有:4、3、2、2、2……,所以一共有:4322222221536⨯⨯⨯⨯⨯⨯⨯⨯=種.【答案】1536【巩固】用三種顏色去塗如圖所示的三塊區域,要求相鄰的區域塗不同的顏色,那麼共有幾種不同的塗法?ABC【考點】乘法原理之染色問題【難度】2星【題型】解答【解析】塗三塊毫無疑問是分成三步.第一步,塗A部分,那麼就有三種顏色的選擇;第二步,塗B部分,由於要求相鄰的區域塗不同的顏色,A和B相鄰,當A確定了一種顏色後,B只有兩種顏色可選擇了;第三步,塗C部分,C和A、B都相鄰,A和B確定了兩種不相同的顏色,那麼C只有一種顏色可選擇了.然後再根據乘法原理.3216⨯⨯=【答案】6【例 5】如圖,有一張地圖上有五個國家,現在要用四種顏色對這一幅地圖進行染色,使相鄰的國家所染的顏色不同,不相鄰的國家的顏色可以相同.那麼一共可以有多少種染色方法?【考點】乘法原理之染色問題【難度】3星【題型】解答【解析】這一道題實際上就是例題,因為兩幅圖各個字母所代表的國家的相鄰國家是相同的,如果將本題中的地圖邊界進行直角化就會轉化為原題,所以對這幅地圖染色同樣一共有4322296⨯⨯⨯⨯=種方法.【討論】如果染色步驟為----C A BD E,那麼應該該如何解答?答案:也是4322296⨯⨯⨯⨯=種方法.如果染色步驟為----C AD B E那麼應該如何解答?答案:染色的前兩步一共有4×3種方法,但染第三步時需要分類討論,如果D與A顏色相同,那麼B有2種染法,E也有2種方法,如果D與A染不同的顏色,那麼D有2種染法那麼B只有一種染法,E有2種染法,所以一共應該有43(122212)96⨯⨯⨯⨯+⨯⨯=種方法,(教師應該向學生說明第三個步驟用到了分類討論和加法原理,加法原理在下一講中將會講授),染色步驟選擇的經驗方法:每一步驟所染的區塊應該儘量和之前所染的區塊相鄰.【答案】96【巩固】某沿海城市管轄7個縣,這7個縣的位置如右圖.現用紅、黑、綠、藍、紫五種顏色給右圖染色,要求任意相鄰的兩個縣染不同顏色,共有多少種不同的染色方法?【考點】乘法原理之染色問題【難度】4星【題型】解答【解析】為了便於分析,把地圖上的7個縣分別編號為A、B、C、D、E、F、G(如左下圖).GF DC B AE為了便於觀察,在保持相鄰關係不變的情況下可以把左圖改畫成右圖.那麼,為了完成地圖染色這件工作需要多少步呢?由於有7個區域,我們不妨按A、B、C、D、E、F、G的順序,用紅、黑、綠、藍、紫五種顏色依次分7步來完成染色任務.第1步:先染區域A,有5種顏色可供選擇;第2步:再染區域B,由於B不能與A同色,所以區域B的染色方式有4種;第3步:染區域C,由於C不能與B、A同色,所以區域C的染色方式有3種;第4步:染區域D,由於D不能與C、A同色,所以區域D的染色方式有3種;第5步:染區域E,由於E不能與D、A同色,所以區域E的染色方式有3種;第6步:染區域F,由於F不能與E、A同色,所以區域F的染色方式有3種;第7步:染區域G,由於G不能與C、D同色,所以區域G的染色方式有3種.根據分步計數的乘法原理,共有54333334860⨯⨯⨯⨯⨯⨯=種不同的染色方法.【答案】4860【例 6】用3種顏色把一個33⨯的方格表染色,要求相同行和相同列的3個格所染的顏色互不相同,一共有種不同的染色法.【考點】乘法原理之染色問題【難度】3星【題型】解答【解析】根據題意可知,染完後這個33⨯的方格表每一行和每一列都恰有3個顏色.用3種顏色染第一行,有336P=種染法;染完第一行後再染第一列剩下的2個方格,有2種染法;當第一行和第一列都染好後,再根據每一行和每一列都恰有3個顏色對剩下的方格進行染色,可知其餘的方格都只有唯一一種染法.所以,根據乘法原理,共有326⨯=種不同的染法.【答案】6【例 7】 如右圖,有A 、B 、C 、D 、E 五個區域,現用五種顏色給區域染色,染色要求:每相鄰兩個區域不同色,每個區域染一色.有多少種不同的染色方式?ED C BA【考點】乘法原理之染色問題 【難度】3星 【題型】解答【解析】 先採用分步:第一步給A 染色,有5種方法;第二步給B 染色,有4種方式;第三步給C 染色,有3種方式;第四步給D 染色,有3種方式;第五步,給E 染色,由於E 不能與A 、B 、D 同色,但可以和C 同色.此時就出現了問題:當D 與B 同色時,E 有3種顏色可染;而當D 與B 異色時,E有2種顏色可染.所以必須從第四步就開始分類:第一類,D 與B 同色.E 有3種顏色可染,共有5433180⨯⨯⨯=(種)染色方式;第二類,D 與B 異色.D 有2種顏色可染,E 有2種顏色可染,共有54322240⨯⨯⨯⨯=(種)染色方式.根據加法原理,共有180240420+=(種)染色方式.【注意】給圖形染色問題中有的可以直接用乘法原理解決,但如果碰到有首尾相接的圖形往往需要分類解決.【答案】420【巩固】 如右圖,有A ,B ,C ,D 四個區域,現用四種顏色給區域染色,要求相鄰區域的顏色不同,每個區域染一色.有多少種染色方法?D C B A【考點】乘法原理之染色問題 【難度】3星 【題型】解答【解析】 A 有4種顏色可選,然後分類:第一類:B ,D 取相同的顏色.有3種顏色可染,此時D 也有3種顏色可選.根據乘法原理,不同的染法有43336⨯⨯=(種);第二類:當B,D取不同的顏色時,B有3種顏色可染,C有2種顏色可染,此時D也有2種顏色可染.根據乘法原理,不同的染法有⨯⨯⨯=(種).432248根據加法原理,共有364884+=(種)染色方法.【答案】84【巩固】用四種顏色對右圖的五個字染色,要求相鄰的區域的字染不同的顏色,但不是每種顏色都必須要用.問:共有多少種不同的染色方法?学而奥数思【考點】乘法原理之染色問題【難度】3星【題型】解答【解析】第一步給“而”上色,有4種選擇;然後對“學”染色,“學”有3種顏色可選;當“奧”,“數”取相同的顏色時,有2種顏色可選,此時“思”也有2種顏色可選,不同的塗法有32212⨯⨯=種;當“奧”,“數”取不同的顏色時,“奧”有2種顏色可選,“數”剩僅1種顏色可選,此時“思”也只有1種顏色可選(與“學”相同),不同的塗法有32116⨯⨯⨯=種.所以,根據加法原理,共有43(222)72⨯⨯⨯+=種不同的塗法.【答案】72【例 8】分別用五種顏色中的某一種對下圖的A,B,C,D,E,F六個區域染色,要求相鄰的區域染不同的顏色,但不是每種顏色都必須要用.問:有多少種不同的染法?【考點】乘法原理之染色問題【難度】4星【題型】解答【解析】先按A,B,D,C,E的次序染色,可供選擇的顏色依次有5,4,3,2,3種,注意E與D的顏色搭配有339⨯=(種),其中有3種E和D同色,有6種E和D異色.最後染F,當E與D同色時有3種顏色可選,當E與D異色時有2種顏色可選,所以共有542(3362)840⨯⨯⨯⨯+⨯=種染法.【答案】840【例 9】將圖中的○分別塗成紅色、黃色或綠色,要求有線段相連的兩個相鄰○塗不同的顏色,共有多少種不同塗法?D CBA【考點】乘法原理之染色問題【難度】3星【題型】解答【解析】如右上圖,當A,B,C,D的顏色確定後,大正方形四個角上的○的顏色就確定了,所以只需求A,B,C,D有多少種不同塗法.按先A,再B,D,後C的順序塗色.按---A B D C的順序塗顏色:A有3種顏色可選;當B,D取相同的顏色時,有2種顏色可選,此時C也有2種顏色可選,不同的塗法有32212⨯⨯=種;當B,D取不同的顏色時,B有2種顏色可選,D僅剩1種顏色可選,此時C也只有1種顏色可選(與A相同),不同的塗法有32116⨯⨯⨯=(種).所以,根據加法原理,共有12618+=種不同的塗法.【答案】18【例 10】用4種不同的顏色來塗正四面體(如圖,每個面都是完全相同的正三角形)的4個面,使不同的面塗有不同的顏色,共有________種不同的塗法.(將正四面體任意旋轉後仍然不同的塗色法,才被認為是不同的)【考點】乘法原理之染色問題【難度】4星【題型】填空【關鍵字】迎春杯,中年級,復賽,第9題【解析】不旋轉時共有4×3×2×1=24種染色方式,而一個正四面體有4×3=12種放置方法(4個面中選1個作底面,再從剩餘3個面中選1個作正面),所以每種染色方式被重複計算了12次,則不同的染色方法有24÷12=2種。
六年级上册奥数试题第19讲:简单染色问题_全国通用(含答案)

第19讲简单染色问题知识网络数学竞赛中的“染色”一般包括两个方面:染色问题和染色方法。
如果染色作为题目的条件给出,那么一般要考虑的是存在与否,有何性质以及有多少种染法等,这就是染色问题。
如果题目中没有提到染色,在解题中运用形象、直观的染色来进行分类,帮助解决问题这就是染色方法。
重点·难点我们在前面几讲中也涉及到染色问题。
一般来说,染色问题涉及分类、奇偶性、排列组合等多方面的知识。
因此如何应用这些相关的知识点解题,是很关键的。
在下面的例题中也可以看出,这些知识在解题中的应用。
学法指导染色作为一种数学思维方法,可以用来推证说理,使一些难以讲清楚的问题一目了然。
有时染色题可能很难想清楚,比如“四色问题”,但可以运用上面的知识点解决一些比较简单的染色问题。
经典例题[例1]如图1所示,一个长方形被分成6块区域,若给每一块区域都染色,并且要求相邻的区域颜色不同,请问至少需要多少种不同的颜色?思路剖析由于A、B、C两两相邻,所以要使相邻的区域颜色不同,至少A、B、C的颜色不能相同。
但是,仅有3种颜色够不够呢?对于区域较少的情形可以逐一试验,如果区域较多时,可以考虑取有多相邻区域的区域来先染色。
解答先考虑有最多相邻区域的A,染第1种颜色;其次考虑与A相邻的B、C、D、E中,有最多相邻区域的E,染第2种颜色;再考虑B,它与A、E都相邻,染第3种颜色。
由C 和E不相邻,故C可用第2种颜色,D与B不相邻,D可用第3种颜色,F和A不相邻,F 可染第一种颜色。
这样,用第一种颜色染在A和F上,用第二种颜色染在C和E上,用第三种颜色染在B和D上即可满足题意要求。
所以,满足条件的染色,至少需要三种颜色。
[例2]用红、黄、蓝三种颜色涂一个正方体的六个面,两个面涂一种颜色,那么共有几种涂法?思路剖析本题要用到分类和组合的一些思想,同进,在解题时要注意,如果两种所谓不同涂法的正方体经翻转或旋转之后得到同样的效果,它只能是一种涂法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.使学生掌握乘法原理主要内容,掌握乘法原理运用的方法;2.使学生分清楚什么时候用乘法原理,分清有几个必要的步骤,以及各步之间的关系.3.培养学生准确分解步骤的解题能力;乘法原理的数学思想主旨在于分步考虑问题,本讲的目的也是为了培养学生分步考虑问题的习惯.一、乘法原理概念引入老师周六要去给同学们上课,首先得从家出发到长宁上8点的课,然后得赶到黄埔去上下午1点半的课.如果说申老师的家到长宁有5种可选择的交通工具(公交、地铁、出租车、自行车、步行),然后再从长宁到黄埔有2种可选择的交通工具(公交、地铁),同学们,你们说老师从家到黄埔一共有多少条路线?我们看上面这个示意图,老师必须先的到长宁,然后再到黄埔.这几个环节是必不可少的,老师是一定要先到长宁上完课,才能去黄埔的.在没学乘法原理之前,我们可以通过一条一条的数,把线路找出来,显而易见一共是10条路线.但是要是老师从家到长宁有25种可选择的交通工具,并且从长宁到黄埔也有30种可选择的交通工具,那一共有多少条线路呢?这样数,恐怕是要耗费很多的时间了.这个时候我们的乘法原理就派上上用场了.二、乘法原理的定义完成一件事,这个事情可以分成n个必不可少的步骤(比如说老师从家到黄埔,必须要先到长宁,那么一共可以分成两个必不可少的步骤,一是从家到长宁,二是从长宁到黄埔),第1步有A种不同的方法,第二步有B种不同的方法,……,第n步有N种不同的方法.那么完成这件事情一共有A×B×……×N种不同的方法.结合上个例子,老师要完成从家到黄埔的这么一件事,需要2个步骤,第1步是从家到长宁,一共5种选择;第2步从长宁到黄埔,一共2种选择;那么老师从家到黄埔一共有5×2个可选择的路线了,即10条.三、乘法原理解题三部曲1、完成一件事分N个必要步骤;2、每步找种数(每步的情况都不能单独完成该件事);3、步步相乘四、乘法原理的考题类型教学目标知识要点7-2-3乘法原理之染色问题1、路线种类问题——比如说老师举的这个例子就是个路线种类问题;2、字的染色问题——比如说要3个字,然后有5种颜色可以给每个字然后,问3个字有多少种染色方法;3、地图的染色问题——同学们可以回家看地图,比如中国每个省的染色情况,给你几种颜色,问你一张包括几个部分的地图有几种染色的方法;4、排队问题——比如说6个同学,排成一个队伍,有多少种排法;5、数码问题——就是对一些数字的排列,比如说给你几个数字,然后排个几为数的偶数,有多少种排法.【例 1】 地图上有A ,B ,C ,D 四个国家(如下图),现有红、黄、蓝三种颜色给地图染色,使相邻国家的颜色不同,但不是每种颜色都必须要用,问有多少种染色方法?DC B A【考点】乘法原理之染色问题 【难度】3星 【题型】解答【解析】 A 有3种颜色可选;当B ,C 取相同的颜色时,有2种颜色可选,此时D 也有2种颜色可选.根据乘法原理,不同的涂法有32212⨯⨯=种;当B ,C 取不同的颜色时,B 有2种颜色可选,C 仅剩1种颜色可选,此时D 也只有1种颜色可选(与A 相同).根据乘法原理,不同的涂法有32116⨯⨯⨯=种.综上,根据加法原理,共有12618+=种不同的涂法.【答案】18【巩固】 如果有红、黄、蓝、绿四种颜色给例题中的地图染色,使相邻国家的颜色不同,但不是每种颜色都必须要用,问有多少种染色方法?【考点】乘法原理之染色问题 【难度】3星 【题型】解答【解析】 第一步,首先对A 进行染色一共有4种方法,然后对B 、C 进行染色,如果B 、C 取相同的颜色,有三种方式,D 剩下3种方式,如果B 、C 取不同颜色,有326⨯=种方法,D 剩下2种方法,对该图的染色方法一共有43332284⨯⨯+⨯⨯=()种方法. 【注意】给地图染色问题中有的可以直接用乘法原理解决,有的需要分类解决,前者分类做也可以解决问题.【答案】84【例 2】 在右图的每个区域内涂上A 、B 、C 、D 四种颜色之一,使得每个圆里面恰有四种颜色,则一共有__________种不同的染色方法.7654321【考点】乘法原理之染色问题 【难度】4星 【题型】解答【解析】 因为每个圆内4个区域上染的颜色都不相同,所以一个圆内的4个区域一共有43224⨯⨯=种染色方法.如右图所示,当一个圆内的1、2、3、4四个区域的颜色染定后,由于6号区域的颜色不能与2、3、4三个区域的颜色相同,所以只能与1号区域的颜色相同,同理5号区域只能与4号区域的颜色相同,7号区域只能与2号区域的颜色相同,所以当1、2、3、4四个区域的颜色染定后,其他区域的颜色也就相应的只有一种染法,所以一共有24种不同的染法.【答案】24【例 3】 如图,地图上有A ,B ,C ,D 四个国家,现用五种颜色给地图染色,要使相邻国家的颜色不相同,有多少种不同染色方法?例题精讲DCB A【考点】乘法原理之染色问题 【难度】3星 【题型】解答【解析】 为了按要求给地图上的这四个国家染色,我们可以分四步来完成染色的工作:第一步:给A 染色,有5种颜色可选.第二步:给B 染色,由于B 不能与A 同色,所以B 有4种颜色可选.第三步:给C 染色,由于C 不能与A 、B 同色,所以C 有3种颜色可选.第四步:给D 染色,由于D 不能与B 、C 同色,但可以与A 同色,所以D 有3种颜色可选.根据分步计数的乘法原理,用5种颜色给地图染色共有5433180⨯⨯⨯=种不同的染色方法.【答案】180【巩固】 如图,一张地图上有五个国家A ,B ,C ,D ,E ,现在要求用四种不同的颜色区分不同国家,要求相邻的国家不能使用同一种颜色,不同的国家可以使用同—种颜色,那么这幅地图有多少着色方法?ED C BA【考点】乘法原理之染色问题 【难度】3星 【题型】解答【解析】 第一步,给A 国上色,可以任选颜色,有四种选择;第二步,给B 国上色,B 国不能使用A 国的颜色,有三种选择;第三步,给C 国上色,C 国与B ,A 两国相邻,所以不能使用A ,B 国的颜色,只有两种选择;第四步,给D 国上色,D 国与B ,C 两国相邻,因此也只有两种选择;第五步,给E 国上色,E 国与C ,D 两国相邻,有两种选择. 共有4322296⨯⨯⨯⨯=种着色方法.【答案】96【例 4】 如图:将一张纸作如下操作,一、用横线将纸划为相等的两块,二、用竖线将下边的区块划为相等的两块,三、用横线将最右下方的区块分为相等的两块,四、用竖线将最右下方的区块划为相等的两块……,如此进行8步操作,问:如果用四种颜色对这一图形进行染色,要求相邻区块颜色不同,应该有多少种不同的染色方法?【考点】乘法原理之染色问题 【难度】3星 【题型】解答【解析】 对这张纸的操作一共进行了8次,每次操作都增加了一个区块,所以8次操作后一共有9个区块,我们对这张纸,进行染色就需要9个步骤,从最大的区块从大到小开始染色,每个步骤地染色方法有:4、3、2、2、2……,所以一共有:4322222221536⨯⨯⨯⨯⨯⨯⨯⨯=种.【答案】1536【巩固】 用三种颜色去涂如图所示的三块区域,要求相邻的区域涂不同的颜色,那么共有几种不同的涂法?ABC【考点】乘法原理之染色问题【难度】2星【题型】解答【解析】涂三块毫无疑问是分成三步.第一步,涂A部分,那么就有三种颜色的选择;第二步,涂B部分,由于要求相邻的区域涂不同的颜色,A和B相邻,当A确定了一种颜色后,B只有两种颜色可选择了;第三步,涂C部分,C和A、B都相邻,A和B确定了两种不相同的颜色,那么C只有一种颜色可选择了.然后再根据乘法原理.3216⨯⨯=【答案】6【例 5】如图,有一张地图上有五个国家,现在要用四种颜色对这一幅地图进行染色,使相邻的国家所染的颜色不同,不相邻的国家的颜色可以相同.那么一共可以有多少种染色方法?【考点】乘法原理之染色问题【难度】3星【题型】解答【解析】这一道题实际上就是例题,因为两幅图各个字母所代表的国家的相邻国家是相同的,如果将本题中的地图边界进行直角化就会转化为原题,所以对这幅地图染色同样一共有4322296⨯⨯⨯⨯=种方法.【讨论】如果染色步骤为----C A BD E,那么应该该如何解答?答案:也是4322296⨯⨯⨯⨯=种方法.如果染色步骤为----C AD B E那么应该如何解答?答案:染色的前两步一共有4×3种方法,但染第三步时需要分类讨论,如果D与A颜色相同,那么B有2种染法,E也有2种方法,如果D与A染不同的颜色,那么D有2种染法那么B只有一种染法,E有2种染法,所以一共应该有43(122212)96⨯⨯⨯⨯+⨯⨯=种方法,(教师应该向学生说明第三个步骤用到了分类讨论和加法原理,加法原理在下一讲中将会讲授),染色步骤选择的经验方法:每一步骤所染的区块应该尽量和之前所染的区块相邻.【答案】96【巩固】某沿海城市管辖7个县,这7个县的位置如右图.现用红、黑、绿、蓝、紫五种颜色给右图染色,要求任意相邻的两个县染不同颜色,共有多少种不同的染色方法?【考点】乘法原理之染色问题【难度】4星【题型】解答【解析】为了便于分析,把地图上的7个县分别编号为A、B、C、D、E、F、G(如左下图).GF DC B AE为了便于观察,在保持相邻关系不变的情况下可以把左图改画成右图.那么,为了完成地图染色这件工作需要多少步呢?由于有7个区域,我们不妨按A 、B 、C 、D 、E 、F 、G 的顺序,用红、黑、绿、蓝、紫五种颜色依次分7步来完成染色任务.第1步:先染区域A ,有5种颜色可供选择;第2步:再染区域B ,由于B 不能与A 同色,所以区域B 的染色方式有4种;第3步:染区域C ,由于C 不能与B 、A 同色,所以区域C 的染色方式有3种;第4步:染区域D ,由于D 不能与C 、A 同色,所以区域D 的染色方式有3种;第5步:染区域E ,由于E 不能与D 、A 同色,所以区域E 的染色方式有3种;第6步:染区域F ,由于F 不能与E 、A 同色,所以区域F 的染色方式有3种;第7步:染区域G ,由于G 不能与C 、D 同色,所以区域G 的染色方式有3种.根据分步计数的乘法原理,共有54333334860⨯⨯⨯⨯⨯⨯=种不同的染色方法.【答案】4860【例 6】 用3种颜色把一个33⨯的方格表染色,要求相同行和相同列的3个格所染的颜色互不相同,一共有 种不同的染色法.【考点】乘法原理之染色问题 【难度】3星 【题型】解答【解析】 根据题意可知,染完后这个33⨯的方格表每一行和每一列都恰有3个颜色.用3种颜色染第一行,有336P =种染法;染完第一行后再染第一列剩下的2个方格,有2种染法;当第一行和第一列都染好后,再根据每一行和每一列都恰有3个颜色对剩下的方格进行染色,可知其余的方格都只有唯一一种染法.所以,根据乘法原理,共有326⨯=种不同的染法.【答案】6【例 7】 如右图,有A 、B 、C 、D 、E 五个区域,现用五种颜色给区域染色,染色要求:每相邻两个区域不同色,每个区域染一色.有多少种不同的染色方式?EDC BA 【考点】乘法原理之染色问题 【难度】3星 【题型】解答【解析】 先采用分步:第一步给A 染色,有5种方法;第二步给B 染色,有4种方式;第三步给C 染色,有3种方式;第四步给D 染色,有3种方式;第五步,给E 染色,由于E 不能与A 、B 、D 同色,但可以和C 同色.此时就出现了问题:当D 与B 同色时,E 有3种颜色可染;而当D 与B 异色时,E 有2种颜色可染.所以必须从第四步就开始分类:第一类,D 与B 同色.E 有3种颜色可染,共有5433180⨯⨯⨯=(种)染色方式;第二类,D 与B 异色.D 有2种颜色可染,E 有2种颜色可染,共有54322240⨯⨯⨯⨯=(种)染色方式.根据加法原理,共有180240420+=(种)染色方式.【注意】给图形染色问题中有的可以直接用乘法原理解决,但如果碰到有首尾相接的图形往往需要分类解决.【答案】420【巩固】 如右图,有A ,B ,C ,D 四个区域,现用四种颜色给区域染色,要求相邻区域的颜色不同,每个区域染一色.有多少种染色方法?D C B A【考点】乘法原理之染色问题 【难度】3星 【题型】解答【解析】 A 有4种颜色可选,然后分类:第一类:B ,D 取相同的颜色.有3种颜色可染,此时D 也有3种颜色可选.根据乘法原理,不同的染法有43336⨯⨯=(种);第二类:当B ,D 取不同的颜色时,B 有3种颜色可染,C 有2种颜色可染,此时D 也有2种颜色可染.根据乘法原理,不同的染法有432248⨯⨯⨯=(种).根据加法原理,共有364884+=(种)染色方法.【答案】84【巩固】用四种颜色对右图的五个字染色,要求相邻的区域的字染不同的颜色,但不是每种颜色都必须要用.问:共有多少种不同的染色方法?学奥而思数【考点】乘法原理之染色问题【难度】3星【题型】解答【解析】第一步给“而”上色,有4种选择;然后对“学”染色,“学”有3种颜色可选;当“奥”,“数”取相同的颜色时,有2种颜色可选,此时“思”也有2种颜色可选,不同的涂法有32212⨯⨯=种;当“奥”,“数”取不同的颜色时,“奥”有2种颜色可选,“数”剩仅1种颜色可选,此时“思”也只有1种颜色可选(与“学”相同),不同的涂法有32116⨯⨯⨯=种.所以,根据加法原理,共有43(222)72⨯⨯⨯+=种不同的涂法.【答案】72【例 8】分别用五种颜色中的某一种对下图的A,B,C,D,E,F六个区域染色,要求相邻的区域染不同的颜色,但不是每种颜色都必须要用.问:有多少种不同的染法?【考点】乘法原理之染色问题【难度】4星【题型】解答【解析】先按A,B,D,C,E的次序染色,可供选择的颜色依次有5,4,3,2,3种,注意E与D的颜色搭配有339⨯=(种),其中有3种E和D同色,有6种E和D异色.最后染F,当E与D同色时有3种颜色可选,当E与D异色时有2种颜色可选,所以共有542(3362)840⨯⨯⨯⨯+⨯=种染法.【答案】840【例 9】将图中的○分别涂成红色、黄色或绿色,要求有线段相连的两个相邻○涂不同的颜色,共有多少种不同涂法?D CBA【考点】乘法原理之染色问题【难度】3星【题型】解答【解析】如右上图,当A,B,C,D的颜色确定后,大正方形四个角上的○的颜色就确定了,所以只需求A,B,C,D有多少种不同涂法.按先A,再B,D,后C的顺序涂色.按---A B D C的顺序涂颜色:A有3种颜色可选;当B,D取相同的颜色时,有2种颜色可选,此时C也有2种颜色可选,不同的涂法有32212⨯⨯=种;当B,D取不同的颜色时,B有2种颜色可选,D仅剩1种颜色可选,此时C也只有1种颜色可选(与A相同),不同的涂法有32116⨯⨯⨯=(种).所以,根据加法原理,共有12618+=种不同的涂法.【答案】18【例 10】用4种不同的颜色来涂正四面体(如图,每个面都是完全相同的正三角形)的4个面,使不同的面涂有不同的颜色,共有________种不同的涂法.(将正四面体任意旋转后仍然不同的涂色法,才被认为是不同的)【考点】乘法原理之染色问题【难度】4星【题型】填空【关键词】迎春杯,中年级,复赛,第9题【解析】不旋转时共有4×3×2×1=24种染色方式,而一个正四面体有4×3=12种放置方法(4个面中选1个作底面,再从剩余3个面中选1个作正面),所以每种染色方式被重复计算了12次,则不同的染色方法有24÷12=2种。