反比例函数练习题及答案

合集下载

反比例函数的定义专项练习30题(有答案)

反比例函数的定义专项练习30题(有答案)

反比例函数定义专项练习30题(有答案)1.下列函数中,是反比例函数的为()A .y=2x+1 B.y=C.y=D.2y=x2.下列关系式中,y是x反比例函数的是()A .y=B.y=C.y=﹣D.y=3.下列函数关系中,成反比例函数的是()A.矩形的面积S一定时,长a与宽b的函数关系B.矩形的长a一定时,面积S与宽b的函数关系C.正方形的面积S与边长a的函数关系D.正方形的周长L与边长a的函数关系4.如果函数y=x2m﹣1为反比例函数,则m的值是()A .﹣1 B.0 C.D.15.下列函数,①y=2x,②y=x,③y=x﹣1,④y=是反比例函数的个数有()A .0个B.1个C.2个D.3个6.若y与成反比例,x与成正比例,则y是z的()A .正比例函数B.反比例函数C.一次函数D.二次函数7.下列关系式中,y是x的反比例函数的是()A .x(y﹣1)=1 B.y=C.y=D.y=8.下列两个变量x、y不是反比例的关系是()A.书的单价为12元,售价y(元)与书的本数x(本)B.xy=7C.当k=﹣1时,式子y=(k﹣1)x k2﹣2中的y与xD.小亮上学用的时间x(分钟)与速度y(米/分钟)9.下列各问题中,变量间是反比例函数关系的是()①三角形的面积S一定时,它的底a与这个底边上的高h的关系;②正三角形的面积与边长之间的关系;③直角三角形中两锐角间的关系;④当路程s一定时,时间t与速度v的关系.A .①②B.②③C.③④D.①④10.下列函数中,不是反比例函数的是()A .x=B.y=(k≠0)C.y=D.y=﹣11.下列函数:①y=3x;②y=;③y=x﹣1;④y=+1,是反比例函数的个数有()A .0个B.1个C.2个D.3个12.若y+b与成反比例,则y与x的函数关系式是()A .正比例B.反比例C.一次函数D.二次函数13.下列关系中的两个量,成反比例的是()A.面积一定时,矩形周长与一边长B.压力一定时,压强与受力面积C.读一本书,已读的页数与余下的页数D.某人年龄与体重14.设某矩形的面积为S,相邻的两条边长分别为x和y.那么当S一定时,给出以下四个结论:①x是y的正比例函数;②y是x的正比例函数;③x是y的反比例函数;④y是x的反比例函数其中正确的为()A .①,②B.②,③C.③,④D.①,④15.若y=是反比例函数,则m必须满足()A .m≠0B.m=﹣2 C.m=2 D.m≠﹣216.若xy≠0,x+y≠0,与x+y成反比,则(x+y)2与x2+y2()A.成正比B.成反比C.既不成正也不成反比D.的关系不确定17.将x=代入反比例函数y=﹣中,所得函数值记为y1,又将x=y1+1代入函数中,所得函数值记为y2,再将x=y2+1代入函数中,所得函数值记为y3,…,如此继续下去,则y2012的值为()A .2 B.C.D.618.下列函数关系是反比例关系的是()A.三角形的底边为一常数,则三角形的面积y与三角形这条底边上的高x的函数关系B.矩形的面积为一常数,则矩形的长与宽的函数关系C.力F为常数,则力所做的功W与物体在力F的方向上移动的距离间的函数关系D.每本作业本的价格一定,小亮所花的钱与他所买的作业本数之间的函数关系19.当m= _________ 时,函数y=(m+)是反比例函数,且函数在二、四象限.20.若关于x、y的函数y=2x k﹣4是反比例函数,则k= _________ .21.若是反比例函数,则m= _________ .22.已知函数,当m= _________ 时,它是正比例函数;当m= _________ 是,它是反比例函数.23.若反比例函数y=(2k﹣1)的图象位于二、四象限,则k= _________ .24.已知函数y=,若y=﹣3,则x的取值为_________ .25.若反比例函数,当x>0时,y随着x的增大而增大,则k的取值范围是_________ .26.已知3x=,y=x2a﹣1是反比例函数,则x a的值为_________ .27.已知y是x的反比例函数,且x=8时,y=12.(1)写出y与x之间的函数关系式;(2)如果自变量x的取值范围是2≤x≤3,求y的取值范围.28.我们知道,如果一个三角形的一边长为xcm,这边上的高为ycm,那么它的面积为:S=xycm2,现已知S=10cm2.(1)当x越来越大时,y越来越_________ ;当y越来越大时,x越来越_________ ;但无论x,y如何变化,它们都必须满足等式_________ .(2)如果把x看成自变量,则y是x的_________ 函数;(3)如果把y看成自变量,则x是y的_________ 函数.29.已知变量y与变量x之间的对应值如下表:x … 1 2 3 4 5 6 …y … 6 3 2 1.5 1.2 1 …试求出变量y与x之间的函数关系式:_________ .30.已知y=y1+y2,y1与(x﹣1)成正比例,y2与(x+1)成反比例,当x=0时,y=﹣3,当x=1时,y=﹣1.(1)求y的表达式;(2)求当x=时y的值.反比例函数定义30题参考答案:1.A、是一次函数,错误;B、不是反比例函数,错误;C、符合反比例函数的定义,正确;D、是正比例函数,错误.故选C.2.A、y=,y是x反比例函数,正确;B、不符合反比例函数的定义,错误;C、y=﹣是二次函数,不符合反比例函数的定义,错误;D,y是x+1的反比例函数,错误.故选A.3.A、a=,故是反比例函数;B、S=ab,故是正比例函数;C、S=a2,故是二次函数;D、L=4a,故是正比例函数.故选A4.∵y=x2m﹣1是反比例函数,∴2m﹣1=﹣1,解之得:m=0.故选B.5.①y=2x是正比例函数;②y=x是正比例函数;③y=x﹣1是反比例函数;④y=是反比例函数.所以共有2个.故选C.6. ∵y与成反比例,x与成正比例,∴y=,x=.∴y==.故选B.7. A、x(y﹣1)=1,不是反比例函数,错误;B、y=,不是反比例函数,错误;C、y=,不是反比例函数,错误;D、y=,是反比例函数,正确.故选D8.A、书的单价为12元,售价y(元)与书的本数x(本),此时y=12x,y与x成正比例,正确;B、y=,符合反比例函数的定义,错误;C、当k=﹣1时,y=符合反比例函数的定义,错误;D、由于路程一定,则时间和速度为反比例关系,错误.故选A.9.①a=,变量间是反比例函数关系;②正三角形的面积与边长,不是反比例函数关系;③直角三角形中两锐角,不是反比例函数关系;④t=,变量间是反比例函数关系.所以①④为反比例函数关系.故选D.10.A、B、C选项都符合反比例函数的定义;D选项不是反比例函数.故选D11.①是正比例函数;②和③是反比例函数;④不是反比例函数.所以反比例函数的个数有2个.故选C.12. ∵y+b与成反比例,∴y+b=k(x+a)(k为不等于0的常数),∴y=kx+ka﹣b,∴y与x的函数关系式是一次函数.故选C13. A选项的函数关系式是C=2a+,C与a不是反比例函数,错误;B选项,所以压力一定时,压强与受力面积成反比例,正确;C、D选项都不是反比例函数,错误.故选B.14.设某矩形的面积为S,相邻的两条边长分别为x和y.那么当S一定时,x与y的函数关系式是y=,由于S≠0,且是常数,因而这个函数是一y是x的反比例函数.同理x是y的反比例函数.正确的是:③,④.故选C15.依题意有m+2≠0,所以m≠﹣2.故选D16.∵与x+y成反比,∴=,∴=,∴xy=,∵(x+y)2=x2+y2+2xy,∴(x+y)2=x2+y2+,等式两边同除以(x+y)2得:1=∴∴(x+y)2=(x2+y2)×,∵是常数,∴(x+y)2与x2+y2成正比例函数.故选A.17.y1=﹣=﹣,把x=﹣+1=﹣带入y=﹣中得y2=﹣=2,把x=2+1=3代入反比例函数y=﹣中得y3=﹣,把x=﹣+1=代入反比例函数y=﹣得y4=﹣…,如此继续下去每三个一循环,2012=670…2,所以y2012=2.故选:A18.A、设底边为a,则y=ax,x、y成正比例函数关系,故本选项错误;B、设面积为S,长与宽分别为xy,则y=,x、y成反比例函数关系,故本选项正确;C、W=F•S,F为常数,所以,W、S成正比例函数关系,故本选项错误;D、每本作业的价格为a,则所花钱数y与作业本数x的关系为y=ax,x、y成正比例函数关系,故本选项错误.故选B.19.根据题意得:,解得:m=﹣1.故答案是:﹣120.∵y=2x k﹣4是反比例函数,∴k﹣4=﹣1,解得k=3.故答案为:321.由题意得:|m|﹣2=1且,m﹣3≠0;解得m=±3,又m≠3;∴m=﹣3.故填m=﹣322. 当为正比例函数时,m²﹣m﹣1=1,并且m2﹣1≠0,∴m=2或﹣1(舍),当为反比例函数时,m²﹣m﹣1=﹣1,并且m2﹣1≠0,∴m=0或1(舍),故答案为:2;023.∵函数y=(2k﹣1)是反比例函数,∴3k2﹣2k﹣1=﹣1,解得:k=0或,∵图象位于二、四象限,∴2k﹣1<0,解得:k<,∴k=0,故答案为:024.把y=﹣3代入所给函数解析式得:﹣3=,解得x=.故答案为:25.根据题意得:1﹣k<0解得:k>1.故答案为:k>1.26.∵3x=,∴x=﹣3,∵y=x2a﹣1是反比例函数,∴2a﹣1=﹣1,解得:a=0,则x a=(﹣3)0=1.故答案为:127.(1)设反比例函数的解析式是y=把x=8,y=12代入得:k=96.则函数的解析式是:y=;,(2)在函数y=中,令x=2和3,分别求得y的值是:48和32.因而如果自变量x的取值范围是2≤x≤3,y的取值范围是32≤x≤48.28.(1)由S=xycm2,知S=10cm2,代入化简得y=,因为20>0,图象在第一象限,所以当x越来越大时,y越来越小,当y越来越大时,x越来越小.无论x,y如何变化,它们都必须满足等式xy=20;(2)如果把x看成自变量,则y是x的反比例函数;(3)如果把y看成自变量,则x是y的反比例函数.29.观察图表可知,每对x,y的对应值的积是常数6,因而xy=6,即y=,故变量y与x之间的函数关系式:y=.故答案为:y=30.(1)∵y1与(x﹣1)成正比例,y2与(x+1)成反比例,∴y1=k1(x﹣1),y2=,∵y=y1+y2,当x=0时,y=﹣3,当x=1时,y=﹣1.∴,∴k2=﹣2,k1=1,∴y=x﹣1﹣;(2)把x=﹣代入(1)中函数关系式得,y=﹣.。

反比例函数考试题(含答案)

反比例函数考试题(含答案)

反比例函数考试题(含答案)1. 对于反比例函数 $y = \frac{k}{x}$,已知 $y = 3$ 时,$x = 6$,求 $k$ 的值。

解答:当 $y=3$,$x=6$ 时,代入原函数得:$$3 = \frac{k}{6}$$解出 $k=18$,因此反比例函数为 $y=\frac{18}{x}$。

2. 已知反比例函数 $y=\frac{6}{x}$ 的图像和 $y=-12$ 的水平渐近线,求该反比例函数图像的方程和垂直渐近线方程。

解答:由于已知 $y=-12$ 是反比例函数的水平渐近线,因此 $y$ 趋向于 $0$ 时,$x$ 的值趋近于无穷大或负无穷大,即垂直于 $x$ 轴。

反比例函数的图像为双曲线,因此垂直渐近线分别为 $x=0$ 和$y=0$。

同时,已知 $y=\frac{6}{x}$,可得 $x=\frac{6}{y}$。

将其化简可得反比例函数的图像方程为 $xy=6$。

因此该反比例函数的图像方程为 $xy=6$,垂直渐近线方程为$x=0$ 和 $y=0$。

3. 已知反比例函数 $y=\frac{12}{x-1}$ 的图像和点 $P(5, 2)$,求 $P$ 点在反比例函数图像上的对称点 $Q$ 的坐标。

解答:首先,求出点$P$ 关于直线$x=1$ 的对称点$P'(p,q)$ 的坐标。

由于直线 $x=1$ 为反比例函数 $y=\frac{12}{x-1}$ 的渐近线,因此$P$ 点到该直线的距离为 $0$。

点 $P$ 到直线 $x=1$ 的距离公式为:$$d(P, x=1)=\frac{|\ ax+by+c\ |}{\sqrt{a^2+b^2}}$$将反比例函数化为标准形式 $y=\frac{12}{x-1}$,可得:$$d(P, x=1)=\frac{|\ x-1\ |}{\sqrt{1+0}}=5-1=4$$因此,点 $P$ 到直线 $x=1$ 的距离为 $4$。

点 $P'$ 在直线$x=1$ 上,因此其 $x$ 坐标为 $1$,根据点 $P$ 和 $P'$ 的对称性,其 $y$ 坐标应该等于 $2-4=-2$。

(完整版)反比例函数基础练习题及答案

(完整版)反比例函数基础练习题及答案

反比例函数练习一一.选择题(共22小题)1.(2015春•泉州校级期中)下列函数中,y是x的反比例函数的为()A.y=2x+1 B.C.D.2y=x2.(2015春•兴化市校级期中)函数y=k是反比例函数,则k的值是()A.﹣1 B.2 C.±2 D.±3.(2015春•衡阳县期中)若y=(m﹣1)x|m|﹣2是反比例函数,则m的值为()A.m=2 B.m=﹣1 C.m=1 D.m=04.(2014•汕尾校级模拟)若y与x成反比例,x与z成反比例,则y是z的()A.正比例函数B.反比例函数C.一次函数D.不能确定5.(2014春•常州期末)反比例函数(m为常数)当x<0时,y随x的增大而增大,则m的取值范围是()A.m<0 B.C.D.m≥6.(2015•贺州)已知k1<0<k2,则函数y=和y=k2x﹣1的图象大致是()A.B. C.D.7.(2015•滦平县二模)在同一直角坐标系中,函数y=kx+k与y=(k≠0)的图象大致为()A.B.C.D.8.(2015•上海模拟)下列函数的图象中,与坐标轴没有公共点的是()A.B.y=2x+1 C.y=﹣x D.y=﹣x2+19.(2015•宝安区二模)若ab>0,则函数y=ax+b与函数在同一坐标系中的大致图象可能是()A.B.C.D.10.(2015•鱼峰区二模)若方程=x+1的解x0满足1<x0<2,则k可能是()A.1 B.2 C.3 D.611.(2012•颍泉区模拟)如图,有反比例函数y=,y=﹣的图象和一个圆,则图中阴影部分的面积是()第11题图第12题图A.πB.2πC.4πD.条件不足,无法求12.(2010•深圳)如图所示,点P(3a,a)是反比例函数y=(k>0)与⊙O的一个交点,图中阴影部分的面积为10π,则反比例函数的解析式为()A.y=B.y=C.y=D.y=13.(2014•随州)关于反比例函数y=的图象,下列说法正确的是()A.图象经过点(1,1)B.两个分支分布在第二、四象限C.两个分支关于x轴成轴对称D.当x<0时,y随x的增大而减小14.(2014•昆明)如图是反比例函数y=(k为常数,k≠0)的图象,则一次函数y=kx﹣k 的图象大致是()A.B.C.D.15.(2014•天水)已知函数y=的图象如图,以下结论:①m<0;②在每个分支上y随x的增大而增大;③若点A(﹣1,a)、点B(2,b)在图象上,则a<b;④若点P(x,y)在图象上,则点P1(﹣x,﹣y)也在图象上.其中正确的个数是()A.4个B.3个C.2个D.1个16.(2014•杭州)函数的自变量x满足≤x≤2时,函数值y满足≤y≤1,则这个函数可以是()A.y=B.y=C.y=D.y=17.(2014•阜新)反比例函数y=在每个象限内的函数值y随x的增大而增大,则m的取值范围是()A.m<0 B.m>0 C.m>﹣1 D.m<﹣118.(2015•凉山州)以正方形ABCD两条对角线的交点O为坐标原点,建立如图所示的平面直角坐标系,双曲线y=经过点D,则正方形ABCD的面积是()第18题图第19题图A.10 B.11 C.12 D.1319.(2015•眉山)如图,A、B是双曲线y=上的两点,过A点作AC⊥x轴,交OB于D 点,垂足为C.若△ADO的面积为1,D为OB的中点,则k的值为()A.B.C.3 D.420.(2014•绥化)如图,过点O作直线与双曲线y=(k≠0)交于A、B两点,过点B作BC⊥x轴于点C,作BD⊥y轴于点D.在x轴上分别取点E、F,使点A、E、F在同一条直线上,且AE=AF.设图中矩形ODBC的面积为S1,△EOF的面积为S2,则S1、S2的数量关系是()第20题图第21题图A.S1=S2B.2S1=S2C.3S1=S2D.4S1=S2 21.(2014•抚顺)如图,在平面直角坐标系中,点A是x轴正半轴上的一个定点,点P是双曲线y=(x>0)上的一个动点,PB⊥y轴于点B,当点P的横坐标逐渐增大时,四边形OAPB的面积将会()A.逐渐增大B.不变C.逐渐减小D.先增大后减小22.(2014•重庆)如图,反比例函数y=﹣在第二象限的图象上有两点A、B,它们的横坐标分别为﹣1,﹣3,直线AB与x轴交于点C,则△AOC的面积为()A.8 B.10 C.12 D.24二.填空题(共4小题)23.(2015•锦江区一模)已知y=(a﹣1)是反比例函数,则a=.24.(2014•江西模拟)已知反比例函数的解析式为y=,则最小整数k=.25.(2013•路北区二模)函数y=,当y≥﹣2时,x的取值范围是(可结合图象求解).26.(2014•贵阳)若反比例函数的图象在其每个象限内,y随x的增大而增大,则k的值可以是.(写出一个符合条件的值即可)三.解答题(共4小题)27.(2014春•东城区校级期中)已知反比例函数y=﹣(1)说出这个函数的比例系数;(2)求当x=﹣10时函数y的值;(3)求当y=6时自变量x的值.28.(2013春•汉阳区校级期中)已知函数y=(5m﹣3)x2﹣n+(n+m),(1)当m,n为何值时是一次函数?(2)当m,n为何值时,为正比例函数?(3)当m,n为何值时,为反比例函数?29.(2013•德宏州)如图,是反比例函数y=的图象的一支.根据给出的图象回答下列问题:(1)该函数的图象位于哪几个象限?请确定m的取值范围;(2)在这个函数图象的某一支上取点A(x1,y1)、B(x2,y2).如果y1<y2,那么x1与x2有怎样的大小关系?30.(2014•苏州)如图,已知函数y=(x>0)的图象经过点A、B,点A的坐标为(1,2),过点A作AC∥y轴,AC=1(点C位于点A的下方),过点C作CD∥x轴,与函数的图象交于点D,过点B作BE⊥CD,垂足E在线段CD上,连接OC、OD.(1)求△OCD的面积;(2)当BE=AC时,求CE的长.答案:一.选择题(共22小题)1.C 2.D 3.B 4.A 5.C 6.C 7.B 8.A 9.C 10.C 11.B 12.D 13.D 14.B 15.B 16.A 17.D 18.C 19.B20.B 21.C 22.C二.填空题(共4小题)23.-1 24.1 25.x≤-2或x>0 26.-1(答案不唯一)三.解答题(共4小题)27.28.29.30.。

反比例函数练习题及答案

反比例函数练习题及答案

一、选择题(每小题3分,共36分)1.(2022河口模拟)下列关系式中,y是x的反比例函数的是( C )A.x(y-1)=1B.y=1x+1C.y=13x D.y=1x32.对于反比例函数y=-5x,下列说法不正确的是( D )A.图象分布在第二、四象限B.当x<0时,y随x的增大而增大C.图象经过点(5,-1)D.若点A(x1,y1),B(x2,y2)都在图象上,且x1<x2,则y1<y23.若点A(-1,y1),B(1,y2),C(3,y3)在反比例函数y=-3x的图象上,则y1,y2,y3的大小关系是( B )A.y1<y2<y3B.y2<y3<y1C.y3<y2<y1D.y2<y1<y34.若A(2,4)与B(-2,a)都是反比例函数y=kx(k≠0)图象上的点,则a 的值是( B )A.4B.-4C.2D.-25.在一个可以改变容积的密闭容器内,装有质量为m的某种气体,当改变容积V时,气体的密度ρ也随之改变,ρ与V在一定范围内满足,它的图象如图所示,则该气体的质量m为( C )ρ=mV第5题图A.1.4 kgB.5 kgC.7 kgD.6.4 kg6.正比例函数y=6x的图象与反比例函数y=6的图象的交点位于x( D )A.第一象限B.第二象限C.第三象限D.第一、三象限(k≠0)与一次函数y=kx+k(k≠0)在同一平面直角7.反比例函数y=kx坐标系内的图象可能是( D )A B C D的图象相交于点M(1,m),N(-2,n).8.如图所示,函数y1=x+1与函数y2=2x若y1>y2,则x的取值范围是( D )第8题图A.x<-2或0<x<1B.x<-2或x>1C.-2<x<0或0<x<1D.-2<x<0或x>19.如图所示,在平面直角坐标系中,点A是x轴负半轴上一个定点,点(x<0)图象上一个动点,PB⊥y轴于点B,当点P的横坐标P是函数y=-6x逐渐增大时,四边形OAPB的面积将会( D )第9题图A.先增后减B.先减后增C.逐渐减小D.逐渐增大10.如图所示的是某公园“水上滑梯”的侧面图,其中BC段可看成是双曲线的一段,建立如图所示的坐标系后,其中,矩形AOEB中有一向上攀爬的梯子,OA=5 m,进口AB∥OD,且AB=2 m,出口C点距水面的距离CD为1 m,则B,C之间的水平距离DE为( D )A.5 mB.6 mC.7 mD.8 m第10题图11.如图所示,点A的坐标是(-2,0),点B的坐标是(0,6),C为OB的中点,将△ABC绕点B逆时针旋转90°后得到△A′BC′.若反比例函数的图象恰好经过A′B的中点D,则k的值是( C )y=kx第11题图A.9B.12C.15D.18(x>0)的图象上,点C在反比例函12.如图所示,点B在反比例函数y=6x(x>0)的图象上,且BC∥y轴,AC⊥BC于点C,交y轴于点A,则数y=-2x△ABC的面积为( B )第12题图A.3B.4C.5D.6二、填空题(每小题3分,共18分)13.(2022栖霞模拟)一批零件有200个,一个工人每小时生产5个,则完成任务所需时间y(小时)与人数x之间的函数表达式为y=40.x与一次函数y=2x-1的图象的交点为(1,a),则14.已知反比例函数y=kxk的值为 1 .15.双曲线y=k+1在每个象限内,函数值y随x值的增大而增大,则k x的取值范围是k<-1 .16.王师傅用一根撬棒撬动一块大石头,已知阻力臂和阻力不变,分别为0.5 m和1 000 N,当动力臂l为2 m 时,撬动这块大石头需用的动力F为250 .17.如图所示,在平面直角坐标系中,过点M(-3,2)分别作x轴、y轴的垂线与反比例函数y=4x的图象交于A,B两点,则四边形MAOB的面积为10 .18.在平面直角坐标系xOy中,直线y=x与双曲线y=mx交于A,B两点.若点A,B的纵坐标分别为y1,y2,则y1+y2的值为0 .三、解答题(共46分)19.(6分)已知反比例函数y=kx(k为常数,k≠0)的图象经过点A(2,3).(1)求这个函数的表达式;(2)判断点B(-1,6),C(3,2)是否在这个函数的图象上,并说明理由;(3)当-2<x<-1时,求y的取值范围.解:(1)把A(2,3)代入y=kx ,得k=2×3=6,∴y=6x.(2)点B(-1,6)不在这个函数的图象上,点C(3,2)在这个函数的图象上.理由如下:当x=-1时,y=-6,∴点B(-1,6)不在这个函数的图象上.当x=3时,y=2,∴点C(3,2)在这个函数的图象上.(3)当x=-1时,y=-6;x=-2时,y=-3,∵k=6>0,∴当-2<x<-1时,y随x的增大而减小.∴当-2<x<-1时,y的取值范围为-6<y<-3.20.(8分)一辆汽车匀速通过某段公路,所需时间t(h)与行驶速度v(km/h)满足函数关系式t=kv ,其图象为如图所示的一段曲线,且端点为A(40,1)和B(m,0.5).(1)求k 和m 的值;(2)若行驶速度不得超过60 km/h,则汽车通过该路段最少需要多长 时间?解:(1)由题意,得函数图象经过点(40,1),(m,0.5),把(40,1)代入t=kv ,得k=40,故可得关系式为t=40v .再把(m,0.5)代入t=40v,得m=80.(2)把v=60代入t=40v,得t=23,故汽车通过该路段最少需要23h.21.(10分)某商场出售一批进价为2元的贺卡,在销售中发现此商品的日销售单价x(元)与日销售量y(张)之间有如下关系:(1)猜测并确定y 与x 的函数表达式.(2)当日销售单价为10元时,贺卡的日销售量是多少张?(3)设此贺卡的日销售利润为W 元,试求出W 与x 之间的函数表达式.若物价部门规定此贺卡的销售单价不能超过10元,试求出当日销售单价为多少元时,每天获得的利润最大,并求出最大利润.解:(1)由题意设y=k(k为常数,且k≠0),x把(3,20)代入,得k=60,.∴y与x的函数表达式是y=60x=6,(2)当x=10时,y=6010∴当日销售单价为10元时,贺卡的日销售量是6张.,且2≤x≤10,(3)∵W=(x-2)y=60-120x=48(元).∴当x=10时,W最大,W最大=60-12010∴当日销售单价为10元时,每天获得的利润最大,最大利润为48元.22.(10分)如图所示,一次函数y=kx+b(k,b为常数,k≠0)的图象与反比例函数y=-12的图象交于A,B两点,且与x轴交于点C,与y轴交于x点D,A点的横坐标与B点的纵坐标都是3.(1)求一次函数的表达式;(2)求△AOB的面积;的解集.(3)写出不等式kx+b>-12x解:(1)∵一次函数y=kx+b(k,b为常数,k≠0)的图象与反比例函数的图象交于A,B两点,y=-12x且与x轴交于点C,与y轴交于点D,A点的横坐标与B点的纵坐标都是3,∴当y=3时,3=-12,解得x=-4;x当x=3时,y=-123=-4.故点B 的坐标为(-4,3),点A 的坐标为(3,-4), 把点A,B 的坐标代入y=kx+b,得 {-4k +b =3,3k +b =-4,解得{k =-1,b =-1, 故一次函数的表达式为y=-x-1. (2)y=-x-1,当y=0时,x=-1, 故点C 的坐标为(-1,0),∴S △AOB =S △BOC +S △AOC =12OC ·|y B |+12OC ·|y A |=12×1×3+12×1×4=72.∴△AOB 的面积为72.(3)由图象,知不等式kx+b>-12x 的解集为x<-4或0<x<3.23.(12分)(2022莱西模拟)如图所示,正比例函数y=12x 的图象与反比例函数y=kx(k ≠0)在第一象限的图象交于A 点,过A 点作x 轴的垂线,垂足为M,已知△OAM 的面积为1.(1)求反比例函数的表达式;(2)如果点B(a,b)为反比例函数在第一象限图象上的点,且b=2a,试探究在x 轴上是否存在点P,使△PAB 周长最小.若存在,求点P 的坐标;若不存在,请说明理由.解:(1)∵反比例函数y=kx (k ≠0)的图象在第一象限,∴k>0.∵△OAM 的面积为1,∴12k=1,解得k=2,故反比例函数的表达式为y=2x.(2)存在.∵点A 是正比例函数y=12x 与反比例函数y=2x图象的交点,且x>0,y>0,∴{y =12x ,y =2x ,解得{x =2,y =1,∴A(2,1). ∵B(a,b)为反比例函数在第一象限图象上的点,∴b=2a.又∵b=2a,∴a=1,b=2,∴B(1,2).∵AB 的距离为定值,∴若使△PAB 周长最小,则PA+PB 的值最小. 如图所示,作A 点关于x 轴的对称点C,并连接BC,交x 轴于点P,P 为所求点.设A 点关于x 轴的对称点为C,则C 点的坐标为(2,-1).设直线BC 的表达式为y=mx+n,将B,C 两点的坐标代入,得{2m +n =-1,m +n =2,解得{m =-3,n =5,故直线BC 的表达式为y=-3x+5.当y=0时,x=53,则点P 坐标为(53,0).。

完整版)反比例函数经典习题及答案

完整版)反比例函数经典习题及答案

完整版)反比例函数经典习题及答案反比例函数练题1.下列函数中,经过点(1.-1)的反比例函数解析式是()A。

y = 1/xB。

y = -1/xC。

y = 2/xD。

y = -2/x2.反比例函数y = -(k/ x)(k为常数,k ≠ 0)的图象位于()A。

第一、二象限B。

第一、三象限C。

第二、四象限D。

第三、四象限3.已知反比例函数y = (k - 2)/x的图象位于第一、第三象限,则k的取值范围是()A。

k。

2B。

k ≥ 2C。

k ≤ 2D。

k < 24.反比例函数y = k/x的图象如图所示,点M是该函数图象上一点,MN垂直于x轴,垂足是点N,如果三角形MON 的面积是2,则k的值为()A。

2B。

-2C。

4D。

-45.对于反比例函数y = 2/x,下列说法不正确的是()A。

点(-2.-1)在它的图象上B。

它的图象在第一、三象限C。

当x。

0时,y随x的增大而增大D。

当x < 0时,y随x的增大而减小6.反比例函数y = (2m - 1)x/(m^2 - 2),当x。

0时,y随x 的增大而增大,则m的值是()A。

±1B。

小于1的实数C。

-1D。

1/27.如图,P1、P2、P3是双曲线上的三点,过这三点分别作y轴的垂线,得到三个三角形P1A1O、P2A2O、P3A3O,设它们的面积分别是S1、S2、S3,则()。

A。

S1 < S2 < S3B。

S2 < S1 < S3C。

S3 < S1 < S2D。

S1 = S2 = S38.在同一直角坐标系中,函数y = -2与y = 2x的图象的交点个数为()A。

3B。

2C。

1D。

09.已知甲、乙两地相距s(km),汽车从甲地匀速行驶到乙地,则汽车行驶的时间t(h)与行驶速度v(km/h)的函数关系图象大致是()10.如图,直线y = mx与双曲线y = k/(x-2)交于A、B两点,过点A作AM⊥x轴,垂足为M,连结BM,若三角形ABM的面积为2,则k的值是()A。

反比例函数测试题及答案

反比例函数测试题及答案

反比例函数测试题及答案一、选择题1. 反比例函数y= \frac{k}{x}(k≠0)的图象是双曲线,下列说法正确的是()A. 函数图象在一、三象限内,k>0B. 函数图象在二、四象限内,k<0C. 函数图象在一、三象限内,k<0D. 函数图象在二、四象限内,k>0答案:A2. 若点(2,3)在反比例函数y= \frac{k}{x}(k≠0)的图象上,则k的值是()A. 6B. -6C. 2D. -2答案:A二、填空题3. 反比例函数y= \frac{k}{x}(k≠0)的图象经过点(1,-2),则k的值为______。

答案:-24. 反比例函数y= \frac{k}{x}(k≠0)的图象是中心对称图形,若点(a,b)在函数图象上,则点(-a,-b)也在函数图象上,且k=ab,若点(2,-1)在函数图象上,则点(-2,1)也在函数图象上,且k=______。

答案:-2三、解答题5. 已知反比例函数y= \frac{k}{x}(k≠0)的图象经过点(3,-1),求k的值,并判断图象在哪个象限。

解:将点(3,-1)代入反比例函数y= \frac{k}{x}得,-1=\frac{k}{3},解得k=-3。

因为k=-3<0,所以图象在第二、四象限。

6. 已知反比例函数y= \frac{k}{x}(k≠0)的图象经过点(2,3),求k的值,并写出函数的表达式。

解:将点(2,3)代入反比例函数y= \frac{k}{x}得,3=\frac{k}{2},解得k=6。

因此,函数的表达式为y= \frac{6}{x}。

结束语:通过以上题目的练习,可以检验你对反比例函数性质和图象特征的掌握程度,希望同学们能够通过这些题目加深对反比例函数的理解。

反比例函数》测试题(含答案)

反比例函数》测试题(含答案)

反比例函数》测试题(含答案)1、选择题(每小题5分,共50分)1、若点(x1.-1)、(x2.-2)、(x3.1)都在反比例函数y= k/x 上,则它们之间的大小关系是()A.x1<x3<x2B.x2<x1<x3C.x1<x2<x3D.x2<x3<x12、若反比例函数y=k/x的图象经过点(m,3m),其中m≠0,则此反比例函数的图象在()A.第一、二象限;B.第一、三象限;C.第二、四象限;D.第三、四象限3、在直角坐标系中,点A是x轴正半轴上的一个定点,点B是双曲线y=3/x上的一个动点,当点B的横坐标逐渐增大时,△OAB的面积将会()A.逐渐增大B.不变C.逐渐减小D.先增大后减小4、函数y=-kx与函数y=k/x的图象的交点个数是()A。

0B。

1C。

2D.不确定5、函数y=6-x与函数y=k/x的图象交于A、B两点,设点A的坐标为(x1,y1),则边长分别为x1、y1的矩形面积和周长分别为()A。

4,12B。

4,6C。

8,12D。

8,66、已知y1+y2=y,其中y1与x成反比例,且比例系数为k1,而y2与x2成正比例,且比例系数为k2,若x=-1时,y=0,则k1,k2的关系是( )A.k1+k2=0B.k1k2=1C.k1-k2=0D.k1k2=-17、正比例函数y=2kx与反比例函数y=k/(x-1)在同一坐标系中的图象不可能是()18、如图,直线y=mx与双曲线y=k/(x-1)交与A、B两点,过点A作AM⊥x轴,垂足为M,连接BM,若S△ABM=2,则k的值是()A、2B、m-2C、mD、49、如图,点A在双曲线y=6/x上,且OA=4,过A作AC⊥x轴,垂足为C,OA的垂直平分线交OC于B,则△ABC的周长为( )A.47B.5C.27D.2210、如图,反比例函数y= k/x的图象经过点(1,2),则k=()。

二、填空题(每小题5分,共20分)11、若y=k/x是反比例函数,且x1y1=x2y2,则k=______。

完整版)反比例函数练习题含答案

完整版)反比例函数练习题含答案

完整版)反比例函数练习题含答案测试1 反比例函数的概念一、填空题1.一般的,形如 y=k/x 的函数称为反比例函数,其中x是自变量,y是因变量。

自变量x的取值范围是x≠0.2.写出下列各题中所要求的两个相关量之间的函数关系式,并指出函数的类别。

1) 商场推出分期付款购电脑活动,每台电脑元,首付4000元,以后每月付y元,x个月全部付清,则y=(8000+)/x,是反比例函数。

2) 某种灯的使用寿命为1000小时,它的使用天数y与平均每天使用的小时数x之间的关系式为 y=1000/x,是反比例函数。

3) 设三角形的底边、对应高、面积分别为a、h、S。

当a=10时,S与h的关系式为 S=10h/2,是正比例函数;当S=18时,a与h的关系式为 h=36/a,是反比例函数。

4) 某工人承包运输粮食的总数是w吨,每天运x吨,共运了y天,则 y=w/x,是反比例函数。

3.下列各函数 y=1/(k2+1)、y=x/(x5+x12)、y=14-3x、y=2x和y=3x-1 中,是y关于x的反比例函数的有:①y=1/(k2+1)、② y=x/(x5+x12)、③ y=2x。

4.若函数 y=m/(x-1) (m是常数) 是反比例函数,则 m=1,解析式为 y=1/(x-1)。

5.近视眼镜的度数y(度)与镜片焦距x(m)成反比例,已知400度近视眼镜片的焦距为0.25m,则 y=1000/x。

二、选择题6.已知函数 y=3x/(kx+1),当x=1时,y=-3,那么这个函数的解析式是 y=3x/(3k+1)。

(解析:由 y=-3=3/(3k+1) 可得 k=-1/3,代入原式得 y=3x/(3x-1)。

)7.已知 y 与 x 成反比例,当 x=3 时,y=4,那么 y=3 时,x 的值等于 4/3.三、解答题8.已知 y 与 x 成反比例,当 x=2 时,y=3.1) 求y 与x 的函数关系式:y=k/x,代入已知条件得k=6,因此函数关系式为 y=6/x。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

反比例函数练习题
一、填空题(每空3分,共42分) 1.已知反比例函数()0≠=
k x
k
y 的图象经过点(2,-3)
,则k 的值是_______,图象在__________象限,当x>0时,y 随x 的减小而__________.
2.已知变量y 与x 成反比,当x =1时,y =-6,则当y = 3时,x=________。

3.若反比例函数y=(2m -1)22
m x - 的图象在第一、三象限,则函数的解析式为___________.
4.已知反比例函数x
m y )23(1
-=
,当m 时,其图象的两个分支在第一、三象限
内;当m 时,其图象在每个象限内y 随x 的增大而增大;
5.在函数(为常数)的图象上有三个点(-2,),(-1,),(,),
函数值,,的大小为 ; 6.已知111222(,),(,)P x y P x y 是反比例函数x
k
y =
(k≠0)图象上的两点,且12x x <<0时,12y y < ,则k________。

7.已知正比例函数y=kx(k≠0),y 随x 的增大而减小,那么反比例函数y=
k
x
,当x< 0时,y 随x 的增大而_______.
8.已知y 1与x 成正比例(比例系数为k 1),y 2与x 成反比例(比例系数为k 2),若函数y=y 1+y 2的图象经过点(1,2),(2,
1
2
),则8k 1+5k 2的值为________. 9. 若m <-1,则下列函数:①()0 x x
m
y =
;② y =-mx+1; ③ y = mx; ④ y =(m + 1)x 中,y 随x 增大而增大的是___________。

10.当>0,<0时,反比例函数的图象在__________象限。

11.老师给出一个函数,甲、乙、丙、丁四人各指出这个函数的一个性质,甲:函数图象不经过第三象限;乙:函数图象经过第一象限;丙:y 随x 的增大而减小;丁:当2<x 时,0>y 。

已知这四人叙述都正确,请构造出满足上述所有性质的一个函数_______________。

二、选择题(每题3分,共24分) 12.若函数的图象过点(3,-7),那么它一定还经过点 ( ) x k y 22--=k 1y 2y 2
1
3y 1y 2y 3y k x x
k
y =
x
k
y =
(A )(3,7) (B )(-3,-7) (C )(-3,7) (D )(2,-7) 13.反比例函数x
m
y 21-=(m 为常数)当0<x 时,y 随x 的增大而增大,则m 的取值范围是( )
A 、0<m
B 、21<
m C 、21>m D 、2
1≥m 14.若点(x 1,y 1),(x 2,y 2),(x 3,y 3)都是反比例函数y=-x
1
的图象上的点,并且x 1<0<x 2<x 3,则下
列各式中正确的是( )
A.y 1<y 2<y 3
B.y 2<y 3<y 1
C.y 3<y 2<y 1
D.y 1<y 3<y 2 15.如图,已知关于x 的函数y=k(x-1)和y=-k
x
(k ≠0), 它们在同一坐标系内的图象大致是( )
16.已知力F 所做的功是15焦,则力F 与物体在力的方向上通过的距 离S 的图象大致是如图中的( )
17.如图所示,点P 是反比例函数y=
k
x
图象上一点,过点P 分别作x 轴、y•轴的垂线,如果构成的矩形面积是4,那么反比例函数的解析式是 ( )
A.y=-2x
B. y=2x
C.y=-4x
D.y=4x
18.下面关于反比例函数的意义或性质的综述,正确的是( )
A.自变量x 扩大(或缩小)几倍,函数y 反而缩小(或扩大)几倍
B.反比例函数是形如y =
k
(k 是常数,k ≠0)的函数 O y x A O y x C O x B y
O x
D
y
x
O C
B
A
C.若x 与y 的积是一个常数,则y 是x 的反比例函数
D.当k >0时,y 随x 的增大反而减小 19.已知1y +2y =y,其中1y 与
1
x
成反比例,且比例系数为1k ,而2y 与2x 成正比例,且比例系数为2k ,若x=-1时,y=0,则1k ,2k 的关系是( )
A.12k k + =0
B.12k k =1
C.12k k - =0
D.12k k =-1 三、解答题(共34分)
20.(4分)一定质量的二氧化碳,当它的体积35m V =时,它的密度3
/98.1m kg =ρ.①求ρ与V 的函数关系式;②当39m V =时,求二氧化碳的密度ρ.
21.(8分)如图所示,已知:正方形OABC 的面积为9 ,点O 为坐标原点,点A 在x 轴上,点C 在y 轴上, 点B 在函数)0,0(>>=
x k x
k
y 的图象上,点P(m ,n)是函数)0,0(>>=
x k x
k
y 的图象上动点,
过点P 分别作x 轴、y 轴的垂线,垂足分别为E 、F ,若设矩形OEPF 和正方形OABC 不重合的两部分的面积和为S. (1)求B 点坐标和k 的值; (2)当2
9
=
S 时,求点P 的坐标; (3)写出S 关于m 的函数关系式. .
22. (8分)如图,直线y=
1
2
x+2 分别交x,y 轴于点A,C,P 是该直线上第一象限内的一点,PB ⊥x 轴,B 为垂足,ABP S =9.求过P 点的坐反比例函数的解析式.
23.(6分)某童装厂现有甲种布料38米,乙种布料26米,现计划用这两种布料生产L 、M 两种型号的童装共50套.已知做一套L 型号的童装需用甲种布料0.5米,乙种布料1米,可获利45元;做一套M 型号童装需用甲种布料0.9米,乙种布料0.2米,可获利30元,设生产L 型号的童装套数为x ,用这批布料生产这两种型号的童装所获的利润为y(元). (1)写出y(元)关于x(套)的函数解析式,并求出自变量x 的取值范围;
(2)该厂在生产这批童装中,当L 型号的童装为多少套时,能使该厂所获的利润最大?最大利润为多少?
24. (8分)如图,一次函数的图象与x 轴y 轴分别交于A,B 两点,与反比例的图象交于C, D 两点.如果A 点的坐标为(2,0),点C,D 分别在第一,第三象限,且OA=OB=AC=BD. 试求一次函数和反比例函数的解析式.
O y x A C
P
B O
y x
A
C
D
B
答案:1.-6 二四减小2. 2 3.y=1
x 4.>2
3
<2
3
5.y3<y1<y2
6.<0
7.增大
8.9
9.1,2 10.三 11.y=(x-2)²
CBBCBCBC
20.,.
21. (1)∵正方形OABC的面积为9,
∴OA=OC=3,
∴B(3,3).
又∵点B(3,3)在函数y=kx(k>0,x>0)的图象上,
∴k=9.
(2)分两种情况:①当点P1在点B的左侧时,
∵P1(m,n)在函数y=kx上,
∴mn=9.
∴则S=m(n−3)=9/2
∴m=3/2,
∴n=6.
∴P1(3/2,6);
②当点P2在点B或B的右侧时,
∵P2(m,n)在函数y=k/x上,
∴mn=9.
∴S=n(m−3)=mn−3n=9/2
∴n=1.5,
∴m=6.
∴P2(6,1.5).
(3)当0<m<3时,S=9−3m;
当m⩾3时,当x=m时,P的纵坐标是9/m,
则与矩形OEPF中和正方形OABC重合部分是边长是3,宽是9/m的矩形,则面积是:27/m,
因而S=18−2×27/m,即S=9−27/m.
22.设P的坐标是(x,1/2x+2),
则PB=1/2x+2,OB=x,
∴A的坐标是(−4,0),C的坐标是(0,2),
∵S△ABP=9,
∴1/2⋅(1/2x+2)⋅(x+4)=9,
解得:x1=2,x2=−10,
∵P在第一象限,
∴x=2,
即P的坐标是(2,3),
设过P点的反比例函数的解析式是y=k/x,
则k=6,
即过P点的反比例函数的解析式是y=6/x.
231)根据题意得:y=45x+(50−x)×30,
y=15x+1500,
需甲布料0.5x+0.9(50−x)⩽38,
需乙布料x+0.2(50−x)⩽26,
∴17.5⩽x⩽20;
∵x是整数,则18⩽x⩽20;
(2)y=15x+1500图象成直线,是增函数,
∴当x取最大值20时,y有最大值,
即y=15×20+1500=1800.
该服装厂在生产这批服装中,当生产L号20套,M型号的30套,所获利润最多,最多是1800元。

24.
(1)∵OA=OB,A点的坐标为(2,0).
∴点B的坐标为(0,−2)设过AB的解析式为:y=kx+b,则2k+b=0,b=−2,解得k=1,∴一次函数的解析式:y=x−2.
(2)作CE⊥x轴于点E. 易得到△CAE为等腰直角三角形。

相关文档
最新文档