江苏高考数学试卷及答案

合集下载

2021年江苏省高考数学真题及参考答案

2021年江苏省高考数学真题及参考答案

2021年江苏省高考数学真题及参考答案一、选择题:本题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设集合{}42<<x x A -=,{}5432,,,=B ,则B A ⋂=()A.{}2 B.{}3,2 C.{}4,3 D.{}4,3,22.已知i z -=2,则()=+i z z ()A.i26- B.i24- C.i26+ D.i24+3.已知圆锥的底面半径为2,其侧面展开图为一个半圆,则该圆锥的母线长为()A.2B.22 C.4D.244.下列区间中,函数()⎪⎭⎫⎝⎛-=6sin 7πx x f 单调递增的区间是()A.⎪⎭⎫ ⎝⎛20π, B.⎪⎭⎫⎝⎛ππ,2 C.⎪⎭⎫ ⎝⎛23ππ, D.⎪⎭⎫⎝⎛ππ223,5.已知1F ,2F 是椭圆149:22=+y x C 的两个焦点,点M 在C 上,则21MF MF ⋅的最大值为()A.13B.12C.9D.66.若2tan -=θ,则()=++θθθθcos sin 2sin 1sin ()A.56-B.52-C.52 D.567.若过点()b a ,可以左曲线xe y =的两条切线,则()A.ae b< B.be a< C.bea <<0 D.aeb <<08.有6个相同的球,分别标有数字1,2,3,4,5,6,从中有放回的随机取两次,每次取1个球,甲表示事件“第一次取出的球的数字是1”,乙表示事件“第二次取出的球的数字是2”,丙表示事件“两次取出的数字之和是8”,丁表示事件“两次取出的球的数字之和是7”,则()A.甲与丙相互独立B.甲与丁相互独立C.乙与丙相互独立D.丙与丁相互独立二、选择题:本题共4小题,每小题5分,共20分。

在每小题给出的选项中,有多项符合题目要求。

全部答对的得5分,部分选对的得2分,有选错的得0分。

9.有一组样本数据n x x x 21,,由这组数据得到新样本数据n y y y 21,,其中()n i c x y i i ,2,1=+=,c 为非零常数,则()A.两组样本数据的样本平均数相同B.两组样本数据的样本中位数相同C.两组样本数据的样本标准差相同D.两组样本数据的样本极差相同10.已知O 为坐标原点,点()ααsin ,cos 1P ,()ββsin ,cos 2-P ,()()()βαβα++sin ,cos 3P ,()0,1A ,则()==C.213OP OP OP OA ⋅=⋅ D.321OP OP OP OA ⋅=⋅11.已知点P 在圆()()165522=-+-y x 上,点()04,A ,()20,B ,则()A.点P 到直线AB 的距离小于10B.点P 到直线AB 的距离大于2C.当PBA ∠最小时,23=PB D.当PBA ∠最大时,23=PB 12.在正三棱柱111C B A ABC -中,11==AA AB ,点P 满足1BB BC PB μλ+=,其中[]1,0∈λ,[]1,0∈μ,则()A.当1=λ时,P AB 1∆的周长为定值B.当1=μ时,三棱锥BC A P 1-的体积为定值C.当21=λ时,有且仅有一个点P ,使得BP P A ⊥1D.当21=μ时,有且仅有一个点P ,使得B A 1⊥平面PAB 1三、填空题:本题共4小题,每小题5分,共20分。

2022年江苏高考数学真题及详细答案解析

2022年江苏高考数学真题及详细答案解析

2022江苏省高考数学试卷及答案解析2022年普通高等学校招生全国统一考试新高考数学I 卷数学本试卷共4页,22小题,满分150分,考试时间120分钟。

注意事项:1.答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上。

用2B 铅笔将试卷类型(B )填涂在答题卡相应位置上,将条形码横贴在答题卡右上角“条形码粘贴处”。

2.作答选择题时,选出每小题答案后,用2B 铅笔在答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。

3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目制定区域内相应位置上,如需改动,先划掉原来答案,然后再写上新答案,不准使用铅笔和涂改液。

不按以上要求作答无效。

4.考生必须保持答题卡的整洁,考试结束后,将试卷和答题卡一并交回。

一、选择题:本题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设集合{}4<x x M =,{}13N ≥=x x ,则N M ⋂=()A.{}20<x x ≤ B.⎭⎬⎫⎩⎨⎧≤231<x xC.{}163<x x ≤ D.⎭⎬⎫⎩⎨⎧≤1631<x x2.已知()11=-z i ,则=+z z()A.2- B.1- C.1D.23.在ABC ∆中,点D 在边AB 上,DA BD 2=.记m A C =,n D C =,则=B CA.n m 23-B.n m 32+-C.n m 23+D.nm 32+4.南水北调工程缓解了北方一些地区水资源短缺问题,其中一部分水蓄入某水库.已知该水库水位为海拔148.5m 时,相应水面的面积为140.0km ²;水位为海拔157.5m 时,相应水面的面积为180.0km ².将该水库在这两个水位间的形状看做一个棱台,则该水库水位从海拔148.5m 上升到157.5m 时,增加的水量约为()65.27≈A.39100.1m⨯ B.39102.1m⨯ C.39104.1m ⨯ D.39106.1m⨯5.从2至8的7个整数中随机取2个不同的数,则这2个数互质的概率为()A.61 B.31 C.21 D.326.记函数()()04sin >ωπωb x x f +⎪⎭⎫ ⎝⎛+=的最小正周期为T .若ππ223<<T ,且()x f y =的图象关于点⎪⎭⎫ ⎝⎛223,π中心对称,则=⎪⎭⎫⎝⎛2πf ()A.1B.23 C.25 D.37.设1.01.0ea =,91=b ,9.0ln -=c ,则A.c b a << B.a b c << C.b a c << D.bc a <<8.已知正四棱锥的侧棱长为l ,其各顶点都在同一球面上.若该球的体积为π36,且333≤≤l ,则该正四棱锥体积的取值范围是()A.⎥⎦⎤⎢⎣⎡48118, B.⎥⎦⎤⎢⎣⎡481427, C.⎥⎦⎤⎢⎣⎡364427, D.[]27,18二、选择题:本题共4小题,每小题5分,共20分。

江苏新高考一卷数学试题及答案

江苏新高考一卷数学试题及答案

江苏新高考一卷数学试题及答案一、选择题(每题5分,共40分)1. 下列哪个数是无理数?A. 2.5B. √2C. 0.33333...D. 1答案:B2. 已知函数f(x) = x^2 - 4x + 4,求f(2)的值。

A. 0B. 4C. 8D. -4答案:A3. 以下哪个选项是等差数列?A. 2, 4, 6, 8B. 1, 1, 1, 1C. 3, 7, 11, 15D. 5, 7, 9, 11答案:A4. 已知三角形ABC,AB = 5,AC = 7,BC = 6,求三角形ABC的面积。

A. 10B. 12C. 14D. 16答案:B5. 以下哪个表达式是正确的?A. sin^2(x) + cos^2(x) = 1B. tan(x) = sin(x) / cos(x)C. sin(2x) = 2sin(x)cos(x)D. cos(2x) = 1 - 2sin^2(x)答案:C6. 已知圆的半径为5,求圆的周长。

A. 10πB. 15πC. 20πD. 25π答案:C7. 以下哪个是二次方程的解?A. x = 2B. x = -2C. x = 3D. x = -3答案:B8. 已知向量a = (3, 4),向量b = (-1, 2),求向量a与向量b的点积。

A. 10B. 11C. 12D. 13答案:B二、填空题(每题4分,共24分)9. 已知函数g(x) = 3x - 2,求g(1)的值。

答案:110. 一个正六边形的内角和是多少?答案:720°11. 已知等比数列的首项为2,公比为3,求第三项的值。

答案:1812. 一个圆的直径是14,求这个圆的面积。

答案:153.94(保留两位小数)13. 已知向量c = (1, -1),向量d = (2, 3),求向量c与向量d的叉积。

答案:-1三、解答题(每题16分,共40分)14. 解不等式:|x - 3| < 2。

解:首先,我们可以将不等式分为两部分来考虑:x - 3 < 2 以及 -(x - 3) < 2解得:x < 5 以及 x > 1因此,不等式的解集为 {x | 1 < x < 5}。

2024年江苏省高考数学试卷及解析

2024年江苏省高考数学试卷及解析

2024年江苏省高考数学试卷及解析2024年江苏省高考数学试卷及解析一、试卷概述2024年江苏省高考数学试卷整体上保持了稳定,但在细节方面有所创新。

试卷结构分为选择题、填空题和解答题三个部分,难度逐步递增。

试卷涵盖了高中数学的主要知识点,注重考查学生的数学思维能力和实际应用能力。

以下将对试卷进行详细解析。

二、选择题解析选择题部分共10题,每题5分,合计50分。

这一部分主要考查学生对基础知识的掌握程度以及运用基础知识解决问题的能力。

其中,第1-6题为常规选择题,涉及到的知识点包括函数、数列、几何等。

第7-10题为灵活运用选择题,要求学生根据题目条件进行分析、推理和判断。

例如,第10题考查的是概率知识,题目设计巧妙,要求学生在理解的基础上进行推断。

对于这道题,我们可以通过列举所有可能的情况,再根据题目条件进行筛选,最终得出正确答案。

三、填空题解析填空题部分共6题,每题5分,合计30分。

这一部分主要考查学生对数学基础知识的理解以及简单的计算、推理能力。

其中,第11-14题为常规填空题,第15-16题为综合运用填空题,要求学生在理解知识的基础上进行综合运用。

例如,第16题考查的是解析几何知识,题目设计较为复杂,要求学生在掌握基础知识的同时具备较强的分析问题和解决问题的能力。

对于这道题,我们可以从几何角度出发,根据题目条件列出方程,进而求解出答案。

四、解答题解析解答题部分共6题,每题20分,合计120分。

这一部分主要考查学生综合运用数学知识解决问题的能力。

其中,第17-21题为中档题,第22-23题为高档题。

要求学生在掌握基础知识的同时,能够灵活运用多种数学知识解决问题。

例如,第23题考查的是函数与数列的综合知识,题目设计较为复杂,要求学生在掌握函数和数列基础知识的同时,能够将两者结合起来解决问题。

对于这道题,我们可以先从函数的角度出发,分析数列的特性,再利用数列的知识求出通项公式,最终得出答案。

五、总结2024年江苏省高考数学试卷整体上保持了稳定,但在细节方面有所创新。

2020年江苏省高考数学试卷(含答案详解)

2020年江苏省高考数学试卷(含答案详解)

绝密★启用前2020年普通高等学校招生全国统一考试(江苏卷)数学Ⅰ注意事项考生在答题前请认真阅读本注意事项及各题答题要求1.本试卷共4页,均为非选择题(第1题~第20题,共20题)。

本卷满分为160分,考试时间为120分钟。

考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员从答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答试题,必须用0.5毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗.参考公式:柱体的体积V Sh =,其中S 是柱体的底面积,h 是柱体的高.一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置.......上..1.已知集合{1,0,1,2},{0,2,3}A B =-=,则A B = _____.2.已知i 是虚数单位,则复数(1i)(2i)z =+-的实部是_____.3.已知一组数据4,2,3,5,6a a -的平均数为4,则a 的值是_____.4.将一颗质地均匀的正方体骰子先后抛掷2次,观察向上的点数,则点数和为5的概率是_____.5.如图是一个算法流程图,若输出y 的值为2-,则输入x 的值是_____.6.在平面直角坐标系xOy 中,若双曲线22x a ﹣25y =1(a >0)的一条渐近线方程为y=2x ,则该双曲线的离心率是____.7.已知y =f (x )是奇函数,当x ≥0时,()23 f x x =,则f (-8)的值是____.8.已知2sin ()4πα+=23,则sin 2α的值是____.9.如图,六角螺帽毛坯是由一个正六棱柱挖去一个圆柱所构成的.已知螺帽的底面正六边形边长为2cm ,高为2cm ,内孔半轻为0.5cm ,则此六角螺帽毛坯的体积是____cm.10.将函数y =πsin(2)43x ﹢的图象向右平移π6个单位长度,则平移后的图象中与y 轴最近的对称轴的方程是____.11.设{a n }是公差为d 的等差数列,{b n }是公比为q 的等比数列.已知数列{a n +b n }的前n 项和221()n n S n n n +=-+-∈N ,则d +q 的值是_______.12.已知22451(,)x y y x y R +=∈,则22x y +的最小值是_______.13.在△ABC 中,43=90AB AC BAC ==︒,,∠,D 在边BC 上,延长AD 到P ,使得AP =9,若3()2PA mPB m PC =+- (m 为常数),则CD 的长度是________.14.在平面直角坐标系xOy 中,已知(0)2P ,A ,B 是圆C :221(362x y +-=上的两个动点,满足PA PB =,则△PAB 面积的最大值是__________.二、解答题:本大题共6小题,共计90分,请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤.15.在三棱柱ABC -A 1B 1C 1中,AB ⊥AC ,B 1C ⊥平面ABC ,E ,F 分别是AC ,B 1C 的中点.(1)求证:EF ∥平面AB 1C 1;(2)求证:平面AB 1C ⊥平面ABB 1.16.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知3,2,45a c B ===︒.(1)求sin C 的值;(2)在边BC 上取一点D ,使得4cos 5ADC ∠=-,求tan DAC ∠的值.17.某地准备在山谷中建一座桥梁,桥址位置的竖直截面图如图所示:谷底O 在水平线MN 上、桥AB 与MN 平行,OO '为铅垂线(O '在AB 上).经测量,左侧曲线AO 上任一点D 到MN 的距离1h (米)与D 到OO '的距离a (米)之间满足关系式21140h a =;右侧曲线BO 上任一点F 到MN 的距离2h (米)与F 到OO '的距离b (米)之间满足关系式3216800h b b =-+.已知点B 到OO '的距离为40米.(1)求桥AB 的长度;(2)计划在谷底两侧建造平行于OO '的桥墩CD 和EF ,且CE 为80米,其中C ,E 在AB 上(不包括端点).桥墩EF 每米造价k (万元)、桥墩CD 每米造价32k (万元)(k >0).问O E '为多少米时,桥墩CD 与EF 的总造价最低?18.在平面直角坐标系xOy 中,已知椭圆22:143x y E +=的左、右焦点分别为F 1,F 2,点A 在椭圆E 上且在第一象限内,AF 2⊥F 1F 2,直线AF 1与椭圆E 相交于另一点B .(1)求△AF 1F 2的周长;(2)在x 轴上任取一点P ,直线AP 与椭圆E 的右准线相交于点Q ,求OP QP ⋅ 的最小值;(3)设点M 在椭圆E 上,记△OAB 与△MAB 的面积分别为S 1,S 2,若S 2=3S 1,求点M 的坐标.19.已知关于x 的函数(),()y f x y g x ==与()(,)h x kx b k b =+∈R 在区间D 上恒有()()()f x h x g x ≥≥.(1)若()()222 2()f x x x g x x x D =+=-+=∞-∞+,,,,求h (x )的表达式;(2)若2 1 ln ,()()()(0) x x g k x h kx k D f x x x =-+==-=+∞,,,,求k 的取值范围;(3)若()422242() 2() (48 () 4 3 02 f x x x g x x h x t t x t t t =-=-=--+<,,,[] , D m n =⊆⎡⎣,求证:n m -≤.20.已知数列{}*()∈n a n N 的首项a 1=1,前n 项和为S n .设λ与k 是常数,若对一切正整数n ,均有11111k k kn n n S S a λ++-=成立,则称此数列为“λ–k ”数列.(1)若等差数列{}n a 是“λ–1”数列,求λ的值;(2)若数列{}n a 是2”数列,且a n >0,求数列{}n a 的通项公式;(3)对于给定的λ,是否存在三个不同的数列{}n a 为“λ–3”数列,且a n ≥0?若存在,求λ的取值范围;若不存在,说明理由,数学Ⅱ(附加题)【选做题】本题包括A 、B 、C 三小题,请选定其中两小题........,.并在相应的答题区域内作答.............若多做,则按作答的前两小题评分.解答时应写出文字说明、证明过程或演算步骤.A .[选修4-2:矩阵与变换]21.平面上点(2,1)A -在矩阵11a b ⎡⎤=⎢⎥-⎣⎦M 对应的变换作用下得到点(3,4)B -.(1)求实数a ,b 的值;(2)求矩阵M 的逆矩阵1M -.B .[选修4-4:坐标系与参数方程]22.在极坐标系中,已知点1π(,)3A ρ在直线:cos 2l ρθ=上,点2π(,6B ρ在圆:4sinC ρθ=上(其中0ρ≥,02θπ≤<).(1)求1ρ,2ρ的值(2)求出直线l 与圆C 的公共点的极坐标.C .[选修4-5:不等式选讲]23.设x ∈R ,解不等式2|1|||4x x ++≤.【必做题】第24题、第25题,每题10分,共计20分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤.24.在三棱锥A —BCD 中,已知CB =CD =,BD =2,O 为BD 的中点,AO ⊥平面BCD ,AO =2,E 为AC 的中点.(1)求直线AB 与DE 所成角的余弦值;(2)若点F 在BC 上,满足BF =14BC ,设二面角F —DE —C 的大小为θ,求sin θ的值.25.甲口袋中装有2个黑球和1个白球,乙口袋中装有3个白球.现从甲、乙两口袋中各任取一个球交换放入另一口袋,重复n 次这样的操作,记甲口袋中黑球个数为X n ,恰有2个黑球的概率为p n ,恰有1个黑球的概率为q n .(1)求p 1·q 1和p 2·q 2;(2)求2p n +q n 与2p n-1+q n-1的递推关系式和X n 的数学期望E (X n )(用n 表示).绝密★启用前2020年普通高等学校招生全国统一考试(江苏卷)数学Ⅰ注意事项考生在答题前请认真阅读本注意事项及各题答题要求1.本试卷共4页,均为非选择题(第1题~第20题,共20题)。

2022年江苏省高考数学试卷(新高考I)(含答案)

2022年江苏省高考数学试卷(新高考I)(含答案)

2022年江苏省高考数学试卷(新高考I)(含答案)一、选择题1. 若函数f(x) = 2x^3 3x^2 + x + 1,则f'(1)的值为多少?A. 6B. 7C. 8D. 9答案:B解析:我们需要求出函数f(x)的导数f'(x)。

根据导数的定义,f'(x) = 6x^2 6x + 1。

将x = 1代入f'(x)中,得到f'(1) = 61^2 6 1 + 1 = 1。

因此,f'(1)的值为1,选项B正确。

2. 若直线y = kx + b与圆(x 2)^2 + (y 3)^2 = 25相切,则k的值是多少?A. 1/2B. 1C. 2D. 3答案:A解析:由于直线与圆相切,它们在切点处具有相同的斜率。

直线的斜率为k,圆的斜率可以通过求导得到。

对圆的方程求导,得到2(x 2) + 2(y 3)y' = 0。

在切点处,x和y的值满足圆的方程,因此可以解出y' = 1/2。

由于直线和圆在切点处斜率相同,所以k = 1/2。

因此,选项A正确。

3. 若等差数列{an}的前n项和为Sn,且a1 = 2,d = 3,则S10的值为多少?A. 155B. 165C. 175D. 185答案:C解析:等差数列的前n项和公式为Sn = n/2 (a1 + an)。

由于an = a1 + (n 1)d,代入a1 = 2和d = 3,得到an = 2 + 3(n 1)= 3n 1。

将an代入Sn的公式中,得到Sn = n/2 (2 + 3n 1) =n/2 (3n + 1)。

将n = 10代入,得到S10 = 10/2 (3 10 + 1) = 175。

因此,选项C正确。

4. 若函数f(x) = log2(x) + log2(x + 1),则f(1)的值为多少?A. 1B. 2C. 3D. 4答案:C解析:将x = 1代入函数f(x)中,得到f(1) = log2(1) +log2(1 + 1) = log2(1) + log2(2) = 0 + 1 = 1。

2020年高考卷理科数学(江苏卷)附答案

2020年高考卷理科数学(江苏卷)附答案

2. 3. 4.已知集合如{一顷封如{M3}则刀口=已知i是虚数单位,贝愎数z=(E)(2t)的实部是已知一组数据4,2a.3・a ,5,6的平均数为4,则a的值是.将一颗质地均匀的正方体骰子先后抛掷2次观察向上的点数,则点数和为5的概率是o4. S.右图是一个算法流程图,若输出y的值为2则输入x的值为ago6.2在平面宜角坐标系xOy中若以仙线/5=l(a>0)的一条渐近线方w程为'一2二则该双曲线的离心率是—o27.已知y=f(x>是奇函数,当x>0时,/⑴二F,则,(一8)的值是。

sin2(—+«)=—.8.已知43,则sm2a的值是_。

9.如图,六角螺帽毛坯是由一个正六棱柱挖去一个圆柱所构成的,己知螺帽的底面正六边形边长为2cm,高为2cm,内孔半径为0.5cm,则此六角螺帽毛坯的体积是cm\* = 3sin 2x + —10.将函数 I 4的图像向右平移M 个单位长度,则T 移后的图像与*轴最近的对称轴方程是—0U.设{■}是公差为〃的等差数列,{如}是公比为q 的等比数列,己知数列 {"心的前项和&顼-"1*^),则d+g 的值是—。

12.已知5xy +/=l(W e/e)t 则x 2+/的最小值是。

13.在△此中,t !B = 4, 4C=3.匕助C=90。

,。

在边AC 延长血坦炉,使得如=9,若是一 O后=血而专_』无(S 为常数),则co 的於度«㈣■14 .在平面直角坐标系H 夕中尸修。

已知I z 4、B 是圆 2)=36上的两个动点,满足PA=PB ,则△ "8的面积的最大值是15.在三棱柱如C —44G 中,ABLAC. B X CL 平面"分别是AC> %7的中点<1)求证:£少〃平面"MG :< 2)求证:平面^C±平面“时16.在△ABC中,角A、B、C的对边分别为a、b、c,已知a=3,c=旧,B=45。

2023年江苏高考数学真题及参考答案

2023年江苏高考数学真题及参考答案

2023年江苏高考数学真题及参考答案一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}21012,,,,--=M ,{}062>--=x x x N ,则M ∩=N ()A .{}1012,,,--B .{}2,1,0C .{}2-D .{}22.已知iiz 221+-=,则=-z z ()A .i -B .iC .0D .13.已知向量()1,1=a,()1,1-=b .若()()b a b a μλ+⊥+,则()A .1=+μλB .1-=+μλC .1=λμD .1-=λμ4.设函数()()a x x x f -=2在区间()1,0单调递减,则a 的取值范围是()A .(]2-∞-,B .[)0,2-C .(]2,0D .[)∞+,25.设椭圆12221=+y a x C :()1>a ,14222=+y x C :的离心率分别21,e e .若123e e =,则=a ()A .332B .2C .3D .66.过点()20-,与圆01422=--+x y x 相切的两条直线的夹角为α,则=αsin ()A .1B .415C .410D .467.记n S 为数列{}n a 的前n 项和,设甲:{}n a 为等差数列;乙:⎭⎫⎩⎨⎧n S n 为等差数列,则()A .甲是乙的充分条件但不是必要条件B .甲是乙的必要条件但不是充分条件C .甲是乙的充要条件D .甲既不是乙的充分条件也不是乙的必要条件8.已知()31sin =-βα,61sin cos =βα,则()=+βα22cos ()A .97B .91C .91-D .97-二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.有一组样本数据621,,x x x ,其中1x 是最小值,6x 是最大值,则()A .5432,,,x x x x 的平均数等于621,,x x x 的平均数B .5432,,,x x x x 的中位数等于621,,x x x 的中位数C .5432,,,x x x x 的标准差不小于621,,x x x 的标准差D .5432,,,x x x x 的极差不大于621,,x x x 的极差10.噪声污染问题越来越受到重视,用声压级来度量声音的强弱,定义声压级lg20p pL p ⨯=,其中常数()000>p p 是听觉下线的阈值,p 是实际声压.下表为不同声源的声压级:已知在距离燃油汽车、混合动力汽车、电动汽车10m 处测得实际声压分别为321,,p p p ,则()A .21p p >B .3210p p >C .03100p p =D .21100p p <11.已知函数()x f 的定义域为R ,()()()y f x x f y xy f 22+=,则()A .()00=fB .()01=f C .()x f 是偶函数D .0=x 为()x f 的极小值点12.下列物体中,能够被整体放入棱长为1(单位:m)的正方体容器(容器壁厚度忽略不计)内的有()A .直径为m 99.0的球体B .所有棱长均为m 4.1的四面体C .底面直径为m 01.0,高为m 8.1的圆柱体D .底面直径为m 2.1,高为m 01.0的圆柱体声源与声源的距离/m 声压级/dB 燃油汽车1060~90混合动力汽车1050~60电动汽车1040三、填空题:本大题4小题,每小题5分,共20分.13.某学校开设了4门体育类选修课和4门艺术类选修课,学生需从这8门课中选修2门或3门课,并且每类选修课至少选修1门,则不同的选修方案共有种(用数字作答).14.在正四棱台1111D C B A ABCD -中,2=AB ,111=B A ,21=AA ,则该棱台的体积为.15.已知函数()()01cos >-=ωωx x f 在区间[]π2,0有且仅有3个零点,则ω的取值范围是.16.已知双曲线()0012222>>=-b a by a x C ,:的左、右焦点分别为21F F ,,点A 在C 上.点B 在y 轴上,B F A F 11⊥,B F A F 2232-=,则C 的离心率为.四、解答题:本大题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤.17.已知在ABC ∆中,C B A 3=+,()B C A sin sin 2=-.(1)求A sin ;(2)设5=AB ,求AB 边上的高.18.如图,在正四棱柱1111D C B A ABCD -中,2=AB ,41=AA .点2222,,,D C B A 分别在棱1111,,,DD CC BB AA 上,12=AA ,222==DD BB ,32=CC .(1)证明:2222D A C B ∥;(2)点P 在棱1BB 上,当二面角222D C A P --为150°时,求P B 2.19.已知函数()()x a e a x f x-+=.(1)讨论()x f 的单调性;(2)证明:当0>a 时,()23ln 2+>a x f .20.设等差数列{}n a 的公差为d ,且1>d ,令nn a nn b +=2,记n n T S ,分别为数列{}n a ,{}n b 的前n 项和.(1)若31223a a a +=,2133=+T S ,求{}n a 的通项公式;(2)若{}n b 为等差数列,且999999=-T S ,求d .21.甲乙两人投篮,每次由其中一人投篮,规则如下:若命中则此人继续投篮,若未命中则换为对方投篮.无论之前投篮情况如何,甲每次投篮的命中率均为6.0,乙每次投篮的命中率均为8.0,由抽签决定第一次投篮的任选,第一次投篮的人是甲、乙的概率各为5.0.(1)求第2次投篮的人是乙的概率;(2)求第i 次投篮的人是甲的概率;(3)已知:若随机变量i X 服从两点分布,且()()i i i q X P X P ==-==011,n i ,,2,1 =,则()∑∑===ni i ni i q X E11,记前n 次(即从第1次到第n 次投篮)中甲投篮的次数为Y ,求()Y E .22.在直角坐标系xOy 中,点P 到x 轴的距离等于点P 到点⎪⎭⎫ ⎝⎛210,的距离,记动点P 的轨迹为W .(1)求W 的方程;(2)已知矩形ABCD 有三个顶点在W 上,证明:矩形ABCD 的周长大于33.参考答案一、选择题12345678CADDABCB1.解:(][)∞+⋃-∞-∈,,32N ,∴{}2=⋂N M 2.解:i i i z 21221-=+-=,∴i z z -=-3.解:()()b a b aμλ+⊥+∵,∴()()()01222=+=+⋅++λμλμμλb b a a ,∴1-=λμ4.解:由复合函数的单调性可知()a x x y -=在区间()1,0单调递减,∴12≥a,∴a 的取值范围是[)∞+,2.5.解:由题意得:a a e 121-=,232=e ,得2112=-a a ,解得332=a .6.解:易得()5222=+-y x ,故圆心()0,2B ,5=R 记()20-,A ,设切点为N M ,,则22=AB ,5=BM ,可得3=AM 223sin 2sin==∠=AB AM MBA α,2252cos =α∴4152cos 2sin 2sin ααα=7.解:甲:∵{}n a 为等差数列,设其首项为1a ,公差为d ,则()d n n na S n 211++=,∴222111d a n d d n a n S n -+=-+=,211d n S n S n n =-++,故⎭⎬⎫⎩⎨⎧n S n 为等差数列,则甲是乙的充分条件;反之,⎭⎫⎩⎨⎧n S n 为等差数列,即()()()1111111+-=++-=-++++n n S na n n S n nS n S n S n n n n n n 为常数,设为t ,即()t n n S na nn =+-+11,故()11+⋅-=+n n t na S n n ,故()()111-⋅--=-n n t a n S n n ,2≥n ,两式相减有:()tn n a na a n n n 211---=+,即t a a n n 21=-+,对1=n 也成立,故{}n a 为等差数列,∴甲是乙的必要条件综上,甲是乙的充要条件.8.解:∵()31sin cos cos sin sin =-=-βαβαβα,61sin cos =βα,则21cos sin =βα,故()326131sin cos cos sin sin =+=+=+βαβαβα.()()913221sin 2122cos 22=⎪⎭⎫⎝⎛⨯-=+-=+βαβα.二、选择题9101112BDACDABCABD10.解:∵0lg 20lg 20lg2021020121≥⨯=⨯-⨯=-p p p p p p L L ,∴121≥p p,即21p p >∴A 正确;10lg 203232>⨯=-p p L L ,即21lg 32>p p ,∴213210>p p ,∴B 错误;∵40lg20033=⨯=p p L ,∴10010203==p p,∴C 正确;405090lg202121=-≤⨯=-p p L L ,∴2lg 21≤p p ,∴10021≤p p,∴D 正确.11.解:选项A ,令0==y x ,则()()()000000=⨯+⨯=f f f ,故A 正确;选项B ,令1==y x ,则()()()11111f f f ⨯+⨯=,则()01=f 故B 正确;选项C,令1-==y x ,则()()()()()1111122-⨯-+-⨯-=f f f ,则()01=f ,再令1-=y ,则()()()()1122-+⨯-=-f x x f x f ,即()()x f x f =-,故C 正确;选项D,对式子两边同时除以22yx ()022≠y x,得到:()()()2222xx f y y f y x xy f +=,故可设()()0ln 2≠=x x x x f ,故可以得到()⎩⎨⎧=≠=0,00,ln 2x x x x x f ,故D 错误.12.解:选项A,球直径为199.0<,故球体可以放入正方体容器内,故A 正确;选项B,连接正方体的面对角线,可以得到一个正四面体,其棱长为4.12>,故B 正确;选项C,底面直径m 01.0,可以忽略不计,但高为38.1>,3为正方体的体对角线的长,故C 不正确;选项D,底面直径为32.1<,高为m 01.0的圆柱体,其高度可以忽略不计,故D 正确.三、填空题13.64;14.667;15.32<≤ω;16.55313.解:当从这8门课中选修2门课时,共有161414=C C ;当从这8门课中选修3门课时,共有4814242414=+C C C C ;综上共有64种.14.解:如图,将正四棱台1111D C B A ABCD -补成正四棱锥,则2=AO ,22=SA ,261=OO ,故()()667261212313122222121=⋅⋅++=++=h S S S S V .15.解:令()01cos =-=x x f ω得1cos =x ω,又[]π2,0∈x ,则[]ωπω2,0∈x ,∴ππωπ624<≤,即32<≤ω.16.解:由B F A F 2232-=32=,设x A F 22-=,x B F 32=.由对称性可得x 3=,由定义可得,a x 22+=x 5=,设θ=∠21AF F ,则5353sin ==x x θ,∴xax 52254cos +==θ,解得a x =,∴a x AF 221+=,a AF 22=,在21F AF ∆中,由余弦定理可得54164416cos 2222=-+=a c a a θ,即2295a c =可得553=e .四、解答题17.解:(1)由题意得C B A 3=+,∴,π==++C C B A 4,∴4π=C ∴A C A B -=--=43ππ,∵()B C A sin sin 2=-,∴⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-A A ππ43sin 4sin 2,即A A A A sin 22cos 22cos 22sin 222+=⎪⎪⎭⎫⎝⎛-,整理得:A A cos 3sin =又∵1cos sin 22=+A A ,()π,0∈A ∴0sin >A ,∴0cos >A 解得10103sin =A ,1010cos =A (2)∵()552sin cos cos sin sin sin =+=+=C A C A C A B 由正弦定理可知C c B b sin sin =,即22510103=b ,解得102=b 设AB 边上的高为h ,∵ch A bc S 21sin 21==,∴6sin ==A b h 18.解:以C 为原点,CD 为x 轴,CB 为y 轴,1CC 为z 轴建立空间直角坐标系则()2,2,02B ,()3,0,02C ,()1,222,A ,()2,0,22D (1)∵()1,2022-=,C B ,()12022,,-=D A ∴=22C B 22D A ,∴2222D A C B ∥(2)设()t P ,2,0,其中42≤≤t ∴()t P A -=1022,,,()t PC --=3,202,,()1,0,222-=C D ,()12,022-=,A D .设平面22C P A 的一个法向量为()z y x m ,,= ,则⎪⎩⎪⎨⎧=⋅=⋅022PC m P A m 即()()⎩⎨⎧=-+-=-+032012z t y z t x ,令2=z ,则()2,3,1t t m --=.设平面222C A D 的一个法向量为()z y x n '''=,, ,则⎪⎩⎪⎨⎧=⋅=⋅02222C D n A D n即⎩⎨⎧=-'=+'-0202z y z x ,令2=z ,则()2,1,1=n .∵二面角222D C A P --为150°,∴2314826150cos 2=+-=︒⇒=t t ,解得:1=t (舍去)或3=t .∴12=P B 19.解:(1)由题可得()1-='xae x f ①当0≤a 时,()0<'x f ,()x f 在()∞+∞-,单调递减;②当0>a 时,令()0='x f 得ax ln -=∴当()a x ln ,-∞-∈时,()0<'x f ,()x f 在()a ln ,-∞-单调递减;当()∞+-∈,a x ln 时,()0>'x f ,()x f 在()∞+-,a ln 单调递增.(2)由(1)得当0>a 时,()()a a a f x f ln 1ln 2min ++=-=.设()21ln 23ln 2ln 122--=⎪⎭⎫ ⎝⎛+-++=a a a a a a g ,则()a a a g 12-=',令()0='a g 可得22=a ∴当⎪⎪⎭⎫ ⎝⎛∈22,0a 时,()0<'a g ,()a g 在⎪⎪⎭⎫⎝⎛22,0上单调递减;当⎪⎪⎭⎫ ⎝⎛∞+∈,22a 时,()0>'a g ,()a g 在⎪⎪⎭⎫⎝⎛∞+,22上单调递增.∴()02ln 22min >=⎪⎪⎭⎫⎝⎛=g a g ,故()0>a g ,∴当0>a 时,()23ln 2+>a x f .20.解:(1)∵31223a a a +=,∴d a a d 2313+==,即d a =1,nd a n =故nd a n =,∴d n a n n b n n 12+=+=,()21d n n S n +=,()dn n T n 23+=,又2133=+T S ,即21263243=⨯+⨯dd ,即03722=+-d d ,解得3=d 或21=d (舍),故{}n a 的通项公式为:n a n 3=.(2)若{}n b 为等差数列,则3122b b b +=,即da a d a 24321322111+⨯+⨯=+⨯⋅,即0232121=+-d d a a ,∴d a =1或d a 21=,当d a =1时,nd a n =,故()21d n n S n +=,()dn n T n 23+=.又999999=-T S ,即99210299210099=⨯-⨯dd ,即051502=--d d ,∴5051=d 或1=d (舍).当d a 21=时,()d n a n 1+=,d n b n =,故()23d n n S n +=,()dn n T n 21+=.又999999=-T S ,即99210099210299=⨯-⨯dd ,即050512=--d d ,∴5051-=d (舍)或1=d (舍).综上所述:5051=d .21.解:(1)第二次是乙的概率为6.08.05.04.05.0=⨯+⨯.(2)第i 次投篮的人是甲的概率为i p ,则第i 次投篮的人是甲的概率为i p -1,则()2.04.012.06.01+=-+=+i i i i p p p p ,构造等比数列()λλ+=++i i p p 521,解得31-=λ,则⎪⎭⎫ ⎝⎛-=-+3152311i i p p ,又211=p ,∴61311=-p ∴1526131-⎪⎭⎫ ⎝⎛⋅=-i i p ,则3152611+⎪⎭⎫⎝⎛⋅=-i i p .(3)当*∈N n 时,()352118535215216121n n p p p Y E n nn +⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-=+-⎪⎭⎫ ⎝⎛-⋅=+++= .11当0=n 时,()0=Y E ,符合上式,故()3521185n Y E n+⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫⎝⎛-=.22.解:(1)设()y x P ,,∵点P 到x 轴的距离等于点P 到点⎪⎭⎫ ⎝⎛210,的距离,∴2221⎪⎭⎫ ⎝⎛-+=y x y ,化简得412+=x y .故W 的方程为412+=x y .(2)不妨设D B A ,,三点在W 上,且有DA BA ⊥.设⎪⎭⎫ ⎝⎛+41,2a a A ,设DA BA ,的斜率分别为kk 1-,,由对称性不妨设1≤k ,则直线BA 的方程为:()412++-=a a x k y 联立()⎪⎪⎩⎪⎪⎨⎧++-=+=414122a a x k y x y ,整理可得:022=-+-a ka kx x ,则kx x B A =+∴()()ak k y y x x AB B A B A 21222-+=-+-=同理可得:a kk AD 21112++=∴CD AB +a k k 212-+=a kk 21112+++()232221112121k k k k k a k a k k +=⎪⎭⎫ ⎝⎛++≥⎪⎪⎭⎫ ⎝⎛++-+≥设()()313123+++=+=m m m mm m f ,则()()()222112132m m m m m m f +-=-+=',可知()m f 在⎪⎭⎫ ⎝⎛210,上单调递减,在⎪⎭⎫ ⎝⎛021,上单调递增,∴()m f 在()10,上最小值为42721=⎪⎭⎫ ⎝⎛f ,∴()3232≥=+kf CD AB ,由于两处相等的条件不一致,∴矩形ABCD 的周长为()332>+CD AB .。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2009年普通高等学校招生全国统一考试(江苏卷)
数学Ⅰ
参考公式:
样本数据 的方差
一、填空题:本大题共14小题,每小题5分,共70分。
1.若复数 ,其中 是虚数单位,则复数 的实部为______
2.已知向量 和向量 的夹角为 , ,则向量 和向量 的数量积 __________.
3.函数 的单调减区间为___,得出M坐标,代入椭圆方程即可转化解得离心率.
14.【答案】
【解析】将各数按照绝对值从小到大排列,各数减1,观察即可得解.
15.【解析】由 与 垂直, ,
即 , ;
,最大值为32,所以 的最大值为 。
由 得 ,即 ,
所以 ∥ .
16.【解析】证明:(1)因为 分别是 的中点,所以 ,又 , ,所以 ∥ ;
(2)因为直三棱柱 ,所以 , ,又 ,所以 ,又 ,所以 。
17.(1)设公差为 ,则 ,由性质得 ,因为 ,所【解析】以 ,即 ,又由 得 ,解得 ,
所以 的通项公式为 ,前 项和 。
(2) ,令 , ,w.w.w.k.s.5.u.c.o.m
因为 是奇数,所以 可取的值为 ,当 , 时, , ,是数列 中的项; , 时, ,数列 中的最小项是 ,不符合。
上面命题中,真命题的序号________(写出所有真命题的序号).
13.如图,在平面直角坐标系 中, 为椭圆 的四个顶点, 为其右焦点,直线 与直线 相交于点T,线段 与椭圆的交点 恰为线段 的中点,则该椭圆的离心率为________.
14.设 是公比为 的等比数列, ,令 若数列 有连续四项在集合 中,则 ________
18.(本小题满分16分)
在平面直角坐标系 中,已知圆 和圆
(1)若直线 过点 ,且被圆 截得的弦长为 ,求直线 的方程;(2)设P为平面上的点,满足:存在过点P的无穷多对互相垂的直线 ,它们分别与圆 和圆 相交,且直线 被圆 截得的弦长与直线 被圆 截得的弦长相等,试求所有满足条件的点P的坐标.
19.(本小题满分16分)
9.在平面直角坐标系 中,点P在曲线 上,且在第二象限内,已知曲线C在点P处的切线的斜率为2,则点P的坐标为________.
10.已知 ,函数 ,若实数 满足 ,则 的大小关系为_______
.
11.已知集合 , ,若 则实数 的取值范围是 ,其中 ________.
12.设 和 为不重合的两个平面,给出下列命题:(1)若 内的两条相交直线分别平行于 内的两条直线,则 平行于 ;(2)若 外一条直线 与 内的一条直线平行,则 和 平行;(3)设 和 相交于直线 ,若 内有一条直线垂直于 ,则 和 垂直;(4)直线 与 垂直的充分必要条件是 与 内的两条直线垂直.
所以满足条件的正整数 。
18.【解析】(1) 或 ,
(2)P在以C1C2的中垂线上,且与C1、C2等腰直角三角形,利用几何关系计算可得点P坐标为 或 。
19.【解析】(1)
当 时,
显然
(2)当 时,
由 ,故当 即 时,甲乙两人同时取到最大的综合满意度为
求 和 关于 、 的表达式;当 时,求证: = ;
设 ,当 、 分别为多少时,甲、乙两人的综合满意度均最大?最大的综合满意度为多少?
记(2)中最大的综合满意度为 ,试问能否适当选取 、 的值,使得 和 同时成立,但等号不同时成立?试说明理由。
求 和 关于 、 的表达式;当 时,求证: = ;
设 ,当 、 分别为多少时,甲、乙两人的综合满意度均最大?最大的综合满意度为多少?
【解析】 ,由 得单调减区间为 。
4.【答案】3
【解析】 , ,所以 ,
5.【答案】0.2
【解析】略
6.【答案】
【解析】略
7.【答案】22
【解析】略
8.【答案】1:8
【解析】略
9.【答案】
【解析】略
10.【答案】
【解析】略
11.【答案】4
【解析】由 得 , ;由 知 ,所以 4。
12.【答案】(1)(2)
二、解答题:本大题共6小题,共计90分。
15.(本小题满分14分) 设向量 (1)若 与 垂直,求 的值;(2)求 的最大值;(3)若 ,求证: ∥ .
16.(本小题满分14分)
如图,在直三棱柱 中, 分别是 的中点,点 在 上,
求证:(1) ∥ (2)
17.(本小题满分14分)设 是公差不为零的等差数列, 为其前 项和,满足 (1)求数列 的通项公式及前 项和 ;(2)试求所有的正整数 ,使得 为数列 中的项.
学生
1号
2号
3号
4号
5号
甲班
6
7
7
8
7
乙班
6
7
6
7
9
则以上两组数据的方差中较小的一个为 ________.
7.右图是一个算法的流程图,最后输出的 ________.
8.在平面上,若两个正三角形的边长的比为1:2,则它们的面积比为1:4,类似地,在空间,若两个正四面体的棱长的比为1:2,则它们的体积比为________.
4.函数 为常数, 在闭区间 上的图象如图所示,则 _______.
5.现有5根竹竿,它们的长度(单位:m)分别为2.5,2.6,2.7,2.8,2.9,若从中一次随机抽取2根竹竿,则它们的长度恰好相差0.3m的概率为________.
6.某校甲、乙两个班级各有5名编号为1,2,3,4,5的学生进行投篮练习,每人投10次,投中的次数如下表:
按照某学者的理论,假设一个人生产某产品单件成本为 元,如果他卖出该产品的单价为 元,则他的满意度为 ;如果他买进该产品的单价为 元,则他的满意度为 .如果一个人对两种交易(卖出或买进)的满意度分别为 和 ,则他对这两种交易的综合满意度为 .
现假设甲生产A、B两种产品的单件成本分别为12元和5元,乙生产A、B两种产品的单件成本分别为3元和20元,设产品A、B的单价分别为 元和 元,甲买进A与卖出B的综合满意度为 ,乙卖出A与买进B的综合满意度为
记(2)中最大的综合满意度为 ,试问能否适当选取 、 的值,使得 和 同时成立,但等号不同时成立?试说明理由。
20.(本小题满分16分)设 为实数,函数 .若 ,求 的取值范围;求 的最小值;设函数 ,直接写出(不需给出演算步骤)不等式 的解集.
参考答案
1.【答案】
【解析】略
2.【答案】3
【解析】
3.【答案】
相关文档
最新文档