八年级数学_实数测试题(含答案)
北师大版八年级数学上册第二章 实数测试题题(含答案)

北师大版八年级数学上册第二章实数测试题(含答案)一、选择题(共10小题,每小题3跟,共30分)1.下列式子正确的是()A.√9=±3B.√−19=−13C.√(−2)2=2D.√−93=﹣32.下列说法正确的是()A.1的平方根是1B.负数没有立方根C.√81的算术平方根是3D.(−3)2的平方根是−33.下列计算正确的是()A.√4=±2B.√36=6C.√(−6)2=﹣6D.﹣√−83=﹣24.下列四个实数中,是无理数的为()A.0B.√2C.﹣2D.。
125.下列根式中是最简二次根式的是()A.B.C.D.6.如图所示,在数轴上表示实数√10的点可能是()A.点M B.点N C.点P D.点Q 7.给出下列数-2.010010001…,0 ,3.14,237,π,0.333….其中无理数有()个A.1B.2C.3D.48.下列命题正确的是()A.同旁内角互补B.一组数据的方差越大,这组数据波动性越大C.若∠α=72°55′,则∠α的补角为107°45'D.对角线互相垂直的四边形是菱形9.下列运算正确的是()A.√10÷√2=5B.(t−3)2=t2−9C.(−2ab2)2=4a2b4D.x2⋅x=x210.下列运算正确的是()A .√4 =±2B .(−14)−2=﹣16C .x 6÷x 3=x 2D .(2x 2)3=8x 6二、填空题(共5小题,每小题3分,共15分)11.函数y =√2−x x−1的自变量x 的取值范围是 .12.如果 √a −1 有意义,那么a 的取值范围是 .13.一个正数的两个平方根分别是m −4和5,则m 的立方根是 . 14.请写出一个正整数m 的值使得√8m 也是整数,则m 的最小值是 . 15.49的平方根是 ;27的立方根是 .三、解答题(第16题10分,第17-18题每题7分,第19-21每题9分,第22-23每题12分,满分75分)16.在平面直角坐标系中,点P (- √3 ,-1)到原点的距离是多少?17.方老师想设计一个长方形纸片,已知长方形的长是 √140π cm ,宽是 √35π cm ,他又想设计一个面积与其相等的圆,请你帮助方老师求出圆的半径.18.已知2a -1的平方根是±3,3a +b -9的立方根是2,c 是 √8 的整数部分,求a +b +c 的平方根. 19.有一道练习题:对于式子2a-√a 2−4a +4先化简,后求值,其中a=√2。
八年级数学上册第二章实数测试题含答案解析

第二章实数检测题(本检测题满分:100分:时间:90分钟)一、选择题(每小题3分:共30分)1.(2016·天津中考)估计的值在()A.2和3之间B.3和4之间C.4和5之间D.5和6之间2.(2015·安徽中考)与1+最接近的整数是()A.4B.3C.2D.13.(2015·南京中考)估计介于()A.0.4与0.5之间B.0.5与0.6之间C.0.6与0.7之间D.0.7与0.8之间4.(2016·浙江衢州中考)在:﹣1:﹣3:0这四个实数中:最小的是()A. B.﹣1 C.﹣3 D.05.(2015·重庆中考)化简12的结果是()A.43B.23C.32D.266.若a:b为实数:且满足|a-2|+2b-=0:则b-a的值为()A.2 B.0 C.-2 D.以上都不对7.若a:b均为正整数:且a>7:b>32:则a+b的最小值是()A.3B.4C.5D.68.已知3a=-1:b=1:212c⎛⎫-⎪⎝⎭=0:则abc的值为()A.0 B.-1 C.-12D.129.(2016·黑龙江大庆中考)已知实数a、b在数轴上对应的点如图所示:则下列式子正确的是()第9题图A.a•b>0B.a+b<0C.|a|<|b|D.a﹣b>010.有一个数值转换器:原理如图所示:当输入的x=64时:输出的y等于()是有理数A.2 B.8 C.2D.2二、填空题(每小题3分:共24分)11.(2015·南京中考)4的平方根是_________;4的算术平方根是__________.12.(2016·福州中考)若二次根式在实数范围内有意义:则x 的取值范围是 .13.已知:若 3.65≈1.910:36.5≈6.042:则365000≈ :±0.000365≈ .14.绝对值小于π的整数有 .15.已知|a -5|+3b +=0:那么a -b = .16.已知a :b 为两个连续的整数:且a >28>b :则a +b = . 17.(福州中考)计算:(2+1)(2-1)=________. 18.(2016·山东威海中考) 化简:= .三、解答题(共46分) 19.(6分)已知:求的值.20.(6分)若5+7的小数部分是a :5-7的小数部分是b :求ab +5b 的值. 21.(6分)先阅读下面的解题过程:然后再解答: 形如n m 2±的化简:只要我们找到两个数a :b :使m b a =+:n ab =:即m b a =+22)()(:n b a =⋅:那么便有:b a b a n m ±=±=±2)(2)(b a >.例如:化简:347+.解:首先把347+化为1227+:这里7=m :12=n : 因为::即7)3()4(22=+:1234=⨯: 所以347+1227+32)34(2+=+.根据上述方法化简:42213-.22.(6分)比较大小:并说明理由: (1)与6: (2)与.23.(6分)大家知道是无理数:而无理数是无限不循环小数:因此的小数部分我们不能全部写出来:于是小平用-1来表示的小数部分:你同意小平的表示方法吗? 事实上小平的表示方法是有道理的:因为的整数部分是1:用这个数减去其整数部分:差就是小数部分. 请解答:已知:5+的小数部分是:5-的整数部分是b :求+b 的值.24.(8分)计算:(1)862⨯-82734⨯+:(2))62)(31(-+-2)132(-. 25.(8分)阅读下面计算过程:12)12)(12()12(1121-=-+-⨯=+:();23)23)(23(231231-=-+-⨯=+()25)25)(25(251251-=-+-⨯=+.试求:(1)671+的值:(2)nn ++11(n 为正整数)的值:(3++⋅⋅⋅+的值.第二章 实数检测题参考答案一、选择题1.C 解析: 19介于16和25之间:∵ 16<19<25:∴∴ 45:∴的值在4和5之间.故选C.2.B 解析:∵ 4.84<5<5.29:∴即2.22.3:∴ 1+2.2<11+2.3:即3.2<13.3:∴ 与1最接近的整数是3.3.C 解析:22 2.25 2.3, 2.2 2.3, 1.21 1.3,<<∴<<∴<<∴ 0.60.65<<:故选C .4.C 解析:根据实数的大小比较法则(正数都大于0:负数都小于0:正数大 于一切负数:两个负数比较大小:绝对值大的反而小)比较即可. ∵ ﹣3<﹣1<0<:∴ 最小的实数是﹣3:故选C . 5.B 解析:212432323=⨯=⨯=.6.C 解析:∵ |a -2|+2b -=0:∴ a =2:b =0:∴ b -a =0-2=-2.故选C .7.C 解析:∵ a :b 均为正整数:且a >7:b >32:∴ a 的最小值是3:b 的最小值是2: 则a +b 的最小值是5.故选C .8.C 解析:∵ 3a =-1:b =1:212c ⎛⎫- ⎪⎝⎭=0:∴ a =-1:b =1:c =12:∴ abc =-12.故选C . 9.D 解析:根据实数a 、b 在数轴上对应的点的位置可知1<a <2:﹣1<b <0:∴ ab <0:a +b >0:|a |>|b |:a ﹣b >0.故选D .10.D 解析:由图得64的算术平方根是8:8的算术平方根是22.故选D .二、填空题11.2± 2 解析:∵ ()2224,24,=-=∴ 4的平方根是2±:4的算术平方根是2.12.x ≥﹣1 解析:若二次根式在实数范围内有意义:则x +1≥0:解得x ≥﹣1.13.604.2 ±0.019 1 解析:436500036.510=⨯≈604.2:±0.000365=±43.6510-⨯ ≈±0.019 1. 14. ±3:±2:±1:0 解析:π≈3.14:大于-π的负整数有:-3:-2:-1:小于π的正整数有:3:2:1:0的绝对值也小于π.15. 8 解析:由|a -5|+3b +=0:得a =5:b =-3:所以a -b =5-(-3) =8. 16.11 解析:∵ a >28>b : a :b 为两个连续的整数: 又25<28<36:∴ a =6:b =5:∴ a +b =11. 17. 1 解析:根据平方差公式进行计算:(2+1)(2-1)=()22-12=2-1=1.18.2 解析:先把二次根式化简:再合并同类二次根式:得18-832-222==.三、解答题19.解:因为::即: 所以.故:从而:所以:所以.20.解:∵ 2<7<3:∴ 7<5+7<8:∴ a =7-2. 又可得2<5-7<3:∴ b =3-7.将a =7-2:b =3-7代入ab +5b 中:得ab +5b =(7-2)(3-7)+5(3-7)=37-7-6+27+15-57=2. 21.解:根据题意:可知:因为:所以.22.分析:(1)可把6转化成带根号的形式:再比较它们的被开方数:即可比较大小:(2)可采用近似求值的方法来比较大小. 解:(1)∵ 6=36:35<36:∴ 35<6. (2)∵ -5+1≈-2.236+1=-1.236:-22≈-0.707:1.236>0.707: ∴ -5+1<-22.23.解:∵ 4<5<9:∴ 2<<3:∴ 7<5+<8:∴ =-2.又∵ -2>->-3:∴ 5-2>5->5-3:∴ 2<5-<3:∴ b =2: ∴ +b =-2+2=.24. 解:(1)原式=623332223-+⨯ (2)原式=()266321343-+--- =6236623-+ =432213--.=1362323-.11(76)25.17 6.76(76)(76)⨯-==-++-解:()(2)11(1)11(1)(1)n n n n n n n n n n ⨯+-==+-+++++-.(3)11111122334989999100+++⋅⋅⋅+++++++=-11001+10=9.。
八年级数学上册《第二章实数》单元测试题(含答案)

第二章实数测试题一、选择题(每题3分,共30分)1.有一组数如下:-π,13,|-2|,4,7,39,0.808008…(相邻两个8之间0的个数逐次加1).其中无理数有( )A .4个B .5个C .6个D .7个2.下列说法中,正确说法的个数是( ) ①-64的立方根是-4; ②49的算术平方根是±7; ③127的立方根是13; ④116的平方根是14. A .1 B .2 C .3 D .43.下列各组数中,互为相反数的一组是( )A .-3与3-27B .-3与(-3)2 C .-3与-13D .||-3与34.下列各式计算正确的是( )A .2+3=5B .43-33=1C .23×33=63D .27÷3=35.下列各式中,无论x 为任何数都没有意义的是( )A .-7xB .-1999x 3C .-0.1x 2-1D .3-6x 2-56.若a =15,则实数a 在数轴上的对应点P 的大致位置是( )图17.如图2是一数值转换机,若输出的结果为-32,则输入的x的值为( )图2A.-4B.4C.±4D.±58.若a,b均为正整数,且a>7,b>320,则a+b的最小值是( )A.6 B.5 C.4 D.39.实数a,b在数轴上所对应的点的位置如图3所示,且||a>||b,则化简a2-||a+b 的结果为( )图3A.2a+b B.-2a+bC.b D.2a-b10.已知x=2-3,则代数式(7+4 3)x2+(2+3)x+3的值是( )A.2+3B.2-3C.0 D.7+4 3请将选择题答案填入下表:第Ⅱ卷 (非选择题 共70分)二、填空题(每题3分,共18分) 11.计算:252-242=________.图412.如图4,正方形ODBC 中,OC =1,OA =OB ,则数轴上点A 表示的数是________. 13.用计算器计算并比较大小:39________7.(填“>”“=”或“<”) 14.若|x -y|+y -2=0,则xy -3的值是________.15.若规定一种运算为a ★b =2(b -a),如3★5=2×(5-3)=22,则2★3=________.16.设a ,b 为非零实数,则a |a|+b 2b 所有可能的值为________.三、解答题(共52分)17.(6分)实数a ,b 在数轴上所对应的点的位置如图5所示,试化简:a 2-b 2-(a -b )2.图518.(6分)计算:(1)()-62-25+(-3)2;(2)50×8-6×32;(3)(3+2-1)(3-2+1).19.(6分)已知a ,b 互为相反数,c ,d 互为倒数,x 是2的平方根,求5(a +b )a 2+b 2-2cd +x 的值.20.(6分)如果a 是100的算术平方根,b 是125的立方根,求a 2+4b +1的平方根.21.(6分)某中学要在操场的一块长方形土地上进行绿化,已知这块长方形土地的长为510m ,宽为415m .(1)求该长方形土地的面积(精确到0.1 m 2);(2)如果绿化该长方形土地每平方米的造价为180元,那么绿化该长方形土地所需资金约为多少元?22.(6分)如图6所示,某地有一地下工程,其底面是正方形,面积为405 m2,四个角是面积为5 m2的小正方形渗水坑,根据这些条件如何求a的值?与你的同伴进行交流.图6下面是小康提供的解题方案,根据解题方案请你完成本题的解答过程:①设大正方形的边长为x m,小正方形的边长为y m,那么根据题意可列出关于x的方程为__________,关于y的方程为__________;②利用平方根的意义,可求得x=________(取正值,结果保留根号),y=________(取正值,结果保留根号);③所以a=x-2y=____________=__________(结果保留根号);④答:________________________.23.(8分)如图7,在Rt△OA1A2中,∠A1=90°,OA1=A1A2=1,以OA2为直角边向外作直角三角形,…,使A1A2=A2A3=A3A4=…=A n-1A n=1.(1)计算OA2和OA3的长;(2)猜想OA75的长(结果化到最简);(3)请你用类似的思路和方法在数轴上画出表示-3和10的点.图724.(8分)先阅读材料,再回答问题:因为(2-1)(2+1)=1,所以12+1=2-1;因为(3-2)(3+2)=1,所以13+2=3-2;因为(4-3)(4+3)=1,所以14+3=4- 3.依次类推,你会发现什么规律?请用你发现的规律计算式子12+1+13+2+…+1100+99的值.答案1.A 2.B 3.B 4.D 5.C 6.B 7.C 8.A 9.C 10.A 11.7 12.- 213.< 14.12 15.6-216.±2,017.解:由数轴易知a <0,b >0,|a |<|b |, 所以原式=-a -b -(b -a )=-2b . 18.解:(1)原式=6-5+3=4.(2)原式=5 2×2 2-3 22=20-3=17.(3)(3+2-1)(3-2+1)=[]3+(2-1)[]3-(2-1) =3-(2-1)2=3-3+2 2 =2 2.19.解:由题意知a +b =0,cd =1,x =± 2. 当x =2时,原式=-2+2=0; 当x =-2时,原式=-2-2=-2 2, 故原式的值为0或-2 2.20.[解析] 先根据算术平方根、立方根的定义求得a ,b 的值,再代入所求代数式即可计算.解:因为a 是100的算术平方根,b 是125的立方根, 所以a =10,b =5,所以a2+4b+1=121,所以a2+4b+11=11,所以a2+4b+11的平方根为±11.21.[解析] (1)根据这块长方形土地的长为5 10 m,宽为415 m,直接得出面积即可;(2)利用绿化该长方形土地每平方米的造价为180元,即可求出绿化该长方形土地所需资金.解:(1)该长方形土地的面积为510×415=100 6≈244.9(m2).(2)因为绿化该长方形土地每平方米的造价为180元,所以180×244.9=44082(元).答:绿化该长方形土地所需资金约为44082元.22.解:①x2=405 y2=5②9 5 5③9 5-2 5 7 5④a的值为7 523.解:(1)OA2=12+12=2,OA3=()22+12= 3.(2)OA75=75=5 3.(3)如图所示:24.解:规律:当n是正整数时,1n+1+n=n+1-n,故12+1+13+2+…+1100+99=(2-1)+(3-2)+…+(100-99)=100-1=9.。
八年级数学上册第二章《实数》单元测试卷-北师大版(含答案)

八年级数学上册第二章《实数》单元测试卷-北师大版(含答案)班级:姓名:座号:成绩:一、选择题(30 分)1. 16 的平方根是( )A.4B. ±42.下列各式正确的是( )A.√16 =±4B.±√16 =43. 下列各数中,为无理数的是( )22A. π B 一.74. 下列各数中的无理数是( )1A .0B .25. 下列说法正确的是( )A.所有无限小数都是无理数C.有理数都是有限小数6. 实数9 的算术平方根为( )A.3 B.士37. 下列根式中不是最简二次根式的是(A. √10B. √88. 下列变形正确的是( )C.8D. ±8 C.√(−4)2 =-4 D.3√−27 =-3C. 0D. -2 C. D.B.所有无理数都是无限小数D.不是有限小数就不是有理数C.士 3 D.士3)C.√6D.√2A.√(−16)(−25)= √−16 × √−25B.√161 = √16 × √1 =4×14 4 2C.√(−1) 2 =1D.√252 − 242 =25-24=13 39. 若最简二次根式√2x + 1和√4x − 3能合并,则x 的值为( )A.0.5B.1C.2D.2.510.若将−√2,√6,−√3,√11 四个无理数表示在数轴上,其中能被如图所示的墨迹覆盖的数是( )A . −√2B . √6C . −√3D . √113 8 5二、填空题(28 分)11. 16 的算术平方根是12. 比较大小: 4 3 713. 若已知 a 一3 + (b 一5)2 = 0 ,那么以a ,b 为边长的直角三角形的第三边长为.14. 请写出一个大于1且小于2的无理数:.15.若= 1 + 7 ,则的整数部分是,小数部分是.16. 计算: ( 4) 2-20220 =.17.如图,,,,是数轴上的四个点,这四个点中最适合表示7 的点是 .三、解答题18.计算:(4×4=16分)(1) ﹣2 (2) 8 + 32 一 2(3) (3 + 5)(2 一 5 )(4) (5 一3)219.再计算:(4×4=16分)(1)(2)27 一一2 3 一 3 x(2 一π)0+(一1)20222 3 (4) .20.还是计算:(4×4=16分)1 1(1) 20×(-3 48)÷ 2 (2) 12( 75+33- 48)(3) 27 ×3-182+8(4)√ ( − 3)2-(-1)2023 -(π-1)0+(|(21-121. 阅读下列材料:(6 分)∵√4< √7< √9,即 2 < √7 < 3 ,∴√7请你观察上述的规律后试解下面的问题:的整数部分为2,小数部分为√7 − 2 .如果√5 的小数部分为ᵄ, √13 的小数部分为ᵄ,求ᵄ + ᵄ−√5 的值.(3)22. 阅读理解:1已知a = ,求 2a 2 一 8a +1的值.2 一 3常a 一 2 = 3 .常 一 =,即 a 2 一 4a + 4 = 3 .常a 2 一 4a = 一1 .常2a 2 一 8a +1 = 2(a 2 一 4a) +1 = 2 x (一1) +1 = 一1 .请根据以上解答过程,解决如下问题:(8 分) 1 = .2 +11 3+2 3 (2 (1)计算:(2)计算:(a 2)2 3 1100 + 2 3 ;99 4 + 3 2 3 2 +1+…+ 2+ +11 ,1 +a = = = + 一一 3)(2 + 3)参考答案6 A11. 212. <13. 5 或 714. 2 ( 3 答案不唯一)15. 3 , 7 216. 317. P18. (1)1 (2) 5 2 (3)1 5 (4)28 10 319. (1)2 3 (2) 1 (3)1+ 2 2 (4)10 + 6 220. (1) 2 10 (2)12 (3)4 (4)521. 13 522. (1) 2 1(2) 910B3A 2D4C 7B5B8C9C1B。
八年级数学实数计算专项训练(含参考答案)

八年级数学实数计算专项训练练习1 平方根与算术平方根(1)1. 求下列各数的平方根:(1)100; (2)0.0081; (3)499; (4)169.2. 求下列各数的平方根与算术平方根:(1)(-6)2; (2) 0; (3)-3; (4)163. 求下列各式的值: (1)225; (2)4936-; (3)121144±.4. 求下列各式中的x :(1)02592=-x ; (2)36)12(42=-x ;(2)81162=x ; (4)025)2(2=--x .5. 计算:(1)169144+; (2)1691971•(3)04.025÷练习2 平方根与算术平方根(2)1. 填空:(1)=121 ; (2)=-256 ; (3)=43 ; (4)=-412 . 2.求下列各数的平方根与算术平方根: (1)196; (2)(-3)2; (3)49151; (4)0.5625.3.求下列各数的算术平方根,并用符号表示出来:(1)7.12; (2)(-3.5)2; (3)3.25; (4)412.4. 求下列各式的值: (1)0004.0-; (2)256169±; (3)818±; (4)2)8(-.5. 求下列各式中的x :(1)025692=-x ; (2)25)12(42=-x ;(3)822=x ; (4)126942-=x练习3 立方根1. 求下列各数的立方根:(1)-27; (2)-0.125; (3)27102; (4)729;2. 求下列各式的值:(1)3512-; (2)38729; (3)3008.0-;(4)31292⨯⨯; (5)31000-; (6)364--.3. 计算:(1)33512729+-; (2)333001.01251241027.0-+--.4. 求下列各式中的x : (1) 08273=-x ; (2)54)32(413=+x ;(3)81)1(33=-x ; (4)216)2(3-=+-x .练习4 平方根与立方根1. 求下列各数的平方根: (1)169; (2)9100; (3)2)5(-; (4)412.2. 求下列各数的立方根: (1)125; (2)2764; (3)81-; (4)2)8(-.3. 求下列各式中的x :(1)81162=x ; (2)11253=x ;(2)81631)14(2=-+x ; (4)64)3(273-=-x .练习5 实数的混合运算(Ⅰ)1. 计算:(1)9125833-+--; (2)222)3(2)32()6(----+-;(3)0332019)279(8)1(+++-; (4)3220183)21()1(---+--;(5)23)6(216-+-; (6)31081412+-+-π;(7)130)31(27)14.3()2(--++-+--π; (8)230)3(27)2(12149--+--+π.练习6 实数混合运算(Ⅱ)1. 计算:(1)81)1()21(01--+-; (2)3322782+---;(3)2)71(27)1(130-+-⨯--π; (4)28)5()2()41(3021÷--⨯-+--.2.求下列各式中的x :(1)2764)9(3-=-x ; (2)0121)3(312=-+x ;(3)0216)1(83=--x ; (4)048)43(312=--x .练习7 实数混合运算(Ⅲ)1. 计算:(1)03)2019(4)8(π+++-; (2)20193)1(829-+-+-+; (3)3008.01003631-⨯; (4))281(12151322-+--;(5)13)31(98-+--; (6)2)21(40)3(2-+----π;(7)02)33()1(93-+--+-; (8)148)3(432-----+;(9)230)1.0(27213-+-⎪⎭⎫ ⎝⎛-+-π; (10)3221691)21(--+---.练习8 实数的混合运算(Ⅳ)1. 求下列各式中的x :(1)822=x ; (2)81253=x ;(3)12)1(312=-x ; (4)064)1(273=++x .2.计算:(1))41(28)2009(30-+-+-; (2)0312)8(24)3(-⨯-+--;(3)032)2()2(641-⨯--+-; (4)9)21(3)4(2)4()3(27823333-⨯-+-⨯---.练习9 二次根式(Ⅰ)1.求下列各式的值: (1)32; (2)250; (3)3248; (4)203. 2.计算: (1)169144964⨯; (2)40219031⨯;(3)271032121÷-; (4)227818⨯÷; (5)1.1337.2⨯; (6)5232232⨯÷;(7))2223(18⨯-÷; (8)213827÷⨯.3.已知0276433=-++b a ,求b b a )(-的立方根。
八年级数学实数综合测试题及参考答案(人教版)

八年级数学《实数》综合测试题一、选择题: 1. 在实数5757757775.0722、(相邻两个5之间7的个数逐次加1)、、、、02753- 32)2(0-、、ππ中,无理数的个数是( ) (A ) 3个 (B ) 4个 (C ) 5个 (D ) 6个2.以下语句或式子:①-3是81的平方根;②-7是2)7(-的算术平方根;③25的平方根是±5;④-9的平方根是±3;⑤ 0没有算术平方根.其中正确的个数是 [ ] (A )0个 (B )1个 (C )2个 (D )3个 3. 若32b -是b -2的立方根,那么( )A 2<bB 2=bC 2>bD b 能够为任意实数4.|-64|的立方根是 [ ](A )4± (B )4 (C )8± (D )8 5. 当14+a 的值为最小值时,a 的值为( )A 1-B 41- C 0 D 16.估量3124与26的大小关系是 [ ](A )3124>26 (B )3124=26(C )3124<26 (D )无法判定7.假设一个自然数的算术平方根是m ,那么此自然数的下一个自然数(即相邻且更大的自然数)的算术平方根是 [ ](A )12+m (B )12+m (C ) 1+m (D )1+m8.若33b a +=0,那么a 与b 的关系是 [ ](A )0==b a (B )b a = (C )0=+b a (D )ba 1= 9. 若m 是n 的算术平方根,那么n 的平方根是( )A mB m ±C m ±D m10.若a a -=2,那么实数a 在数轴上的对应点必然在 [ ](A )原点左侧 (B )原点右边 (C )原点或原点左侧 (D )原点或原点右边 二、填空题:11. 比较大小:215- 85(填“>”,“<”或“=”) 12.已知,10<<a 化简=-+-++2121aa a a _____.13.已知,2323,2323+-=-+=y x 那么代数式222y xy x +-的值为_____.14.计算:_______)25()25(20082007=+⨯-. 15.已知,04)1(222=-++y x 则22y x +______.16. 1,34,39,322,… 符合那个规律的第五个数是_____. 17.有四个实数别离是|3-|,2π,9,π4,请你计算其中有理数的和与无理数的积的差,其计算结果是_____. 18.实数a ,b 在数轴上的位置如图1所示,那么化简=-++2)(a b b a _____. 三、解答题: 19.计算:(1)91)3(220160+--⨯π (2) 36632223513459-⨯÷ (3) 432|2535|)2(2⨯÷-+- (3)|23|3)13(3)33(4801----+-- 20.已知13的整数部份为a ,小数部份为b ,试求)13(41a b +的值. 21. (1)已知实数z y x 、、知足0412311442=+-++++-z z z y y x ,求22)(x z y ⋅+的值; (2)已知,321,321-=+=y x 求xy y x -+2222的值.22. 阅读以下运算进程: ①3333331=⨯=,②3252525)25)(25(25251-=--=-+-=+ 数学上把这种将分母中的根号去掉的进程称作“分母有理化”。
北师大版八年级数学上册第二章《实数》测试题及答案

八年级上学期第二章《实数》单元测试及答案一、选择(每小题3分,共30分.在每题所给出的四个选项中,只有一项是符合题意的.把所选项前的字母代号填在题后的括号内. 相信你一定会选对!)1.下列说法中正确的是().(A)4是8的算术平方根(B)16的平方根是4(C)是6的平方根(D)没有平方根2.下列各式中错误的是().(A)(B)(C)(D)3.若,则().(A)-0。
7 (B)±0.7 (C)0.7 (D)0。
494.的立方根是().(A)-4 (B)±4 (C)±2 (D)-25.,则的值是().(A)(B)(C)(D)6.下列四种说法中:(1)负数没有立方根;(2)1的立方根与平方根都是1;(3)的平方根是;(4).共有()个是错误的.(A)1 (B)2 (C)3 (D)4+的值为()7.x是9的平方根,y是64的立方根,则x yA.3 B.7 C.3,7 D.1,7-=+-)82x1x1x1A. x ≥1B. x ≥—1C.—1≤x ≤1 D 。
x ≥1或x ≤—19. 计算515202145+-所得的和结果是( ) A .0 B .5- C .5 D .5310. x --23 (x ≤2)的最大值是( )A .6B .5C .4D .3二、填空(每小题3分,共30分.请把结果直接填在题中的横线上.只要你理解概念,仔细运算,积极思考,相信你一定会填对的) 1.若,则是的__________,是的___________.2.9的算术平方根是__________,的平方根是___________. 3.下列各数:①3。
141、②0.33333……、③75-、④π、⑤252.±、⑥32-、⑦0。
3030003000003……(相邻两个3之间0的个数逐次增加2)、⑧))((2727+-中.其中是有理数的有_______;是无理数的有_______.(填序号)4.的立方根是__________,125的立方根是___________.5.若某数的立方等于-0。
八年级数学上册 第二章 实数单元测试(含答案)

第二章实数单元测试一、选择题.1.下列各数0、4,,3、14,0、80108,π﹣|1﹣π|,0、1010010001…,,0、451452453454…,其中无理数的个数是()A.1B.2C.3D.42.下列各式中正确的是()A.=±4B. =4C. =3D. =53.对于来说()A.有平方根B.只有算术平方根C.没有平方根D.不能确定4.能与数轴上的点一一对应的是()A.整数B.有理数C.无理数D.实数5.的算术平方根是()A.4B.±4C.2D.±26.下列运算中,正确的是()A.=±3B. =2C.(﹣2)0=0D.2﹣1=7.下列说法正确的是()A.(﹣3)2的算术平方根是﹣3B.的平方根是±15.C.当x=2时,x=0D.是分数8.面积为11的正方形边长为x,则x的范围是()A.1<x<3B.3<x<4C.5<x<10D.10<x<1009.下列说法中正确的是()A.实数﹣a2是负数B.C.|﹣a|一定是正数D.实数﹣a的绝对值是a10.如图,在一个由4×4个小正方形组成的正方形网格中,阴影部分面积与正方形ABCD的面积比是()A.5:8B.3:4C.9:16D.1:2二.填空题.11.比较下列实数的大小(填上>或<符号=)①______12;②______0、5;③﹣+1______﹣.12.在数轴上表示﹣的点离原点的距离是______.13.已知|x|的算术平方根是8,那么x的立方根是______.14.若m、n互为相反数,则|m﹣5+n|=______.15.如果的平方根等于±2,那么a=______.16.计算+=______.17.点A在数轴上表示的数为,点B在数轴上表示的数为,则A,B两点的距离为______.18.若0<a<1,且,则=______.三、计算题.19.计算题:(1)+﹣(2)(3)+•(4)3+﹣4.四、求x值:20.求x值(1)2x2=8 (2)x2﹣=0 (3)(2x﹣1)3=﹣8 (4)340+512x3=﹣3.五、解答题21.一个正数a的平方根是3x﹣4与2﹣x,则a是多少?22.已知: =0,求实数a,b的值.六、阅读下列解题过程:23.先阅读下列的解答过程,然后再解答:形如的化简,只要我们找到两个数a、b,使a+b=m,ab=n,使得+=m, =,那么便有:==±(a>b).例如:化简.解:首先把化为,这里m=7,n=12,由于4+3=7,4×3=12即+=7,×=∴===2+.由上述例题的方法化简:.参考答案一、选择题.1.下列各数0、4,,3、14,0、80108,π﹣|1﹣π|,0、1010010001…,,0、451452453454…,其中无理数的个数是()A.1B.2C.3D.4【解答】解:下列各数0、4,,3、14,0、80108,π﹣|1﹣π|,0、1010010001…,,0、451452453454…,无理数是:,0、1010010001…,0、451452453454…,共3个.故选C.2.下列各式中正确的是()A.=±4B. =4C. =3D. =5【解答】解:A、,错误;B、,正确;C、负数没有算术平方根,错误;D、,错误;故选B.3.对于来说()A.有平方根B.只有算术平方根C.没有平方根D.不能确定【解答】解:由题意得:<0,故可得()没有平方根.故选C.4.能与数轴上的点一一对应的是()A.整数B.有理数C.无理数D.实数【解答】解:根据实数与数轴上的点是一一对应关系.5.的算术平方根是()A.4B.±4C.2D.±2【解答】解:∵(±2)2=4=,∴的算术平方根是2.故选C.6.下列运算中,正确的是()A.=±3B. =2C.(﹣2)0=0D.2﹣1=【解答】解:A、=3,故本选项错误;B、=﹣2,故本选项错误;C、(﹣2)0=1,故本选项错误;D、2﹣1=,故本选项正确.故选D.7.下列说法正确的是()A.(﹣3)2的算术平方根是﹣3B.的平方根是±15.C.当x=2时,x=0D.是分数【解答】解:A、(﹣3)2=9,9算术平方根是3,错误;B、=15,15的平方根是±,错误;C、当x=2时,x=0,正确;D、是无理数,错误,故选C8.面积为11的正方形边长为x,则x的范围是()A.1<x<3B.3<x<4C.5<x<10D.10<x<100【解答】解:∵正方形的面积为11,而3<x<4.故选B.9.下列说法中正确的是()A.实数﹣a2是负数B.C.|﹣a|一定是正数D.实数﹣a的绝对值是a【解答】解:A、实数﹣a2是负数,a=0时不成立,故选项错误;B、,符合二次根式的意义,故选项正确,C、|﹣a|一定不一定是正数,a=0时不成立,故选项错误;D、实数﹣a的绝对值不一定是a,a为负数时不成立,故选项错误.故选B.10.如图,在一个由4×4个小正方形组成的正方形网格中,阴影部分面积与正方形ABCD 的面积比是()A.5:8B.3:4C.9:16D.1:2【解答】解:方法1:利用割补法可看出阴影部分的面积是10个小正方形组成的,所以阴影部分面积与正方形ABCD的面积比是10:16=5:8;方法2: =,()2:42=10:16=5:8.故选A.二.填空题.11.比较下列实数的大小(填上>或<符号=)①<12②>0、5③﹣+1 <﹣.【解答】解:① =140,122=144,∵140<144,∴<12.②∵﹣0、5=﹣1>1﹣1=0,∴>0、5.③∵﹣+1<﹣2+1=﹣1,∴﹣+1<﹣1,又∵﹣>﹣1,∴﹣+1<﹣.故答案为:<、>、<.12.在数轴上表示﹣的点离原点的距离是.【解答】解:数轴上表示﹣的点离原点的距离是|﹣|即;故答案为.13.已知|x|的算术平方根是8,那么x的立方根是4或﹣4 . 【解答】解:由题意得:|x|=64,即x=64或﹣64,则64或﹣64的立方根为4或﹣4.故答案为:4或﹣4.14.若m、n互为相反数,则|m﹣5+n|= 5 .【解答】解:m、n互为相反数,|m﹣5+n|=|﹣5|=5,故答案为:5.15.如果的平方根等于±2,那么a= 16 .【解答】解:∵(±2)2=4,∴=4,∴a=()2=16. 故答案为:16.16.计算+= 1 .【解答】解:原式=3π﹣9+10﹣3π =1.故答案为:1.17.点A 在数轴上表示的数为,点B 在数轴上表示的数为,则A ,B 两点的距离为 4 .【解答】解:∵A 在数轴上表示的数为,点B 在数轴上表示的数为,∴A,B 两点的距离是:|3﹣(﹣)|=4, 故答案为:4.18.若0<a <1,且,则= ﹣2 . 【解答】解:∵a+=6,∴(﹣)2=a ﹣2+=6﹣2=4, ∵0<a <1,∴0<<1,>1,∴﹣=﹣=﹣2.故答案为:﹣2.三、计算题.19.计算题:(1)+﹣(2)(3)+•(4)3+﹣4.【解答】解:(1)原式=2+4﹣=5;(2)原式==×=8×9=72;(3)原式=+3×3=;(4)原式=9+﹣2=8.四、求x值:20.求x值(1)2x2=8(2)x2﹣=0(3)(2x﹣1)3=﹣8(4)340+512x3=﹣3.【解答】解:(1)方程变形得:x2=4,开方得:x=2或x=﹣2;(2)方程变形得:x2=,开方得:x=±;(3)(2x﹣1)3=﹣8,开立方得:2x﹣1=﹣2,解得:x=﹣;(4)x3=﹣,开立方得:x=﹣.五、解答题21.一个正数a的平方根是3x﹣4与2﹣x,则a是多少?【解答】解:根据一个正数有两个平方根,它们互为相反数得:3x﹣4+2﹣x=0,即得:x=1,即3x﹣4=﹣1,则a=(﹣1)2=1.22.已知: =0,求实数a,b的值.【解答】解:由题意得,3a﹣b=0,a2﹣49=0,a+7≠0,解得,a=7,b=21.六、阅读下列解题过程:23.先阅读下列的解答过程,然后再解答:形如的化简,只要我们找到两个数a、b,使a+b=m,ab=n,使得+=m, =,那么便有:==±(a>b).例如:化简.解:首先把化为,这里m=7,n=12,由于4+3=7,4×3=12即+=7,×=∴===2+.由上述例题的方法化简:.【解答】解:根据,可得m=13,n=42,∵6+7=13,6×7=42,∴==.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实数单元测试题
填空题:(本题共10小题,每小题2分,共20分)
1、()26-的算术平方根是__________。
2、
π
π-+-43= _____________。
3、2的平方根是__________。
4、实数a ,b ,c 在数轴上的对应点如图所示 化简c
b c b a a ---++
2=________________。
5、若m 、n 互为相反数,则n m +-5=_________。
6、若2)2(1-+-n m =0,则m =________,n =_________。
7、若
a a -=2,则a______0。
8、12-的相反数是_________。
9、 38-=________,3
8-=_________。
10、绝对值小于π的整数有__________________________。
一、 选择题:(本题共10小题,每小题3分,共30分) 11、代数式12
+x ,x ,y ,2)1(-m ,33
x 中一定是正数的有( )。
A 、1个
B 、2个
C 、3个
D 、4个
12、若
73-x 有意义,则x 的取值范围是( )。
A 、x >37-
B 、x ≥ 37-
C 、x >37
D 、x ≥3
7
13、若x ,y 都是实数,且42112=+-+-y x x ,则xy 的值( )。
A 、0
B 、 2
1
C 、2
D 、不能确定
14、下列说法中,错误的是( )。
A 、4的算术平方根是2
B 、81的平方根是±3
C 、8的立方根是±2 D、立方根等于-1的实数是-1 15、64的立方根是( )。
A 、±4
B 、4
C 、-4
D 、16
16、已知04)3(2
=-+-b a ,则b a
3
的值是( )。
A 、 41
B 、- 41
C 、433
D 、4
3
17、计算
33
841627-+-+的值是( )。
A 、1
B 、±1
C 、2
D 、7
18、有一个数的相反数、平方根、立方根都等于它本身,这个数是( )。
A 、-1 B 、1 C 、0 D 、±1 19、下列命题中,正确的是( )。
A 、无理数包括正无理数、0和负无理数
B 、无理数不是实数
C 、无理数是带根号的数
D 、无理数是无限不循环小数 20、下列命题中,正确的是( )。
A 、两个无理数的和是无理数
B 、两个无理数的积是实数
C 、无理数是开方开不尽的数
D 、两个有理数的商有可能是无理数 三、解答题:(本题共6小题,每小题5分,共30分) 21、求9
7
2的平方根和算术平方根。
22、计算252826-+的值。
23、解方程x 3
-8=0。
24、计算)5
15(5-
25、若0)13(12=-++-y x x ,求2
5y x +的值。
26、若
13223+-+-=x x y ,求3x +y 的值。
四、综合应用:(本题共10小题,每小题2分,共20分) 27、若a 、b 、c 满足01)5(32=-+++-c b a ,求代数式
a
c
b -的值。
28、已知0525
22=-++-x
x x y ,求7(x +y )-20的立方根。
实数单元测试题 1、6 2、1 3、±
2
4、0
5、
5 6、1,2 7、≤ 8、21-
9、-2,-2 10、±3,,2,
±1,0 11----20、ADCCB CDCDB 21、3
5
,35± 22、29
23、2 24、4
25、3 26、3、27、-2 28、-5。