离心泵的水力设计和数值模拟讲解
离心泵的水力设计讲解

离心泵的水力设计讲解离心泵的水力设计步骤如下:1.根据设计参数计算比转速ns;2.确定进出口直径;3.进行汽蚀计算;4.确定效率;5.确定功率;6.选择叶片数和进出口安放角;7.计算叶轮直径D2;8.计算叶片出口宽度b2;9.精算叶轮外径D2以满足要求;10.绘制模具图。
在设计离心泵之前,需要详细了解该泵的性能参数、使用场合、特殊要求等。
下表为本章中叶轮水力设计教程中使用的一组性能要求。
确定泵的进口直径时,应考虑泵吸入口的流速,一般取为3m/s左右。
大型泵的流速可以取大些,以减小泵的体积,提高过流能力;而对于高汽蚀性能要求的泵,应减小吸入流速。
本设计例题追求高效率,取Vs=2.2m/s,Ds=80.对于低扬程泵,出口直径可取与吸入口径相同。
高扬程泵,为减小泵的体积和排出管直径,可小于吸入口径。
本设计例题中,取Dd=0.81Ds=65.泵进出口直径都取了标准值,速度有所变化,需要重新计算。
本设计例题中,进口速度为Vs=2.05,出口速度为3.10.汽蚀是水力机械特有的一种现象,当流道中局部液流压力降低到接近某极限值时,液流中就开始发生空泡。
在确定泵转速时,需要考虑汽蚀条件的限制,选择C值,按给定的装置汽蚀余量和安装高度确定转速。
转速增大,过流不见磨损快,易产生振动和噪声。
汽蚀是液流中空泡发生、扩大、溃灭过程中涉及的物理、化学现象,会导致噪音、振动、甚至对流道材料产生侵蚀作用。
这些现象统称为汽蚀现象,一直是流体机械研究的热点和难点。
为了避免汽蚀带来的负面影响,需要计算汽蚀条件下允许的转速,并采用小于该转速的转速。
在计算汽蚀条件下的转速时,需要先计算汽蚀余量NPSHa,而NPSHa的计算需要知道泵的安装高度和设计要求中的数值。
例如,设计要求中给出的安装高度为3.3m,那么计算得到NPSHa为6.29m。
同时,还需要计算NPSHr,可以通过NPSHa除以1.3得到,例如计算得到NPSHr为2.54m。
比转速是一个综合性参数,它说明着流量、扬程、转数之间的相互关系。
基于Fluent 14.5离心泵内部流场数值模拟教程

基于Fluent 14.5离心泵内部流场数值模拟教程内容摘要:一、描述随着科学技术的进步,许多领域对水泵要求越来越高。
传统的设计方法已无法满足快节奏、高要求的现代社会。
随着计算流体力学(CFD)技术的发展,为水泵设计也带来了更好的研究方法。
应用CFD技术,通过计算机对水泵内部流场进行虚拟试验,可以快速获得外特性曲线,...一、描述随着科学技术的进步,许多领域对水泵要求越来越高。
传统的设计方法已无法满足快节奏、高要求的现代社会。
随着计算流体力学(CFD)技术的发展,为水泵设计也带来了更好的研究方法。
应用CFD技术,通过计算机对水泵内部流场进行虚拟试验,可以快速获得外特性曲线,并且能够更好的在设计阶段预测泵内部流动所产生的漩涡、二次流、边界分离、喘振、汽蚀等不良现象,通过改进以提高产品可靠性。
本教程采用IS80-65-125型水泵的水力模型,通过具体步骤希望广大同行能快速掌握运用Fluent对水泵进行CFD模拟的步骤方法。
二、建模采用Creo 2.0 M020(Peo/Engineer)进行建模。
本次教程不考虑叶轮前后盖板与泵腔间的液体(事实证明对实际结果有一定影响,为了教程方便因此不予考虑,大家可以在实际工作中加入对前后腔体液体),建模只考虑进口管部分、叶轮旋转区域部分、蜗壳部分。
对于出口管,可以根据模型的特征进行判别,本次模拟是由于出口管路对实际模拟结果影响很小,不存在尺寸急变等特征,因此去掉了出口管段,以减少网格数量。
建模如图所示:图1 建立流道模型三、网格划分建模完成后,导出*.x_t(或其他格式)格式,导入网格划分软件中进行网格划分。
网格划分软件有很多,各有各的优势,主要采用自己熟练的一种即可。
本次教程采用ICEM进行网格划分。
进口段为直锥型结构,采用六面体网格。
叶轮和蜗壳部分采用四面体非结构网格(也可以采用六面体网格,划分起来比较麻烦)。
对于工程应用,可以采用不划分边界层网格,划分边界层网格比较费时间,生成的网格数量也很高,但是从模拟的外特性曲线来看,差别不是很大,但是对于研究边界层流动对性能的影响,就必须划分边界层,对于采用有些壁面条件,也必须划分边界层(该部分查看其它教程)。
离心泵叶轮的水力设计

泵与风机课程设计******单位:动力与机械学院学号:************指导老师:朱劲木副教授设计时间:两周目录一、课程设计简介二、叶轮水力设计内容和步骤1、泵主要参数和结构方案的确定1.1.泵的设计参数1.2.确定泵的进出口直径1.3.泵转数的确定1.4.计算比转数,确定泵的水力方案1.5.效率的估算1.6.确定泵轴的最小直径2、叶轮进口直径2.1.叶轮出口直径2.3.确定叶片厚度2.4.确定叶片包角2.5.计算和确定进出口安放角3、叶轮设计计算程序见表2-44、叶轮水力设计绘图4.1.绘制叶轮轴面流道投影图4.2.绘制轴面液流的流线4.3.确定叶片入口遍位置4.4.叶片绘型4.5.叶片绘型质量检查三、设计成果参考文献一、课程设计简介设计课题离心泵叶轮的水力设计设计目的掌握离心式叶轮水力设计的基本原理和基本方法,加深对课堂知识的理解,培养学生进行产品设计、水泵改造及科学研究等方面的工作能力。
工作条件抽送常温清水配用动力用电动机作为工作动力设计内容离心泵结构方案的确定;离心泵叶轮主要几何参数选择和计算;叶轮轴面投影图的绘制及叶片绘型。
设计要求用速度系数法和解析计算法进行离心叶轮水力设计;用保角变换绘制叶轮木模图;编写设计计算说明书。
使用工具AutoCAD2007版成果要求设计说明书应做到字迹工整、书面整洁、层次分明、文理通顺。
文中所引用的重要公式、论点及结论均应交待依据;设计说明书应包括计算、表格和插图(图表统一编号),配以目录和参考文献目录等内容,统一装订成册;设计图纸用ACAD绘制,图面布置要合理。
二、叶轮水力设计内容和步骤叶轮是泵的核心部分。
泵的流量、扬程、效率、抗汽蚀性能和特性曲线的形状等均与叶轮的水力设计有重要关系。
根据一元理论,设计过程可以分为两大部分:叶轮集合尺寸计算(表4)和叶片绘型。
1、泵主要参数和结构方案的确定1.1泵的设计参数流量Q=144m3/h ;扬程H=50m ;效率η=80%;汽蚀比转数c=10001.2确定泵进出口直径泵进口至直径也叫泵吸入口径,是指泵吸入法兰处管的内径。
离心泵水力设计(进口边的确定)

m—经验系数,m=0.055~0.08,ns小者取小值。 ◆轴面速度 vm1
Q v F1k 1
F1—计算点的过水断面面积 k1—计算点的叶片排挤系数
排挤系数k1
cot 1 ZSu1 ZS1 Z1 k1 1 1 1 1 sin D1 D1 sin 1 D1 1
一、一元流动中轴面流线的绘制 (一)轴面流线的绘制
流面:一条流线绕轴线旋转一周形成的回转面即为一个流面。 轴面流线:流面和轴面的交线,即叶片和流面交线的轴面投影; 分流线:用几个流面,把流道分成几个小流道即可。 中、低ns泵:流道较窄,一般分3条(前、后盖板和中间流线) 高ns泵:流道较宽,一般分5条流线。
0 流道中线 D E B 过水断面 形成线AEB C
过水断面形成线作法ቤተ መጻሕፍቲ ባይዱ
◆过水断面面积沿流道中线的变化曲线 按照上述方法依次计算各个过水断面面积F,然后拟合出其沿 流道中线变化的曲线。
要求:该曲线应为平直或光滑的线,否则必须修改 轴面投影形状,反复多次,直到满足要求为止。
ℓ
第三节
离心泵叶片的水力设计
S为流面厚度
若叶片真实厚度为δ,则叶片在各方向上的厚度与角度的关系
S 1 cot 2 cos 2
cot2 Su 1 sin 2
S m 1 tan 2 cot 2 S r 1 tan 2 cot 2 sin
(八)轴面流道过水截面面积检查 1、轴面流道绘制
首页
叶片设计目的:设计的叶片空间形状符合叶轮内液体质点的 相对运动规律,叶片表面实质是相对流线。 几个假设: 1)假设叶轮中的流体从叶轮前盖至后盖分成若干层,每层为 一旋转流面。流体只沿每层流动,互不混杂—把叶轮中的流 动问题简化为流面上的流动问题。 2)假设叶片无穷多,流面上流体的相对流动的轨迹是相同的, 并与叶片面一致。 求出每个流面上相对流动的流线后,叠加在一起就形成了叶 片表面,加厚就形成了叶片的工作面和背面。 叶片型线的设计转化成画出各回转流面上的相对流线。 3)叶轮中的流动是轴对称的,同一过水断面Vm均匀分布, Vm沿轴面流线一个坐标变化—一元设计理论 。
离心泵水力设计

离心泵水力设计课程设计及指导书(一)离心泵水力设计任务书1 设计目的掌握离心式叶轮和进、出水室水力设计的基本原理和基本方法.加深对课堂知识的理解,培养学生进行产品设计、水泵改造及科学研究等方面的工作能力。
2 设计参数及有关资料(1)泵的设计参数:(可自选一组参数设计,也可参照给出的参数变更局部参数设计,每个人必须选择不同的参数进行设计)1.m h rpm n m H h m Q a 3.3,2900,60,/373=∆=== 2.m h rpm n m H h m Q a 44.5,1450,16,/903=∆=== 3.900,1430,24,/663====C rpm n m H h m Q 4.900%,80,2900,48,/1453=====C rpm n m H h m Q η 5.m 5,2970,5.18,/12====SZ H rpm n m H s l Q 泵的安装高度 6.m h rpm n m H s l Q r 13.2,2870,10,/3.2=∆=== 7.m rpm n m H h m Q 6.2h ,1450,5.32,/170r 3=∆=== 8. %60,2h ,2900,20,/20r 3==∆===ηm rpm n m H h m Q(2)工作条件:抽送常温清水。
(3)配用动力:用电动机作为工作动力。
3 设计内容及要求(1)设计内容。
包括以下几个方面:l )、离心泵结构方案的确定。
2)、离心泵水力过流部件(进水室、叶轮、压水室)主要几何参数的选择和计算。
3)、叶轮轴面投影图的绘制。
4)、螺旋形压水室水力设计。
(2)要求。
包括以下几个方面:l )、用速度系数法和解析计算法进行离心泵水力设计。
2)、绘出压水室设计图。
3)、编写设计计算说明书。
4 设计成果要求(1)计算说明书应做到字迹工整、书面整洁、层次分明、文理通顺。
文中所引用的重要公式、论点及结论均应交待依据。
离心泵水力学特性分析与流场优化设计

离心泵水力学特性分析与流场优化设计1. 引言离心泵是一种常见的流体机械设备,广泛应用于工业生产和民生领域。
它以其具有高效、可靠、节能等特点而备受青睐。
本文将对离心泵的水力学特性进行分析,并探讨流场优化设计的方法。
2. 离心泵的水力学特性分析离心泵的水力学特性是指其在工作过程中涉及到的流体力学参数和性能指标。
其中,包括流量、扬程、效率和功率等。
2.1 流量流量是离心泵输入和输出流体的质量或体积的变化率。
通常以单位时间内流过泵的液体体积或质量来表示。
流量与泵转速、叶轮几何形状以及进出口截面积等因素密切相关。
通过调整这些因素,可以使得离心泵的流量满足工程需求。
2.2 扬程扬程是指离心泵将液体输送到一定高度或压力所需的能力。
它与泵的叶轮数、叶轮尺寸、叶片数以及入口压力等因素有关。
扬程是衡量离心泵工作能力的重要指标,通常以增压高度或压力来表示。
2.3 效率效率是衡量离心泵输送流体能力的指标,它是指输出功率与输入功率之比。
离心泵的效率受到泵结构、运行条件和液体特性的影响。
提高离心泵的效率可以减少能源浪费和运行成本。
2.4 功率离心泵的功率是指驱动离心泵所需的能量转换率。
通常以千瓦或马力来衡量。
离心泵的功率与流量、扬程、效率等因素密切相关。
合理设定泵的功率可以提高其工作效率和节能性能。
3. 离心泵的流场优化设计方法为了提高离心泵的水力学性能和工作效率,需要进行流场优化设计。
流场优化设计是通过调整离心泵的结构参数和运行条件,以改善流体在泵内的流动状态,减小能量损失和阻力,达到最佳工作状态。
3.1 叶轮设计叶轮是离心泵的核心部件,其设计对流场性能影响巨大。
优化叶轮的几何形状和叶片数量可以改变流体在泵内的流动方式和叶轮受力情况。
常见的叶轮设计方法包括流线型叶轮和开式叶轮设计。
此外,利用计算流体力学(CFD)模拟和优化方法,可以进一步优化叶轮的性能。
3.2 进出口截面设计进出口截面的设计直接影响离心泵的流量和扬程性能。
离心泵中的数值模拟-PPT精品文档

如何避免离心泵气蚀? (1)安装时,泵的吸入口离液面的距离要尽可能的低,减少吸入压力损失; (2)增大泵吸入管的直径,减少吸入管路的阻力损失; (3)在满足扬程和流量要求的前提下,转数越低越好,减少泵吸入口的真 空度; (4)采用双吸式泵或加前置诱导轮的离心泵,以改善吸入条件; (5)在工艺条件允许的条件下,避免输送液体的温度升高,防止液体汽化。
离心泵叶轮如何进行三维造型呢? 采用三维设计软件,如Proe、ug等进行建模,从木模图上读取各个截面参数, 然后分别输入到三维设计软件中,有了叶片工作面和背面的曲线以后, 采用如proe中的边界混合命令,就可以生成叶轮形状,然后切掉多余的部 分并对进口修圆,就可以得到叶轮的主要部分——叶片,前后盖板的造 型比较简单,直接旋转即可。
离心泵基本参数? 离心泵的参数定义如下: 额定流量:泵在最佳工作效率下单位时间内泵抽送液体的数量,即泵铭牌上 所标注的数量,以Q表示。 额定扬程:在最佳效率时,单位质量液体通过泵时所增加的能量,以H表示 ,单位为米。 效 率:液体通过泵所得到的能量与驱动机传给泵的能量的比值,以Ef或η表 示。 功 率:驱动机给泵的能量,统称为轴功率。流体通过泵实际获得的功率。 净正吸入压头:为保证泵不发生汽蚀,在泵内叶轮入口处,单位质量液体所 必需具有的超过汽化压力后所富余的能量。以NPSH表示,单位为m,其 中又分为NPSHr(必需的净正吸入压头,与泵有关)及NPSHa(与吸入 管路有关,与泵无关。 什么是离心泵的气蚀? 液体在叶轮入口处流速增加,压力低于工作水温的对应的饱和压力时,会引 起一部分液体蒸发(即汽化)。蒸发后的汽泡进入压力较高的区域时, 受压突然凝结,于是四周的液体就向此处补充,造df 固液两相流离心泵的各种水力设计方法,分析了各种因素对固液两相流离心泵性能 的影响,如介质特性、压水室和叶轮的匹配、叶轮结构参数和过流部件材质等。 针对山西某火电厂水力除灰系统所用泥浆泵,进行优化设计。使用AutoCAD软件 采用方格网绘型法进行叶轮的绘型,并用Fluent软件进行流场的三维数值模拟验 证。利用模拟 固液两相流离心泵优化设计方法研究.pdf 对固液两相流离心泵的设计方法进行阐述,并分析了其弊端,指出了优化设计方法 的必要性。在此基础上提出优化设计方法,优化设计方法是指以对内部流动状态 的充分掌握为基础,以各部件对泵性能的影响机理为理论依据,以计算机及其辅 助软件为手段的设计方法。然后总结了发展优化设计方法亟待解决的问题,包括 对两相流的充分认识和对相关软件的熟练及
离心泵数值模拟用ns方程

离心泵数值模拟用ns 方程引言离心泵是一种被广泛应用于流体输送领域的设备,其工作原理是通过离心力将液体从低压区域抽离到高压区域。
为了更好地了解离心泵的性能以及优化设计,工程师们采用数值模拟方法来研究泵的内部流动。
其中,使用NS 方程模拟离心泵的内部流动是一种常用的方法。
本文将从理论公式的推导、数值模拟方法的介绍以及实例分析等方面全面、详细、完整地探讨离心泵数值模拟用NS 方程的相关内容。
NS 方程的推导运动量守恒方程运动量守恒方程是NS 方程的基础,用于描述流体的运动。
在液体流动中,运动量守恒方程可以写作:ρ(∂u ∂t+u ⋅∇u)=−∇p +μ∇2u +f 其中,u 表示流体的速度矢量,ρ表示流体的密度,p 表示流体的压力,μ表示液体的动力粘度,f 表示外力矢量。
质量守恒方程质量守恒方程用于描述流体的连续性。
对于不可压缩的流体,质量守恒方程可以写作:∇⋅u =0NS 方程的边界条件对于离心泵数值模拟来说,NS 方程的边界条件尤为重要。
常见的边界条件包括入口速度、出口压力以及壁面的无滑移等。
在数值模拟过程中,正确设置边界条件可以保证模拟结果的准确性和可靠性。
数值模拟方法介绍有限差分法(Finite Difference Method)有限差分法是数值模拟中常用的方法之一,其原理是将微分方程中的导数用有限差分近似替代,从而转化为代数方程组。
对于离心泵数值模拟来说,可以将NS方程离散化成差分方程,然后通过迭代求解得到流场的数值解。
有限体积法(Finite Volume Method)有限体积法是一种广泛应用于流体力学数值模拟的方法,其思想是将流体力学方程在空间上分割成一系列有限体积。
对于离心泵数值模拟来说,可以将泵内的流场划分为一系列控制体积,并在每个体积内求解平衡方程,最终得到数值解。
有限元法(Finite Element Method)有限元法是一种常用的数值模拟方法,在求解粘性流体问题时也得到了广泛的应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
离心泵的水力设计和数值模拟讲解
离心泵是一种常见的水力机械设备,广泛应用于工业和民用领域。
它
的水力设计和数值模拟是对离心泵性能进行优化和改进的重要手段。
下面
将从离心泵的水力设计和数值模拟两个方面进行详细讲解。
一、离心泵的水力设计
1.流量设计:离心泵的流量设计是以工程要求的流量为基础,通过水
力模型试验或数值模拟等方法确定。
流量是衡量离心泵工作效果的重要指标,也是确定泵的尺寸和形式的基础。
2.扬程设计:扬程是指离心泵能够将液体抬升的高度。
在水力设计中,扬程是根据所需扬程和流量来确定的。
扬程的大小取决于泵的尺寸、转速、叶轮形状等因素。
3.效率设计:离心泵的效率是指泵所传递的水功率与泵所消耗的机械
功率的比值。
效率的高低直接影响到泵的能耗和使用成本。
在水力设计中,需要根据工程要求和经济性考虑,确定合适的效率。
4.功率设计:离心泵的功率设计是指根据所需流量、扬程和效率来确
定泵的功率。
功率是决定泵的动力系统和选型的重要参数,需要根据泵的
工作条件和性能曲线来确定。
二、离心泵的数值模拟
离心泵的数值模拟是利用计算机技术对泵的内部流动进行仿真模拟,
以获得流场信息、压力分布和效率等参数。
数值模拟可以帮助优化和改善
泵的性能、减少试验成本和时间。
1.建立几何模型:离心泵的数值模拟首先需要建立一个几何模型。
几
何模型包括泵的内外部结构、叶轮的形状和尺寸等。
通过CAD软件等工具
进行建模,得到几何模型的三维模型。
2.网格划分:在几何模型的基础上,需要对计算域进行网格划分。
网
格划分是将计算域划分成小区域,以便对流动进行离散化计算。
合理的网
格划分能够保证计算结果的准确性和稳定性。
3.数值计算:数值计算是指通过数值方法对流体的动力学方程进行求解,得到流场信息和参数分布。
常用的数值求解方法包括有限体积法、有
限元法和离散元法等。
通过将流场方程离散化为代数方程组,使用求解器
进行求解,得到结果。
4.结果分析与优化:得到数值模拟结果后,可以对流场、压力分布、
速度分布等进行分析和评价。
根据结果进行优化设计,可以通过调整叶轮
形状、进口流道设计等方式提高泵的效率和性能。
通过水力设计和数值模拟,可以对离心泵进行设计和优化,以满足工
程要求并提高泵的性能。
同时,数值模拟还可以帮助降低试验成本和时间,提高研发效率。
但需要注意的是,数值模拟的准确性和可靠性需要经过验
证和实验验证。