13..1.1轴对称同步练习题(一)

合集下载

轴对称练习题(含答案)

轴对称练习题(含答案)

轴对称练习题(含答案)一.选择题1.下列图形中,是轴对称图形的是()A.B.C.D.2.如图,在△ABC中,D,E是BC边上两点,且满足AB=BE,AC=CD,若∠B=α,∠C=β,则∠DAE的度数为()A.B.C.D.3.如图,等腰△ABC的周长为21,底边BC=5,AB的垂直平分线DE交AB于点D,交AC于点E,则△BEC的周长为()A.13 B.16 C.8 D.104.点A(4,﹣2)关于x轴的对称点的坐标为()A.( 4,2 )B.(﹣4,2)C.(﹣4,﹣2)D.(﹣2,4)5.已知一个等腰三角形一内角的度数为80°,则这个等腰三角形顶角的度数为()A.100°B.80°C.50°或80°D.20°或80°6.若等腰△ABC中有一个内角为40°,则这个等腰三角形的一个底角的度数为()A.40°B.100°C.40°或100°D.40°或70°7.在△ABC中,∠A=30°,∠B=70°,直线将△ABC分成两个三角形,如果其中一个三角形是等腰三角形,这样的直线有()条.A.5 B.7 C.9 D.108.如图,Rt△ACB中,∠ACB=90°,∠A=60°,CD、CE分别是△ABC的高和中线,下列说法错误的是()A.AD=ABB.S△CEB =S△ACEC.AC、BC的垂直平分线都经过ED.图中只有一个等腰三角形9.如图,a∥b,△ABC的顶点A在直线a上,AC=BC,∠1=50°,∠2=20°,则∠C的度数为()A.70°B.30°C.40°D.55°10.对于问题:如图1,已知∠AOB,只用直尺和圆规判断∠AOB是否为直角?小意同学的方法如图2:在OA、OB上分别取C、D,以点C为圆心,CD长为半径画弧,交OB的反向延长线于点E,若测量得OE=OD,则∠AOB=90°.则小意同学判断的依据是()A.等角对等边B.线段中垂线上的点到线段两段距离相等C.垂线段最短D.等腰三角形“三线合一”11.如图,在△ABC中,∠CDE=64°,∠A=28°,DE垂直平分BC;则∠ABD=()A.100°B.128°C.108°D.98°12.如图,AB∥CD,点E在AD上,且CD=DE,∠C=75°,则∠A的大小为()A.35°B.30°C.28°D.26°二.填空题13.在平面直角坐标系中,点M(a,b)与点N(3,﹣1)关于x轴对称,则b a的值是.14.已知一个等腰三角形腰上的高与底边的夹角为37°,则这个等腰三角形的顶角等于度.15.如图,在△ABC中,AB=AC,∠A=120°,AB的垂直平分线交BC于M,交AB于E,AC 的垂直平分线交BC于N,交AC于F,若MN=2,则NF=.16.如图,BC的垂直平分线分别交AB、BC于点D和点E,连接CD,AC=DC,∠B=25°,则∠ACD的度数是.三.解答题17.如图,△ABC中,AE=BE,∠AED=∠ABC.(1)求证:BD平分∠ABC;(2)若AB=CB,∠AED=4∠EAD,求∠C的度数.18.如图,AD⊥BC于D,且DC=AB+BD,若∠C=26°,求∠BAC的度数.19.已知:方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,点C的坐标为(4,﹣1).(1)请以y轴为对称轴,画出与△ABC对称的△A1B1C1,并直接写出点A1、B1、C1的坐标;(2)△ABC的面积是;(3)点P(a+1,b﹣1)与点C关于x轴对称,则a=,b=.20.如图,已知AB =A 1B ,A 1B 1=A 1A 2,A 2B 2=A 2A 3,A 3B 3=A 3A 4…. (1)若∠A 4=9°,则∠BAA 4的度数为 ; (2)若∠BAA 4=α,则∠B n ﹣1A n A n ﹣1的度数为 ; (3)过A 做AC ∥A 3B 2,若∠BAC =100°,求∠B 3A 4A 3的度数.参考答案一.选择题1.解:A、不是轴对称图形,故此选项错误;B、不是轴对称图形,故此选项错误;C、是轴对称图形,故此选项正确;D、不是轴对称图形,故此选项错误;故选:C.2.解:∵BE=BA,∴∠BAE=∠BEA,∴α=180°﹣2∠BAE,①∵CD=CA,∴∠CAD=∠CDA,∴β=180°﹣2∠CAD,②①+②得:α+β=360°﹣2(∠BAE+∠CAD)∴α+β=360°﹣2[(∠BAD+∠DAE)+(∠DAE+∠CAE)] =360°﹣2[(∠BAD+∠DAE+∠CAD)+∠DAE]=360°﹣2(∠BAC+∠DAE),∵∠BAC=180°﹣(α+β),∴α+β=360°﹣2[180°﹣(α+β)+∠DAE]∴α+β=2∠DAE,∴∠DAE=(α+β),故选:A.3.解:∵△ABC是等腰三角形,底边BC=5,周长为21,∴AC=AB=8,又∵DE是AB的垂直平分线,∴AE=BE,∴△BEC的周长=BE+CE+CB=AE+CE+BC=AC+CB=13,∴△BEC的周长为13.故选:A.4.解:点A(4,﹣2)关于x轴的对称点为(4,2).故选:A.5.解:(1)若等腰三角形一个底角为80°,顶角为180°﹣80°﹣80°=20°;(2)等腰三角形的顶角为80°.因此这个等腰三角形的顶角的度数为20°或80°.故选:D.6.解:当40°的角为等腰三角形的顶角时,底角的度数==70°;当40°的角为等腰三角形的底角时,其底角为40°,故它的底角的度数是70°或40°.故选:D.7.解:如图:∴最多画9条,故选:C.8.解:∵∠ACB=90°,AD⊥AB,∠A=60°,∴∠ACD=∠B=30°,∴AC=,AD=AC,∴AD=AB;故A正确;∵CE是△ABC的中线,∴S△BCE =S△ACE,故B正确,∵CE=AE=BE=AB,∴AC、BC的垂直平分线都经过E,故C正确;∴△ACE和△BCE是等腰三角形,故D错误;故选:D.9.解:延长AB交直线b于E,∵a∥b,∴∠3=∠1=50°,∴∠ABC=∠2+∠3=20°+50°=70°,∵CA=CB,∴∠BAC=∠ABC=70°,∴∠C=180°﹣70°﹣70°=40°,故选:C.10.解:由作图可知,CE=CD,∵OE=OD,∴CO⊥ED(等腰三角形的三线合一),∴∠AOB=90°.故选:D.11.解:∵DE垂直平分BC,∴BD=DC,∴∠BDE=∠CDE=64°,∴∠ADB=180°﹣64°﹣64°=52°,∵∠A=28°,∴∠ABD=180°﹣28°﹣52°=100°.故选:A.12.解:∵CD=DE,∴∠DEC=∠C=75°,∴∠D=180°﹣∠C﹣∠DEC=180°﹣75°﹣75°=30°,∵AB∥CD,∴∠A=∠D=30°;故选:B.二.填空题(共4小题)13.解:∵点M(a,b)与点N(3,﹣1)关于x轴对称,∴a=3,b=1,∴b a=1,故答案为:1.14.解:如图(1)顶角是钝角时,∵等腰三角形腰上的高与底边的夹角为37°,∴∠OCB=37°,∵OC⊥OB,∴∠ABC=90°﹣37°=53°,∴∠BAC=180°﹣53°﹣53°=74°,即△ABC为锐角三角形,顶角是钝角这种情况不成立;(2)顶角是锐角时,∠B=90°﹣37°=53°,∠A=180°﹣2×53°=74°.因此,顶角为74°.故答案为:74.15.解:∵在△ABC中,AB=AC,∠A=120°,∴∠C=∠B=(180°﹣∠A)=30°,连接AN,AM,∵AB的垂直平分线交BC于M,交AB于E,AC的垂直平分线交BC于N,交AC于F,∴BM=AM,CN=AN,∴∠MAB=∠B=30°,∠C=∠NAC=30°,∴∠AMN=∠B+∠MAB=60°,∠ANM=∠C+∠NAC=60°,∴AM=AN,∴△AMN是等边三角形,∵MN=2,∴AN=2=CN,在Rt△NFC中,∠C=30°,∠NFC=90°,CN=2,∴NF=CN=1,故答案为:1.16.解:∵BC的垂直平分线分别交AB、BC于点D和点E,∴CD=BD,∵∠B=25°,∴∠DCB=∠B=25°.∵∠ADC是△BCD的外角,∴∠ADC=∠B+∠DCB=25°+25°=50°.∵AC=DC,∴∠CAD=∠ADC=50°,∴∠ACD=180°﹣∠CAD﹣∠ADC=180°﹣50°﹣50°=80°.故答案为:80°.三.解答题(共4小题)17.(1)证明:∵∠AED=∠ABC,∠AED=∠ABE+∠EAB,∠ABC=∠ABE+∠DBC,∵AE=BE,∴∠EAB=∠ABE,∴∠DBC=∠ABE,∴BD平分∠ABC;(2)设∠EAD=x,则∠AED=4x,∵∠AED=∠ABE+∠EAB,∠EAB=∠ABE,BD平分∠ABC,∴∠BAE=2x,∠ABC=4x,∴∠BAC=3x,∵AB=CB,∴∠BAC=∠C,∴∠C=3x,∵∠ABC+∠BAC+∠C﹣180°,∴4x+3x+3x=180°,解得,x=18°,∴∠C=3x=54°,即∠C的度数是54°.18.解:截取DE=BD,连接AE,如右图所示,∵DC=AB+BD,BD=DE,∴AB=CE,∵AD⊥BE,∴∠ADB=∠ADE=90°,在△ADB和△ADE中,,∴△ADB≌△ADE(SAS),∴AB=AE,∠B=∠AED,∴AE=CE,∴∠EAC=∠C,∵∠C=26°,∠AED=∠EAC+∠C,∴∠AED=52°,∴∠B=52°,∴∠BAC=180°﹣∠B﹣∠C=180°﹣52°﹣26°=102°,即∠BAC的度数是102°.19.解:(1)如图所示,△A1B1C1即为所求;A 1(﹣1,﹣4)、B1(﹣5,﹣4)、C1(﹣4,﹣1);(2)△ABC的面积是×4×3=6,故答案为:6;(3)∵点P(a+1,b﹣1)与点C(4,﹣1)关于x轴对称,∴a+1=4、b﹣1=1,解得:a=3、b=2,故答案为:3、2.20.解:(1)∵AB=A1B,A1B1=A1A2,A2B2=A2A3,A3B3=A3A4….,∴∠B 2A 3A 2=2∠A 4=18°, ∴∠B 1A 2A 1=2∠B 2A 3A 2=36°, ∴∠BAA 4=∠BA 1A =2∠B 1A 2A 1=72°;(2)∵AB =A 1B ,∴∠BAA 4=BA 1A =α, ∵A 1B 1=A 1A 2,A 2B 2=A 2A 3,A 3B 3=A 3A 4…. ∴∠B 1A 2A 1=∠BA 1A =α; 同理可得,∠B 2A 3A 2=α,∠B 3A 4A 3=α, 以此类推,∠B n ﹣1A n A n ﹣1=,故答案为:72°,; (3)设∠B 3A 4A 3=x °, ∵A 3B 3=A 3A 4,∴∠A 3B 3A 4=∠A 4,∴∠B 2A 3A 2=2x °,同理,∠BAA 4=8x °, ∵AC ∥A 3B 2,∴∠A 4AC =∠A 4,∴8x +2x =100,∴x =10,∴∠B 3A 4A 3的度数为10°.。

初中数学《八上》 第十三章 轴对称-画轴对称图形 考试练习题

初中数学《八上》 第十三章 轴对称-画轴对称图形 考试练习题

初中数学《八上》第十三章轴对称-画轴对称图形考试练习题姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分评卷人得分1、在正方形网格中,建立如图所示的平面直角坐标系,的三个顶点都在格点上,点的坐标,请解答下列问题:画出关于轴对称的,并写出点,,的坐标;将绕点逆时针旋转,画出旋转后的,并写出点,的坐标.知识点:画轴对称图形【答案】(1) 见解析;(2 )见解析【分析】(1 )根据网格结构找出点 A 、 B 、 C 关于 y 轴的对称点 A1、B1、C1的位置,然后顺次连接即可,再根据平面直角坐标系写出坐标即可;(2 )根据网格结构找出点 A 、 B 绕点 C 逆时针旋转90° 的对应点 A2、B2的位置,然后顺次连接即可,再根据平面直角坐标系写出坐标即可.【详解】如图所示,,,;(2 )如图所示,,.【点睛】本题考查了利用旋转变换作图,利用轴对称变换作图,熟练掌握网格结构,准确找出对应点的位置是解题的关键.2、如图,在平面直角坐标系xOy中,,,.(1 )请画出关于y轴对称的(其、、分别是A、B、C的对应点,不写画法);(2 )直接写出、、三点的坐标:______ ,______ ,______ ;(3 )的面积是______ .知识点:画轴对称图形【答案】(1 )见解析;(2 );;;(3 )【分析】(1 )分别作出各顶点关于y轴的对称点,连线即可;(2 )根据(1 )中图形写出坐标即可;(3 )用所在矩形面积减去周围三个小三角形的面积即可得出答案.l (2 )直接写出、、三点的坐标:______ ,______ ,______ ;(3 )的面积是______ .知识点:画轴对称图形【答案】(1 )见解析;(2 );;;(3 )【分析】(1 )分别作出各顶点关于y轴的对称点,连线即可;(2 )根据(1 )中图形写出坐标即可;(3 )用所在矩形面积减去周围三个小三角形的面积即可得出答案.【详解】解:(1 )如图所示;(2 )由(1 )图知:,,,故答案为:;;;(3 )如图:,故答案为:.【点睛】本题考查了作图-轴对称变换,根据题意画出轴对称图形是解本题的关键.4、下面是小明关于“ 对称与旋转的关系” 的探究过程,请你补充完整.(1 )三角形在平面直角坐标系中的位置如图 1 所示,简称G,G关于y轴的对称图形为,关于轴的对称图形为.则将图形绕____ 点顺时针旋转 ____ 度,可以得到图形.(2 )在图 2 中分别画出G关于y轴和直线的对称图形,.将图形绕____ 点(用坐标表示)顺时针旋转 ______ 度,可以得到图形.(3 )综上,如图 3 ,直线和所夹锐角为,如果图形G关于直线的对称图形为,关于直线的对称图形为,那么将图形绕____ 点(用坐标表示)顺时针旋转 _____ 度(用表示),可以得到图形.知识点:画轴对称图形【答案】(1 )O,180 ;(2 )图见解析,,90 ;(3 ),【分析】(1 )根据图形可以直接得到答案;(2 )根据题意画出图形,观察图形,利用图形旋转的性质得到结论;(3 )从(1 )(2 )问的结论中得到解题的规律,求出两个函数的交点坐标,即可得出答案.【详解】解:(1 )由图象可得,图形与图形关于原点成中心对称,则将图形绕O点顺时针旋转180 度,可以得到图形;故答案为:O,180 ;(2 ),如图;由图形可得,将图形绕点(用坐标表示)顺时针旋转90 度,可以得到图形,故答案为:,90 ;(3 )∵ 当G关于y轴的对称图形为,关于轴的对称图形为时,与关于原点(0,0 )对称,即图形绕O点顺时针旋转180 度,可以得到图形;当G关于y轴和直线的对称图形,时,图形绕点(用坐标表示)顺时针旋转90 度,可以得到图形,点(0,1 )为直线与y轴的交点,90 度角为直线与y轴夹角的两倍;又∵ 直线和的交点为,夹角为,∴ 当直线和所夹锐角为,图形G关于直线的对称图形为,关于直线的对称图形为,那么将图形绕点(用坐标表示)顺时针旋转度(用表示),可以得到图形.故答案为:,.【点睛】本题主要考查了图形的对称性与旋转的性质,关键在于根据题意正确的画出图形,得出规律.5、如图,已知线段,其垂直平分线的作法如下:① 分别以点和点为圆心,长为半径画弧,两弧相交于,两点;② 作直线.上述作法中满足的条作为___1. (填“” ,“” 或“” )知识点:画轴对称图形【答案】>【分析】作图方法为:以,为圆心,大于长度画弧交于,两点,由此得出答案.【详解】解:∵,∴ 半径长度,即.故答案为:.【点睛】本题考查线段的垂直平分线尺规作图法,解题关键是掌握线段垂直平分线的作图方法.6、下面是小石设计的“ 过直线上一点作这条直线的垂线” 的尺规作图过程.已知:如图1 ,直线l及直线l上一点P.求作:直线PQ,使得PQ ⊥l.作法:如图2 :① 以点P为圆心,任意长为半径作弧,交直线l于点A,B;② 分别以点A,B为圆心,以大于AB的同样长为半径作弧,两弧在直线l上方交于点Q;③ 作直线PQ.所以直线PQ就是所求作的直线.根据小石设计的尺规作图过程:(1 )使用直尺和圆规,补全图形(保留作图痕迹);(2 )完成下面的证明.证明:连接QA,QB.∵QA=,PA=,∴PQ ⊥l()(填推理的依据).知识点:画轴对称图形【答案】(1 )见解析;(2 )QB,PB,等腰三角形底边上的中线与底边上的高互相重合.【分析】(1 )根据作图过程即可补全图形;(2 )根据等腰三角形的性质即可完成证明.【详解】解:(1 )补全的图形如图 2 所示:(2 )证明:连接QA,QB.∵QA=QB,PA=PB,∴PQ ⊥l(等腰三角形底边上的中线与底边上的高互相重合).故答案为:QB;PB;等腰三角形底边上的中线与底边上的高互相重合.【点睛】本题考查了作图- 基本作图、等腰三角形的性质,解决本题的关键掌握等腰三角形的性质.7、以图(一)的右边缘所在的直线为轴将该图形向右翻转后,再按顺时针方向旋转,所得到的图形是()知识点:画轴对称图形【答案】A8、如图,△ABC和△A’B’C’关于直线MN对称,△A’B’C’和△A’’B’’C’’关于直线EF对称。

人教版八年级数学上册同步练习题及答案+八年级数学下册同步练习题及答案

人教版八年级数学上册同步练习题及答案+八年级数学下册同步练习题及答案

人教版八年级数学上册同步练习题及答案+八年级数学下册同步练习题及答案人教八年级数学上册同步练习题及答案第十一章全等三角形11.1全等三角形1、已知⊿ABC≌⊿DEF,A与D,B与E分别是对应顶点,∠A=52°,∠B=67 °,BC =15cm,= ,FE = .则F2、∵△ABC≌△DEF∴AB= ,AC= BC= ,(全等三角形的对应边)∠A= ,∠B= ,∠C= ;(全等三角形的对应边)3、下列说法正确的是()A:全等三角形是指形状相同的两个三角形 B:全等三角形的周长和面积分别相等C:全等三角形是指面积相等的两个三角形 D:所有的等边三角形都是全等三角形4、如图1:ΔABE≌ΔACD,AB=8cm,AD=5cm,∠A=60°,∠B=40°,则AE=_____,∠C=____。

C课堂练习1、已知△ABC ≌△CDB ,AB 与CD 是对应边,那么AD= ,∠A= ;2、如图,已知△ABE ≌△DCE ,AE=2cm ,BE=1.5cm ,∠A=25°∠B=48°; 那么DE= cm ,EC= cm ,∠C= 度.3、如图,△ABC ≌△DBC ,∠A=800,∠ABC=300,则∠DCB= 度;(第1小题) (第2小题) (第3小题) (第4小题)4、如图,若△ABC ≌△ADE ,则对应角有 ; 对应边有 (各写一对即可);11.2.1全等三角形的判定(sss )课前练习1、如图1:AB=AC ,BD=CD ,若∠B=28°则∠C= ;2、如图2:△EDF ≌△BAC ,EC=6㎝,则BF= ;3、如图,AB ∥EF ∥DC ,∠ABC =900,AB =DC ,那么图中有全等三角形 对。

第2题图EDCBA(第1小题) (第2小题) (第3小题)课堂练习4、如图,在△ABC 中,∠C =900,BC =40,AD 是∠BAC 的平分线交BC 于D ,且DC ∶DB =3∶5,则点D 到AB 的距离是 。

北师大版轴对称图形练习题

北师大版轴对称图形练习题

轴对称图形同步练习一.填空。

1.如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形就是(),折痕所在的直线叫做()。

2.圆的对称轴有()条,半圆形的对称轴有()条。

3.在对称图形中,对称轴两侧相对的点到对称轴的()。

4.()三角形有三条对称轴,()三角形有一条对称轴。

5.正方形有()条对称轴,长方形有()条对称轴,等腰梯形有()条对称轴。

二.判断。

1.通过一个圆的圆心的直线是这个圆的对称轴。

( )2.圆是轴对称图形,每一条直径都是它的对称轴。

()3.等腰梯形是对称图形。

( )4.正方形只有一条对称轴。

( )三.选择。

1.下列图形中,对称轴最多的是()。

①等边三角形②正方形③圆④长方形2.下面不是轴对称图形的是()。

①长方形②平行四边形③圆④半圆3.要使大小两个圆有无数条对称轴,应采用第()种画法。

①②③四.作图题。

画下面图形的对称轴.五.应用题。

1. 一只大钟,它的分针长40厘米。

这根分针的尖端转动一周所走的路程是多少厘米??2. 通过一座桥,直径是米的车轮需转500圈,这座桥长多少米?3. 某体育馆有一个圆形的游泳池,池的周长是米,它的直径应是多少米?5.求右图阴影部分的面积。

(单位:厘米)6.计算阴影部分的周长和面积。

(单位:厘米)7.某种自行车轮胎滚动一周的长度是157厘米,这种自行车轮胎围成的圆的面积是多少平方厘米?8.用铁皮剪成一个圆环,内圆半径4厘米,环宽2厘米,它的面积是多少?。

人教版八年级数学上册第13章《轴对称》单元练习题(含答案)

人教版八年级数学上册第13章《轴对称》单元练习题(含答案)

人教版八年级数学上册第13章《轴对称》单元练习题(含答案)一、单选题1.下列倡导节约的图案中,是轴对称图形的是( )A .B .C .D . 2.在平面直角坐标系中,点(3,2)关于x 轴对称的点的坐标为( )A .(3,2)-B .(2,3)-C .(2,3)-D .(3,2)-3.下列黑体字中,属于轴对称图形的是( )A .善B .勤C .健D .朴4.如图,在已知的ABC 中,按以下步骤作图:①分别以B ,C 为圆心,以大于12BC 的长为半径作弧,两弧相交于两点M ,N ; ②作直线MN 交AB 于点D ,连接CD .若4AC =,10AB =,则ACD 的周长为( )A .8B .9C .10D .145.图1是光的反射规律示意图.其中,PO 是入射光线,OQ 是反射光线,法线KO ⊥MN ,∠POK 是入射角,∠KOQ 是反射角,∠KOQ =∠POK .图2中,光线自点P 射入,经镜面EF 反射后经过的点是( )A .A 点B .B 点C .C 点D .D 点6.如图,把一个长方形纸片沿EF 折叠后,点D ,C 分别落在D ′,C ′的位置.若∠AED '=50°,则∠EFC 等于( )A .65°B .110°C .115°D .130°7.如图,在ABC 中,分别以点B 和点C 为圆心,大于12BC 长为半径画弧,两弧相交于点M ,N .作直线MN ,交AC 于点D ,交BC 于点E ,连接BD .若7AB =,12AC =,6BC =,则ABD △的周长为( )A .25B .22C .19D .188.如图,在ABC 中,AB AC =,40A ︒∠=,//CD AB ,则BCD ∠=( )A .40︒B .50︒C .60︒D .70︒9.如图是A ,B ,C 三岛的平面图,C 岛在A 岛的北偏东35度方向,B 岛在A 岛的北偏东80度方向,C 岛在B 岛的北偏西55度方向,则A ,B ,C 三岛组成一个( )A .等腰直角三角形B .等腰三角形C .直角三角形D .等边三角形10.如图,在等边ABC 中,BC 边上的高6AD =,E 是高AD 上的一个动点,F 是边AB 的中点,在点E 运动的过程中,EB EF +存在最小值,则这个最小值是( )A .5B .6C .7D .811.如图,在△ABC 中,AD 是BC 边上的高,∠BAF =∠CAG =90°,AB =AF ,AC =AG ,连接FG ,交DA 的延长线于点E ,连接BG ,CF , 则下列结论:①BG =CF ;②BG ⊥CF ;③∠EAF =∠ABC ;④EF =EG ,其中正确的有( )A .①②③B .①②④C .①③④D .①②③④ 12.如图,在ABC 中,45,ABC AD BE ∠=︒,分别为,BC AC 边上的高,,AD BE 相交于点F ,连接CF ,则下列结论:①BF AC =;②FCD DAC ∠=∠;③CF AB ⊥;④若2BF EC =,则FDC △周长等于AB 的长.其中正确的有( )A .①②B .①③④C .①③D .②③④二、填空题13.已知△ABC 是等腰三角形.若∠A =40°,则△ABC 的顶角度数是____.14.如图,,AC BD 在AB 的同侧,2,8,8AC BD AB ===,点M 为AB 的中点,若120CMD ∠=,则CD 的最大值是_____.15.如图,△ABC 的边CB 关于CA 的对称线段是CB ',边CA 关于CB 的对称线段是CA ',连结BB ',若点A '落在BB '所在的直线上,∠ABB '=56°,则∠ACB =___度.16.如图,在ABC 中,BC 的垂直平分线分别交BC 、AB 于点E 、F .若AFC △是等边三角形,则B ∠=_________°.17.如图,在等边△ABC 中,点E 是边AC 上一点,AD 为BC 边上的中线,AD 、BE 相交于点F ,若∠AEB =100°,则∠AFB 的度数为_____.18.如图,在Rt ABC 中,90C ∠=︒,20B ∠=︒,PQ 垂直平分AB ,垂足为Q ,交BC 于点P .按以下步骤作图:①以点A 为圆心,以适当的长为半径作弧,分别交边,AC AB 于点D ,E ;②分别以点D ,E 为圆心,以大于12DE 的长为半径作弧,两弧相交于点F ;⑤作射线AF .若AF 与PQ 的夹角为α,则α=________°.三、解答题19.已知ABC 的三边长分别为a ,b ,c .(1)若2a =,3b =,求c 的取值范围;(2)在(1)的条件下,若c 为奇数,试判断ABC 的形状,并说明理由.20.如图,在ABC 和ADE 中,AB AC =,AD AE =,90BAC DAE ∠=∠=︒.(1)当点D 在AC 上时,如图①,线段BD ,CE 有怎样的数量关系和位置关系?请证明你的猜想;(2)将图①中的ADE 绕点A 顺时针旋转()090αα︒<<︒,如图②,线段BD ,CE 有怎样的数量关系和位置关系?请说明理由.(3)拓展应用:已知等边ABC 和等边ADE 如图③所示,求线段BD 的延长线和线段CE 所夹锐角的度数.21.如图,在四边形ABCD 中,AD BC ∥,E 为CD 的中点,连接AE 、BE ,BE AE ⊥,延长AE 交BC 的延长线于点F .(1)请判断FC 与AD 的数量关系,并说明理由;(2)若AB =6,AD =2,求BC 的长度.22.已知△ABC 和△DEF 为等腰三角形,AB =AC ,DE =DF ,∠BAC =∠EDF ,点E 在AB 上,点F 在射线AC 上.(1)如图1,若∠BAC =60°,点F 与点C 重合,求证:AF =AE +AD ;(2)如图2,若AD =AB ,求证:AF =AE +BC .23.(1)如图1,在等边三角形ABC 中,AD ⊥BC 于D ,CE ⊥AB 于E ,AD 与CE 相交于点O .求证:OA =2DO ;(2)如图2,若点G 是线段AD 上一点,CG 平分∠BCE ,∠BGF =60°,GF 交CE 所在直线于点F .求证:GB =GF .(3)如图3,若点G 是线段OA 上一点(不与点O 重合),连接BG ,在BG 下方作∠BGF =60°边GF 交CE 所在直线于点F .猜想:OG 、OF 、OA 三条线段之间的数量关系,并证明.24.如图,在ABC 中,AD BC ⊥,AD BD =;点F 在AD 上,DF DC =.连接BF 并延长交AC 于E .(1)求证:BF AC =;(2)求证:BE AC ⊥;(3)若AB BC =,BF 与AE 有什么数量关系?请说明理由.25.如图,在Rt ABC 中,9030C A ∠=︒∠=︒,.点D 是AB 中点,点E 为边AC 上一点,连接CD DE ,,以DE 为边在DE 的左侧作等边三角形DEF ,连接BF .△的形状为______;(1)BCD(2)随着点E位置的变化,DBF∠的度数是否变化?并结合图说明你的理由;AC=,请直接写出DE的长.(3)当点F落在边AC上时,若626.在△ABC中,AB=CB,∠ABC=90°,F为AB延长线上一点,点E在BC上,且AE=CF.(1)求证:△ABE≌△CBF;(2)若∠CAE=30°,求∠ACF度数.27.如图,在△ABC中,∠ACB=90°,∠A=30°,AB的垂直平分线分别交AB和AC于点D,E.(1)求证:AE=2CE;(2)连接CD,请判断△BCD的形状,并说明理由.28.已知,如图,△ABC为等边三角形,AE=CD,AD、BE相交于点P.(1)求证:△ABE≌△CAD;(2)求∠BPQ的度数;(3)若BQ⊥AD于Q,PQ=6,PE=2,求AD的长。

第13章 轴对称 几何综合题专题练习题(教师版)

第13章 轴对称 几何综合题专题练习题(教师版)

人教版八年级数学上册第十三章 轴对称 几何综合题专题练习题专题(1) 等腰三角形的性质与全等三角形综合1.如图,点D ,E 在△ABC 的边BC 上,AB =AC ,BD =CE .求证:AD =AE .证明:∵AB =AC , ∴∠B =∠C .在△ABD 和△ACE 中, ⎩⎪⎨⎪⎧AB =AC ,∠B =∠C ,BD =CE ,∴△ABD ≌△ACE (SAS ). ∴AD =AE .2.如图,在等腰△ABC 中,AB =AC ,CD ,BE 是两腰上的中线,求证:CD =BE .证明:∵CD ,BE 是两腰上的中线, ∴AD =AE .在△ADC 和△AEB 中, ⎩⎪⎨⎪⎧AD =AE ,∠A =∠A ,AC =AB ,∴△ADC ≌△AEB (SAS ). ∴CD =BE .3.如图,在△ABC 中,AB =AC ,AD ⊥BC ,垂足为D ,E ,F 分别是AB ,AC 的延长线上的点,且BE =CF .求证:DE =DF .证明:∵AB =AC ,AD ⊥BC , ∴∠DAE =∠DAF . 又∵BE =CF , ∴AB +BE =AC +CF . 即AE =AF .在△ADE 和△ADF 中,⎩⎪⎨⎪⎧AE =AF ,∠EAD =∠FAD ,AD =AD ,∴△ADE ≌△ADF (SAS ). ∴DE =DF .4.已知:如图,△ABC 是等腰三角形,AB =AC ,且∠ABO =∠ACO .求证: (1)∠1=∠2; (2)OA ⊥BC .证明:(1)∵AB =AC , ∴∠ABC =∠ACB .∵∠ABO =∠ACO ,∴∠1=∠2. (2)∵∠1=∠2, ∴OB =OC .在△ABO 和△ACO 中,⎩⎪⎨⎪⎧AB =AC ,∠ABO =∠ACO ,OB =OC ,∴△ABO ≌△ACO (SAS ). ∴∠BAO =∠CAO . ∴AO 平分∠BAC . ∵△ABC 是等腰三角形, ∴OA ⊥BC .5.如图,在△ABC 中,AB =AC ,D ,E ,F 分别为边BC ,AB ,AC 上的点,且BE =CD ,CF =BD .(1)试说明:△BDE 与△CFD 全等的理由; (2)若∠A =40°,求∠EDF 的度数.解:(1)∵AB =AC ,∴∠B =∠C . 在△BDE 和△CFD 中,⎩⎪⎨⎪⎧BE =CD ,∠B =∠C ,BD =CF ,∴△BDE ≌△CFD (SAS ).(2)∵∠A =40°,∴∠B =∠C =70°. ∵△BDE ≌△CFD , ∴∠BED =∠CDF . ∵∠EDC =∠B +∠BED , ∴∠EDF =∠B =70°.6.如图,在△ABC 中,AB =AC ,AD ⊥BC ,CE ⊥AB ,EF =BE . (1)△AEF 与△CEB 全等吗?请说明理由; (2)说明AF =2BD 的理由.解:(1)全等. 理由:∵AD ⊥BC , ∴∠B +∠BAD =90°. ∵CE ⊥AB ,∴∠B +∠BCE =90°,∠AEF =∠BEC =90°. ∴∠EAF =∠ECB ,∠AEF =∠BEC . 又∵BE =EF ,∴△AEF ≌△CEB (AAS ).(2)∵△AEF ≌△CEB ,∴AF =BC . ∵AB =AC ,AD ⊥BC , ∴BC =2BD . ∴AF =2CD .7.已知,如图,在△ABC 中,∠B =∠C ,D 是BC 上一点,点E ,F 分别在AB ,AC 上,BD =CF ,CD =BE ,G 为EF 的中点,问: (1)△BDE 与△CFD 全等吗?请说明理由; (2)判断DG 与EF 的位置关系,并说明理由.解:(1)△BDE 与△CFD 全等, 理由:∵AB =AC ,∴∠B =∠C . 在△BDE 和△CFD 中, ⎩⎪⎨⎪⎧BE =CD ,∠B =∠C ,BD =CF ,∴△BDE ≌△CFD (SAS ). (2)DG ⊥EF .理由: ∵△BDE ≌△CFD , ∴DE =DF .∵G 是EF 的中点, ∴DG ⊥EF .8.在等腰△OAB 和等腰△OCD 中,OA =OB ,OC =OD ,连接AC ,BD 交于点M . (1)如图1,若∠AOB =∠COD =40°: ①AC 与BD 的数量关系为AC =BD ; ②∠AMB 的度数为40°.(2)如图2,若∠AOB =∠COD =90°:①判断AC 与BD 之间存在怎样的数量关系?并说明理由; ②求∠AMB 的度数.解:(2)①AC =BD ,理由如下: ∵∠AOB =∠COD =90°,∴∠AOB +∠AOD =∠COD +∠AOD . ∴∠BOD =∠AOC ,在△BOD 和△AOC 中,⎩⎪⎨⎪⎧OB =OA ,∠BOD =∠AOC ,OD =OC ,∴△BOD ≌△AOC (SAS ). ∴BD =AC .②设OA ,BD 相交于点E .∵△BOD≌△AOC,∴∠OBD=∠OAC.又∵∠AEM=∠BEO,∴∠AMB=∠AOB=90°.专题(2)角的平分线与线段的垂直平分线1.如图,已知在△ABC中,AD是∠BAC的平分线,AD的垂直平分线交BC的延长线于点F.求证:∠BAF=∠ACF.证明:∵AD是∠BAC的平分线,∴∠BAD=∠DAC.∵FE是AD的垂直平分线,∴F A=FD.∴∠F AD=∠FDA.∵∠BAF=∠F AD+∠BAD,∠ACF=∠FDA+∠DAC,∴∠BAF=∠ACF.2.如图所示,在Rt△ABC中,∠C=90°,AB=2AC,AD为∠BAC的平分线.求证:点D在线段AB的垂直平分线上.证明:作DE ⊥AB 于点E ,则∠AED =90°. ∵∠C =90°, ∴∠AED =∠C .∵AD 为∠BAC 的平分线, ∴∠EAD =∠CAD . 在△AED 和△ACD 中, ⎩⎪⎨⎪⎧∠AED =∠C ,∠EAD =∠CAD ,AD =AD ,∴△AED ≌△ACD (AAS ).∴AE =AC . ∵AB =2AC ,∴AB =2AE .∴BE =AE . 又∵DE ⊥AB ,∴DE 是线段AB 的垂直平分线, 即点D 在线段AB 的垂直平分线上.3.如图,在△ABC 中,∠A =60°,点D 是BC 边的中点,DE ⊥BC ,∠ABC 的平分线BF 交DE 于△ABC 内一点P ,连接PC . (1)若∠ACP =24°,求∠ABP 的度数;(2)若∠ACP =m °,∠ABP =n °,请直接写出m ,n 满足的关系式m +3n =120.解:∵点D是BC边的中点,DE⊥BC,∴PB=PC.∴∠PBC=∠PCB.∵BP平分∠ABC,∴∠PBC=∠ABP.∴∠PBC=∠PCB=∠ABP.∵∠A=60°,∠ACP=24°,∴∠PBC+∠PCB+∠ABP=180°-60°-24°.∴3∠ABP=96°.∴∠ABP=32°.4.如图,△ABC的外角∠DAC的平分线交BC边的垂直平分线于点P,PD⊥AB于点D,PE⊥AC于点E.求证:BD=CE.证明:连接BP,CP.∵点P在BC的垂直平分线上,∴BP=CP.∵AP是∠DAC的平分线,PD ⊥AB ,PE ⊥AC , ∴DP =EP .在Rt △BDP 和Rt △CEP 中,⎩⎪⎨⎪⎧BP =CP ,DP =EP , ∴Rt △BDP ≌Rt △CEP (HL ). ∴BD =CE .专题(3) 特殊三角形中常见辅助线的作法1.如图,在△ABC 中,AB =AC ,AE ⊥BE 于点E ,且BE =12BC .若∠EAB =20°,则∠BAC =40°.2.如图,在△ABC 中,AB =AC ,∠BAC =120°,AC 的垂直平分线交BC 于点D ,交AC 于点E ,DE =2,则BC 的长为12.3.如图,四边形ABCD 中,AD =4,BC =1,∠A =30°,∠B =90°,∠ADC =120°,则CD =2.4.如图,∠AOE =∠BOE =15°,EF ∥OB ,EC ⊥OB 于点C .若EC =1,则OF =2.5.如图,在△ABC 中,AC =2AB ,AD 平分∠BAC 交BC 于点D ,E 是AD 上一点,且EA =EC ,求证:EB ⊥AB .证明:作EF ⊥AC 于点F .∵EA =EC ,∴AF =FC =12AC . ∵AC =2AB ,∴AF =AB .∵AD 平分∠BAC ,∴∠BAD =∠CAD .在△ABE 和△AFE 中,⎩⎪⎨⎪⎧AB =AF ,∠BAE =∠FAE ,AE =AE ,∴△ABE ≌△AFE (SAS ).∴∠ABE =∠AFE =90°.∴EB ⊥AB .6.如图,在Rt △ABC 中,AC =BC ,∠ACB =90°,点O 为AB 的中点,OE ⊥OF 分别交AC ,BC 于点E ,F .求证:OE =OF .证明:连接OC .∵AC =BC ,∠ACB =90°,点O 为AB 的中点,∴∠B =∠ACO =∠BCO =45°,CO ⊥AB .∴OC =OB ,∠COB =90°.又∵∠EOF =90°,∴∠EOC =∠FOB .在△EOC 和△FOB 中,⎩⎪⎨⎪⎧∠EOC =∠FOB ,OC =OB ,∠OCE =∠OBF ,∴△EOC ≌△FOB (ASA ).∴OE =OF .7.如图,在△ABC 中,AB =AC ,∠BAC =120°,D 为BC 的中点,DE ⊥AC 于点E ,AE =2,求CE 的长.解:连接AD .∵AB =AC ,∠BAC =120°,D 为BC 的中点,∴∠DAC =12∠BAC =60°,∠ADC =90°. ∵DE ⊥AC ,∴∠ADE =90°-60°=30°.∴AD =2AE =4.又∵∠C =90°-∠DAC =30°,∴AC =2AD =8.∴CE =AC -AE =8-2=6.8.如图,在△ABC 中,BD 是AC 边上的中线,BD ⊥BC 于点B ,∠ABD =30°,求证:AB =2BC .证明:作AM ⊥BD ,交BD 延长线于点M . ∵在Rt △ABM 中,∠ABD =30°,∴AB =2AM .∵BD 为AC 边上的中线,∴AD =CD .∵DB ⊥BC ,AM ⊥BD ,∴∠DBC =∠M =90°.在△BCD 和△MAD 中,⎩⎪⎨⎪⎧∠DBC =∠M ,∠BDC =∠MDA ,CD =AD ,∴△BCD ≌△MAD (AAS ).∴BC =AM .∴AB =2BC .。

小学数学五年级上册第二单元《轴对称再认识(一)》应用作业

小学数学五年级上册第二单元《轴对称再认识(一)》应用作业

【答案:CD A B C DA DCBE4.将轴对称图形折叠后会是什么样子?()【答案: D 】C形的对称轴方格中的图案()(填“是”或“不是”【答案:不是】一、选择正确的答案填在括号里。

1.根据轴对称的意义,判断基本图形中的轴对称图形 1.1 下面不是轴对称图形的是( B )A B C D1.3 下面不是轴对称图形的是( C D )1.4 下面是轴对称图形的是( A B )1.5 下面是轴对称图形的是( A C )2、根据轴对称的意义判断生活中的轴对称图形(B2) 2.1下面图形中是轴对称图形的是( C D )2.2下面图形中不是轴对称图形的是(A B E );A DC BA DC BA B C DA DCBE2.3下面图形中是轴对称图形的是( A B C )2.4下面图形中不是轴对称图形的是(D );2.5下面图形中不是轴对称图形的是(A B );3、根据轴对称图形特点找对称轴(C2)3.1有( A )条对称轴。

A. 2 B. 4 C. 8 D.无数 3.2下图中有两条对称轴的是( A B)A DCBA DCBA DC B EA DC BA. 0B. 1C. 2D.33.4 有( B )条对称轴。

A. 2B. 4C. 8D.无数A )条对称轴。

A. 0B. 2C. 4D.无数4.能根据轴对称图形的形状辨别对称后的形状4.1将轴对称图形折叠后会是什么样子?( D )4.2将轴对称图形折叠后会是什么样子?( C )4.3将轴对称图形折叠后会是什么样子?( B )4.5将轴对称图形折叠后会是什么样子?( C )5.判断基本图形中的轴对称图形(B1)5.1正方形( B )是轴对称图形。

A.可能B.一定C.不可能5.2平行四边形( C )是轴对称图形。

A.可能B.一定C.不可能5.3三角形( A )是轴对称图形。

A.可能B.一定C.不可能5.4梯形( A )是轴对称图形。

A.可能B.一定C.不可能5.5圆( B )是轴对称图形。

(完整版)七年级数学简单的轴对称图形练习题

(完整版)七年级数学简单的轴对称图形练习题

1.1.简单的轴对称图形一、判断题1.角的平分线是角的对称轴.()2.等腰直角三角形不是轴对称图形.()3.等腰三角形底边上的高所在直线是它的对称轴.()4.射线是轴对称图形.()5.线段的垂直平分线是线段的一条对称轴.()二、填空题1.角的平分线上的点到这个角的两边的_________相等.2.线段_________(填是或不是)轴对称图形,它的一条对称轴垂直并_________它,这样的直线叫做这条线段的_________,简称_________.3.线段垂直平分线上的点到这条线段_________的距离_________.4.线段有_________条对称轴.5.角有_________条对称轴. 其对称轴是_______________.三、选择题1.下列图形不一定是轴对称图形的是()A.等边三角形B.长方形C.等腰三角形D.直角三角形2.等腰三角形的对称轴是()A.顶角的平分线B.底边上的高C.底边上的中线D.底边的垂直平分线所在直线3.下面选项对于等边三角形不成立的是()A.三边相等B.三角相等C.是等腰三角形D.有一条对称轴4.等边三角形对称轴的条数是()A.1条B.2条C.3条D.4条1.2 简单的轴对称图形(一、二课时)1. 如下图,l1,l2交于A,P,Q的位置如图所示,试确定M点,使它到l1、l2的距离相等,且到P、Q两点的距离也相等.Al12PQ2. 在△ABC中,AD是∠BAC的平分线,过C作CE∥AD交BA的延长线于点E,则线段AE与AC是否相等,为什么?AB3. 在△PMN中,PM=PN,AB是线段PM的对称轴,分别交PM于A,PN于B,若△PMN的周长为60厘米,△BMN的周为36厘米,则MA的长为()A.6厘米B.12厘米C.24厘米D.36厘米4. 在线段、角、等腰三角形、正三角形中,是轴对称图形有()A.1个B.2个C.3个D.4个5. 下列图形是轴对称图形的是()A.任意三角形B.有一个角等于60°的三角形 C.等腰三角形 D.直角三角形6. 圆是轴对称图形,它的对称轴是_______,所以它有________条对称轴.7. 在△ABC中,DE是AC的垂直平分线,AE=5,△ABC周长是30,则△ABD周长是______.8. 如图,两条公路相交,在A,B两处是两个居民区,邮政局要在居民区旁边修建一个邮筒,为了使邮寄和取送方便,要使邮筒到两条路的距离相等,并且到两个居民区的距离也相等,请你找到一个这样的点.9.△ABC中,AB、BC的中垂线交于M点,则下列结论正确的是()A.点M在AC上 B.点M在△ABC外 C.点M在△ABC内 D.AM=BM=CM10. 到三角形三边距离相等的是()A.三条边中线的交点 B.三个内角平分线的交点C.三条边垂直平分线的交点 D.三条边上高所在直线上的交点11. 如图,直线l1、l2、l3表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可选择的地址有()A.一处 B.两处 C.三处 D.四处12. 在△ABC中,AB=AC,D是AB的中点,且DE⊥AB.已知△BCE的周长为8,且AC-BC=2,求AB、BC的长.l1l3 l2C B13. 下列说法中正确的是( )A .角是轴对称图形,它的平分线就是对称轴B .等腰三角形内角平分线,中线和高三线合一C .直角三角形不是轴对称图形D .等边三角形有三条对称轴 14. 到三角形三个顶点距离相等的点是( ).A .三角形三条角平分线的交点B .三角形三条中线的交点C .三角形三边中垂线的交点D .三角形三条高的交点15. 在△ABC 中,AB =AC ,BC=5cm ,作AB 的中垂线交另一腰AC 于D ,连结BD ,如果△BCD 的周长是17cm ,则腰长为( ) A .12cmB .6cmC .7cmD .5cm16. 下列图形中,不一定是轴对称图形的是( ) A .线段 B .角 C .三角形 D .等腰直角三角形 17. 在△ABC 中, ∠C =90°,AD 是∠CAB 的平分线,DE ⊥AB 于E ,且DE =5.6厘米,BC =13.8厘米,则BD =________厘米.18. 下列图形:①角;②线段;③等边三角形;④有一个角为30°的直角三角形,其中是轴对称图形的有(填序号)_____________.19. 如图,在Rt △ABC 中,∠C =90°,BD 平分∠ABC 交AC 于点D ,DE 是斜边AB 的垂直平分线,请你在图中找出至少两对相等的线段,并说明它们为什么相等.如果ED =2cm ,DB =3cm ,则AC 长为多少?1.2 简单的轴对称图形(三、四课时)1、下列说法中正确的是( )(A )角是轴对称图形,它的平分线就是对称轴 (B )等腰三角形的内角的平分线,中线和高三线合一(C )直角三角形不是轴对称图形(D )等边三角形有三条对称轴 2、等腰三角形的一个内角是50°,那么其它两个内角分别是( )A CB E D A D EC B O PQ M ND B AE C P QM N FAD C BE A Q CP B (A )50°和80° (B )65°和65° (C )50°和80°或65°和65° (D )无法确定3、等腰三角形顶角是84°,则一腰上的高与底边所成的角的度数是( ). (A)42° (B)60° (C)36° (D)46°4、如右图,∠ABC 中,AD ⊥BC,AB=AC, ∠BAD=30°,且AD=AE,则∠EDC 等于( ).(A)10° (B)12.5° (C)15° (D)20°5、如右图,PM=PN,MQ 为△PMN 的角平分线,若∠MQN=72°,则∠P 的度数是( ).(A)18° (B)36° (C)48° (D)60° 6、已知△ABC 中,AB=AC,AD ⊥BC 于D,△ABC 的周长为36厘米,△ADC 的周长为30厘米,那么AD 等于( ). (A)6cm (B)8cm (C)12cm (D)20cm7、如右图,PQ 为Rt △MPN 斜边上的高, ∠M=45°,则图中等腰三角形的个数是(A)1个 (B)2个 (C)3个 (D)4个8、在线段、角、等腰三角形、正三角形中,是轴对称图形有( )个(A )1个 (B )2个 (C )3个 (D )4个9、如右图,在△ABC 中,AB=AC,∠A=36°,BD 、CE 分别是∠ABC 、∠ACB 的平分线,则图中等腰三角形的个数为( ).(A)12 (B)10 (C)9 (D)810、如果三角形一边的中线和这边上的高重合,那么这个三角形是( ).(A)等边三角形 (B)等腰三角形 (C)锐角三角形 (D)钝角三角形 11、在△ABC 中, ∠B=∠C=40°,D 、E 是BC 上的两点,且∠ADE=∠AED=80°,则图中共有( )个等腰三角形.(A)6个 (B)5个 (C)4个 (D)3个12、在△ABC 中, ∠ABC=∠ACB,∠ABC 与∠ACB 的平分线交于点D,过D 作EF ∥BC,交AB 于E,交AC 于F,则图中的等腰三角形有____个,分别有______.(第9题) (第10题) (第12题) (第13题)13、如图,在△ABC 中,AB=AC=16cm ,AB 的垂直平分线交AC 于D ,如果BC=10cm ,那么△BCD 的周长是_______cm.14、已知:如下图,P,Q 是△ABC 边上BC 上的两点,且BP=PQ=QC=AP=AQ,求∠BAC 的度数.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

轴对称(一)
知识点: 1、轴对称图形:一个平面图形,沿着某条直线折叠,直线两旁的部分能够互相重合,我们说是轴对称图形
2、轴对称:一个图形沿着一条直线折叠,能与另一个图形互相重合,说这两个图形关于这条直线成轴对称,能够重合的
点叫做对称点
3、线段的垂直平分线:过线段的中点且垂直于这条线段的直线叫做线段的垂直平分线
4、轴对称的性质:对称轴是所有对应点连线的垂直平分线
同步测试题:
⒈如图,下列图案是我国几家银行的标志,其中是轴对称图形的有 ( )
~
A 、1个
B 、2个
C 、3个
D 、4个
⒉ 在△ABC 中,AB=AC ,BC=5cm ,作AB 的中垂线交另一腰AC 于D ,连结BD ,如果△BCD 的周长是17cm ,
则腰长为 ( )
A 、12cm
B 、6 cm
C 、7 cm
D 、5 cm
⒊下列说法中,正确说法的个数有 ( )
①角是轴对称图形,对称轴是角的平分线; ②等腰三角形至少有1条对称轴,至多有3条对称轴;③关
于某直线对称的两个三角形一定是全等三角形;④两图形关于某直线对称,对称点一定在直线的两旁.
(
A 、1个
B 、2个
C 、3个
D 、4个
4.如图,∠C =90°,AB 的垂直平分线交BC 于D ,连结AD ,若∠CAD =20°,则∠B 等于( )
(A )20° (B )30° (C )35° (D )40°
5.如图,△ABC 中,AB =AC =15,AB 的垂直平分线DE 交AC 于D ,连结BD ,若△DBC 的周长为23,则BC
的长为 ( )
(A )6 (B )7 (C )8 (D )9
6.如图,△ABC 中,BD 是角平分线,DE ∥BC 交AB 于E ,交AC 于D ,若DE =7, AE =5,则AB 等于 ( )
(A )10 (B )12 (C )14 (D )16
(第4题) (第5题) (第6题)
7.如图,∠AOB 内一点、P 2分别是P 关于OA 、OB 的对称点,P 1P 2交OA 于M ,交OB 于N ,若P 1P 2=5,则△
PMN 的周长是 ( )
(A )3 (B )4 (C )5 (D )6
8.如图,在△ABC 中,AB =AC ,D 是BC 边上的中点,∠B =30°,则∠1等于 ( )

(A )30° (B )40° (C )50° (D )60°
9.如图,P 是∠AOB 平分线上的任意一点,PC ⊥OA ,PD ⊥OB ,连结CD ,则CD 与OP 的关系是 ( )
(A )CD =OP (B )CD ⊥OP (C )CD =2OP (D )OP =2CD

(第7题) (第8题) (第9题) 10.下列图形中一定是轴对称图形的是 ( )
A 、梯形
B 、直角三角形
C 、角
D 、平行四边形
11.到三角形的三个顶点距离相等的点是 ( )
A.三条角平分线的交点
B.三条中线的交点 A C
D ! B A 】 C D
E D C A B O P
# P 2
M
N A B A B O P ~ C

C.三条高的交点
D.三条边的垂直平分线的交点
12.等腰三角形一个外角等于100°,则与它不相邻的两个内角的度数分()A.40°,40° B.80°,20°C.50°,50° D.50°,50°或80°,20°
13.下列轴对称图形中,对称轴最多的是( )
A.圆
B.正方形
C.等腰直角三角形
D.有一角为60°的等腰三角形
14.下列图形中,不是轴对称图形的是 ( )
A.直角
B.长方形
C.半圆
D.平行四边形二、填空题。

相关文档
最新文档