实验二_时域采样和频域采样

合集下载

实验2 信号的时域采样与频域采样(讲稿)

实验2 信号的时域采样与频域采样(讲稿)

实验2 时域采样与频域采样知识要点:(1)时域采样定理和频域采样定理(2)信号的采样方法连续时间信号的采样方法为T ()()s t n f t f t ==,理想采样信号的傅立叶变换可用相应的采样序列的傅立叶变换得到,即ˆ()()j aTX j X e ωω=ΩΩ=,用DFT 近似计算连续信号频谱的方法为()T DFT[()]a X k x n =⋅。

连续谱的离散化方法为在一个周期内对连续频谱进行N 点等间隔采样,即2k k Nπω=,用DFT 计算离散信号频谱的方法为()DFT[()]X k x n =。

(3)用FFT 计算有限长采样序列的傅立叶变换(DFT )(4)连续时间信号的采样点数用公式p s N T F =⨯计算(5)频域采样时,频率分辨率为p F=1,各采样点上的频率为(1)k p f T k =。

(6)FFT 函数的基本用法FFT 函数格式为Xk= fft(xnt,M),其中M 表示FFT 的点数。

实验内容1:时域采样理论的验证(非周期连续信号)给定模拟信号0()sin()()t a x t Ae t u t α-=Ω式中444.128A =,α=,0rad s Ω=。

用DFT (FFT )求该模拟信号的幅频特性,以验证时域采样理论。

选取三种采样频率,即1kHz,300Hz 200Hz s F =,。

观测时间选64p T ms =。

采样点数用公式p s N T F =⨯计算。

设计方法:(1)初始化设置(如观测时间、采样频率、采样间隔等)。

(2)计算时域采样点数。

(3)生成时域抽样信号。

(4)用fft 函数计算频谱。

(5)计算频域采样点上的频率,绘制频谱图。

程序运行结果:(1)采样频率1000Hz s F =nx a (n T )(a) F s =1000Hz,采样点数=645001000(b) DFT[x a (nT)],F s =1000Hz f(Hz)幅度5001000(c) T*DFT[x a (nT)],F s =1000Hz f(Hz)幅度图2-1 采样频率1kHz s F =(2)采样频率300Hz s F =nx a (n T )(a) F s =300Hz,采样点数=19100200300(b) DFT[x a (nT)],F s =300Hz f(Hz)幅度100200300(c) T*DFT[x a (nT)],F s =300Hzf(Hz)幅度图2-2 采样频率300Hz s F =(3)采样频率200Hz s F =nx a (n T )(a) F s =200Hz,采样点数=1350100150200(b) DFT[x a (nT)],F s =200Hzf(Hz)幅度5010015020000.20.40.60.8(c) T*DFT[x a (nT)],F s =200Hz f(Hz)幅度图2-3 采样频率200Hz s F =实验结果分析:时域采样理论的验证程序运行结果如图2-1至2-3所示。

数字信号处理实验报告(实验二)

数字信号处理实验报告(实验二)

实验二 时域采样与频域采样1. 实验目的:(1) 掌握模拟信号采样前后频谱的变化,以及如何选择采样频率才能使采样后的信号不丢失信息。

(2) 掌握频率域采样会引起时域周期化的概念,以及频率域采样定理及其对频域采样点数选择的指导作用。

(3) 会用MATLAB 语言进行时域抽样与信号重建的方法,以及频域抽样与恢复时程序的编写方法。

2. 实验原理:了解时域采样定理的要点,理解理想采样信号)(ˆt xa 和模拟信号)(t x a 之间的关系,了解频域采样定理的要点,掌握这两个采样理论的结论:“时域采样频谱周期延拓,频域采样时域信号周期延拓”。

3. 实验内容:(1)时域采样理论的验证。

给定模拟信号,)()sin()(0t u t Ae t x t a Ω=-α式中A=444.128,α=502π,0Ω=502πrad/s(2)用DFT(FFT)求该模拟信号的幅频特性,选取三种采样频率,以验证时域采样理论。

(3)编写实验程序,计算)(1n x 、)(2n x 和)(3n x 的幅度特性,并绘图显示。

观察分析频谱混叠失真。

(4)频域采样理论的验证。

给定信号如下:⎪⎩⎪⎨⎧≤≤-≤≤+=其它02614271301)(n n n n n x(5)编写程序分别对频谱函数()FT[()]j X e x n ω=在区间]2,0[π上等间隔采样32和16点,得到)()(1632k X k X 和,再分别对)()(1632k X k X 和进行32点和16点IFFT ,得到)()(1632n x n x 和。

(6)分别画出()j X e ω、)()(1632k X k X 和的幅度谱,并绘图显示x(n)、)()(1632n x n x 和的波形,进行对比和分析,验证总结频域采样理论。

4. 思考题:如果序列x(n)的长度为M ,希望得到其频谱()j X e ω在]2,0[π上的N 点等间隔采样,当N<M 时, 如何用一次最少点数的DFT 得到该频谱采样?答:将长序列分段分段计算,这种分段处理方法有重叠相加法和重叠保留法两种。

数字信号处理学习指导与课后答案第8章

数字信号处理学习指导与课后答案第8章

xˆa (t) xa (t) δ(t nT ) n
第8章 上机实验
对上式进行傅里叶变换, 得到
Xˆ a ( j )

[xa (t)

δ(t nT )]e j tdt
n



xa
(t
)δ(t

nT
)e

j
t
dt
n
在上式的积分号内只有当t=nT时, 才有非零值, 因此
第8章 上机实验
2. 实验原理与方法
1)
时域采样定理的要点是:
(1) 对模拟信号xa(t)以T进行时域等间隔理想采样, 形成 的采样信号的频谱 Xˆ ( j ) 会以采样角频率Ωs(Ωs=2π/T)为 周期进行周期延拓。 公式为
Xˆ a ( j ) FT[xˆa (t)]
ห้องสมุดไป่ตู้

1 T

X a ( j
第8章 上机实验
8.1 实验一:
8.1.1
1. (1) 掌握求系统响应的方法。 (2) 掌握时域离散系统的时域特性。 (3) 分析、 观察及检验系统的稳定性。
第8章 上机实验
2. 在时域中, 描写系统特性的方法是差分方程和单位脉 冲响应, 在频域可以用系统函数描述系统特性。 已知输入 信号可以由差分方程、 单位脉冲响应或系统函数求出系统对 于该输入信号的响应。 本实验仅在时域求解。 在计算机上 适合用递推法求差分方程的解, 最简单的方法是采用 MATLAB语言的工具箱函数filter函数。 也可以用MATLAB 语言的工具箱函数conv函数计算输入信号和系统的单位脉冲 响应的线性卷积, 求出系统的响应。
第8章 上机实验
8.1.2

数字信号处理实验答案

数字信号处理实验答案

数字信号处理实验答案第十章上机实验数字信号处理是一门理论和实际密切结合的课程,为深入掌握课程内容,最好在学习理论的同时,做习题和上机实验。

上机实验不仅可以帮助读者深入的理解和消化基本理论,而且能锻炼初学者的独立解决问题的能力。

本章在第二版的基础上编写了六个实验,前五个实验属基础理论实验,第六个属应用综合实验。

实验一系统响应及系统稳定性。

实验二时域采样与频域采样。

实验三用FFT对信号作频谱分析。

实验四IIR数字滤波器设计及软件实现。

实验五FIR数字滤波器设计与软件实现实验六应用实验——数字信号处理在双音多频拨号系统中的应用任课教师根据教学进度,安排学生上机进行实验。

建议自学的读者在学习完第一章后作实验一;在学习完第三、四章后作实验二和实验三;实验四IIR数字滤波器设计及软件实现在。

学习完第六章进行;实验五在学习完第七章后进行。

实验六综合实验在学习完第七章或者再后些进行;实验六为综合实验,在学习完本课程后再进行。

10.1 实验一: 系统响应及系统稳定性1.实验目的(1)掌握求系统响应的方法。

(2)掌握时域离散系统的时域特性。

(3)分析、观察及检验系统的稳定性。

2.实验原理与方法在时域中,描写系统特性的方法是差分方程和单位脉冲响应,在频域可以用系统函数描述系统特性。

已知输入信号可以由差分方程、单位脉冲响应或系统函数求出系统对于该输入信号的响应,本实验仅在时域求解。

在计算机上适合用递推法求差分方程的解,最简单的方法是采用MA TLAB语言的工具箱函数filter函数。

也可以用MA TLAB语言的工具箱函数conv 函数计算输入信号和系统的单位脉冲响应的线性卷积,求出系统的响应。

系统的时域特性指的是系统的线性时不变性质、因果性和稳定性。

重点分析实验系统的稳定性,包括观察系统的暂态响应和稳定响应。

系统的稳定性是指对任意有界的输入信号,系统都能得到有界的系统响应。

或者系统的单位脉冲响应满足绝对可和的条件。

系统的稳定性由其差分方程的系数决定。

(完整word版)数字信号处理上机实验答案(第三版,第十章)

(完整word版)数字信号处理上机实验答案(第三版,第十章)

第十章 上机实验数字信号处理是一门理论和实际密切结合的课程,为深入掌握课程内容,最好在学习理论的同时,做习题和上机实验。

上机实验不仅可以帮助读者深入的理解和消化基本理论,而且能锻炼初学者的独立解决问题的能力。

本章在第二版的基础上编写了六个实验,前五个实验属基础理论实验,第六个属应用综合实验。

实验一 系统响应及系统稳定性。

实验二 时域采样与频域采样。

实验三 用FFT 对信号作频谱分析。

实验四 IIR 数字滤波器设计及软件实现。

实验五 FIR 数字滤波器设计与软件实现实验六 应用实验——数字信号处理在双音多频拨号系统中的应用任课教师根据教学进度,安排学生上机进行实验。

建议自学的读者在学习完第一章后作实验一;在学习完第三、四章后作实验二和实验三;实验四IIR 数字滤波器设计及软件实现在。

学习完第六章进行;实验五在学习完第七章后进行。

实验六综合实验在学习完第七章或者再后些进行;实验六为综合实验,在学习完本课程后再进行。

10.1 实验一: 系统响应及系统稳定性1.实验目的(1)掌握 求系统响应的方法。

(2)掌握时域离散系统的时域特性。

(3)分析、观察及检验系统的稳定性。

2.实验原理与方法在时域中,描写系统特性的方法是差分方程和单位脉冲响应,在频域可以用系统函数描述系统特性。

已知输入信号可以由差分方程、单位脉冲响应或系统函数求出系统对于该输入信号的响应,本实验仅在时域求解。

在计算机上适合用递推法求差分方程的解,最简单的方法是采用MA TLAB 语言的工具箱函数filter 函数。

也可以用MATLAB 语言的工具箱函数conv 函数计算输入信号和系统的单位脉冲响应的线性卷积,求出系统的响应。

系统的时域特性指的是系统的线性时不变性质、因果性和稳定性。

重点分析实验系统的稳定性,包括观察系统的暂态响应和稳定响应。

系统的稳定性是指对任意有界的输入信号,系统都能得到有界的系统响应。

或者系统的单位脉冲响应满足绝对可和的条件。

数字信号处理学习指导与课后答案第8章

数字信号处理学习指导与课后答案第8章
lengthkdtmf信号的产生与识别仿真实验在matlab环境下进行编写仿真程序运行程序送入6位电话号码程序自动产生每一位号码数字相应的dtmf信号并送出双频声音再用dft进行谱分析显示每一位号码数字的dtmf信号的dft幅度谱按照幅度谱的最大值确定对应的频率再按照频率确定每一位对应的号码数字最后输出6位电话号码
上式说明理想采样信号的傅里叶变换可用相应的采样序列的 傅里叶变换得到, 只要将自变量ω用ΩT代替即可。
第8章 上机实验
2) 频域采样定理的要点是: (1) 对信号x(n)的频谱函数X(ejω)在[0, 2π]上等间隔采 样N点, 得到
X N (k) X (ej ) 2πk , k 0,1, 2, , N 1 N
x1(n)=R8(n) x2(n)=u(n)
第8章 上机实验
① 分别求出x1(n)=R8(n)和x2(n)=u(n)的系统响应y1(n)和 y2(n), 并画出其波形。
② 求出系统的单位脉冲响应, 画出其波形。 (3) 给定系统的单位脉冲响应为 h1(n)=R10(n) h2(n)=δ(n)+2.5δ(n-1)+2.5δ(n-2)+δ(n-3) 用线性卷积法求x1(n)=R8(n)分别对系统h1(n)和h2(n)的输 出响应y21(n)和y22(n), 并画出波形。
%调用函数tstem title(′(a) 系统单位脉冲响应h(n)′) y1n=filter(B, A, x1n); %求系统对x1n的响应y1n subplot(2, 2, 2); y=′y1(n)′; tstem(y1n, y); title(′(b) 系统对R8(n)的响应y1(n)′) y2n=filter(B, A, x2n); %求系统对x2n的响应y2n subplot(2, 2, 4); y=′y2(n)′; tstem(y2n, y); title(′(c) 系统对u(n)的响应y2(n)′) %====================================

数字信号处理第三版上机实验答案(1)

数字信号处理第三版上机实验答案(1)

10.1 实验一: 系统响应及系统稳定性1.实验目的(1)掌握 求系统响应的方法。

(2)掌握时域离散系统的时域特性。

(3)分析、观察及检验系统的稳定性。

2.实验原理与方法在时域中,描写系统特性的方法是差分方程和单位脉冲响应,在频域可以用系统函数描述系统特性。

已知输入信号可以由差分方程、单位脉冲响应或系统函数求出系统对于该输入信号的响应,本实验仅在时域求解。

在计算机上适合用递推法求差分方程的解,最简单的方法是采用MA TLAB 语言的工具箱函数filter 函数。

也可以用MATLAB 语言的工具箱函数conv 函数计算输入信号和系统的单位脉冲响应的线性卷积,求出系统的响应。

系统的时域特性指的是系统的线性时不变性质、因果性和稳定性。

重点分析实验系统的稳定性,包括观察系统的暂态响应和稳定响应。

系统的稳定性是指对任意有界的输入信号,系统都能得到有界的系统响应。

或者系统的单位脉冲响应满足绝对可和的条件。

系统的稳定性由其差分方程的系数决定。

实际中检查系统是否稳定,不可能检查系统对所有有界的输入信号,输出是否都是有界输出,或者检查系统的单位脉冲响应满足绝对可和的条件。

可行的方法是在系统的输入端加入单位阶跃序列,如果系统的输出趋近一个常数(包括零),就可以断定系统是稳定的[19]。

系统的稳态输出是指当∞→n 时,系统的输出。

如果系统稳定,信号加入系统后,系统输出的开始一段称为暂态效应,随n 的加大,幅度趋于稳定,达到稳态输出。

注意在以下实验中均假设系统的初始状态为零。

3.实验内容及步骤(1)编制程序,包括产生输入信号、单位脉冲响应序列的子程序,用filter 函数或conv函数求解系统输出响应的主程序。

程序中要有绘制信号波形的功能。

(2)给定一个低通滤波器的差分方程为)1(9.0)1(05.0)(05.0)(-+-+=n y n x n x n y输入信号 )()(81n R n x =)()(2n u n x =a) 分别求出系统对)()(81n R n x =和)()(2n u n x =的响应序列,并画出其波形。

时域采样定理和频域采样定理

时域采样定理和频域采样定理

时域采样定理和频域采样定理
时域采样定理和频域采样定理是信号处理中的重要理论。

时域采样定理规定,要想保持信号的完整性,采样频率必须大于信号最高频率的两倍以上。

频域采样定理规定,要想保持信号的完整性,采样间隔必须小于信号最低频率的一半以下。

这两个定理可以帮助我们确定信号采样的最佳参数,以保证采样结果的准确性。

时域采样定理和频域采样定理是信号处理中的重要理论,在信号采样过程中起着至关重要的作用。

它们可以帮助我们确定信号采样的最佳参数,以保证采样结果的准确性。

正确的采样参数可以有效地提高采样效率,提高信号处理效果,为研究者带来更多的有效信息。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、实验目的时域采样理论与频域采样理论是数字信号处理中的重要理论。

要求掌握模拟信号采样前后频谱的变化,以及如何选择采样频率才能使采样后的信号不丢失信息;要求掌握频率域采样会引起时域周期化的概念,以及频率域采样定理及其对频域采样点数选择的指导作用。

二、实验原理及方法 1、时域采样定理的要点:a)对模拟信号)(t x a 以间隔T 进行时域等间隔理想采样,形成的采样信号的频谱)(ˆΩj X 是原模拟信号频谱()aX j Ω以采样角频率s Ω(T s/2π=Ω)为周期进行周期延拓。

公式为:)](ˆ[)(ˆt x FT j X a a=Ω )(1∑∞-∞=Ω-Ω=n s a jn j X T b)采样频率s Ω必须大于等于模拟信号最高频率的两倍以上,才能使采样信号的频谱不产生频谱混叠。

利用计算机计算上式并不方便,下面我们导出另外一个公式,以便用计算机上进行实验。

理想采样信号)(ˆt xa 和模拟信号)(t x a 之间的关系为: ∑∞-∞=-=n a a nT t t x t x)()()(ˆδ 对上式进行傅立叶变换,得到:dt e nT t t x j X t j n a a Ω-∞∞-∞-∞=⎰∑-=Ω])()([)(ˆδdt e nT t t x t j n a Ω-∞-∞=∞∞-∑⎰-)()( δ=在上式的积分号内只有当nT t =时,才有非零值,因此:∑∞-∞=Ω-=Ωn nTj aae nT xj X )()(ˆ上式中,在数值上)(nT x a =)(n x ,再将T Ω=ω代入,得到:∑∞-∞=-=Ωn nj aen x j X ω)()(ˆ上式的右边就是序列的傅立叶变换)(ωj e X ,即Tj a e X j X Ω==Ωωω)()(ˆ上式说明理想采样信号的傅立叶变换可用相应的采样序列的傅立叶变换得到,只要将自变量ω用T Ω代替即可。

2、频域采样定理的要点:a)对信号x(n)的频谱函数X(ej ω)在[0,2π]上等间隔采样N 点,得到2()(), 0,1,2,,1j N k NX k X e k N ωπω===-则N 点IDFT[()N X k ]得到的序列就是原序列x(n)以N 为周期进行周期延拓后的主值区序列,公式为:()IDFT[()][()]()N N N N i x n X k x n iN R n ∞=-∞==+∑b)由上式可知,频域采样点数N 必须大于等于时域离散信号的长度M(即N ≥M),才能使时域不产生混叠,则N 点IDFT[()N X k ]得到的序列()N x n 就是原序列x(n),即()N x n =x(n)。

如果N>M ,()N x n 比原序列尾部多N-M 个零点;如果N<M ,z 则()N x n =IDFT[()N X k ]发生了时域混叠失真,而且()N x n 的长度N也比x(n)的长度M 短,因此。

()N x n 与x(n)不相同。

在数字信号处理的应用中,只要涉及时域或者频域采样,都必须服从这两个采样理论的要点。

对比上面叙述的时域采样原理和频域采样原理,得到一个有用的结论,这两个采样理论具有对偶性:“时域采样频谱周期延拓,频域采样时域信号周期延拓”。

因此放在一起进行实验。

三、实验内容及步骤 1、时域采样理论的验证给定模拟信号,)()sin()(0t u t Ae t x ta Ω=-α 式中A=444.128,α=502π,0Ω=502πrad/s ,它的幅频特性曲线如图2.1图2.1 )(t x a 的幅频特性曲线 现用DFT(FFT)求该模拟信号的幅频特性,以验证时域采样理论。

按照)(t x a 的幅频特性曲线,选取三种采样频率,即s F =1kHz ,300Hz ,200Hz 。

观测时间选ms T p 50=。

为使用DFT ,首先用下面公式产生时域离散信号,对三种采样频率,采样序列按顺序用)(1n x ,)(2n x ,)(3n x 表示。

)()sin()()(0nT u nT Ae nT x n x nTa Ω==-α 因为采样频率不同,得到的)(1n x ,)(2n x ,)(3n x 的长度不同, 长度(点数)用公式s p F T N ⨯=计算。

选FFT 的变换点数为M=64,序列长度不够64的尾部加零。

X(k)=FFT[x(n)] , k=0,1,2,3,-----,M-1 式中k 代表的频率为kM k πω2=。

要求: 编写实验程序,计算)(1n x 、)(2n x 和)(3n x 的幅度特性,并绘图显示 析频谱混叠失真。

Matlab 源代码:A=444.128;a=50*sqrt(2)*pi;w0=50*sqrt(2)*pi; Tp=50/1000;F1=1000;F2=300;F3=200; %观察时间Tp=50msT1=1/F1;T2=1/F2;T3=1/F3; %不同的采样频率n1=0:Tp*F1-1;n2=0:Tp*F2-1;n3=0:Tp*F3-1; %产生不同的长度区间n1,n2,n3x1=A*exp(-a*n1*T1).*sin(w0*n1*T1); %产生采样序列x1(n)x2=A*exp(-a*n2*T2).*sin(w0*n2*T2); %产生采样序列x2(n)x3=A*exp(-a*n3*T3).*sin(w0*n3*T3); %产生采样序列x3(n)f1=fft(x1,length(n1)); %采样序列x1(n)的FFT变换f2=fft(x2,length(n2)); %采样序列x2(n)的FFT变换f3=fft(x3,length(n3)); %采样序列x3(n)的FFT变换k1=0:length(f1)-1;fk1=k1/Tp; %x1(n)的频谱的横坐标的取值k2=0:length(f2)-1;fk2=k2/Tp; %x2(n)的频谱的横坐标的取值k3=0:length(f3)-1;fk3=k3/Tp; %x3(n)的频谱的横坐标的取值subplot(3,2,1)stem(n1,x1,'.')title('(a)Fs=1000Hz');xlabel('n');ylabel('x1(n)'); subplot(3,2,3)stem(n2,x2,'.')title('(b)Fs=300Hz');xlabel('n');ylabel('x2(n)'); subplot(3,2,5)stem(n3,x3,'.')title('(c)Fs=200Hz');xlabel('n');ylabel('x3(n)'); subplot(3,2,2)plot(fk1,abs(f1))title('(a) FT[xa(nT)],Fs=1000Hz'); xlabel('f(Hz)');ylabel('幅度') subplot(3,2,4)plot(fk2,abs(f2))title('(b) FT[xa(nT)],Fs=300Hz'); xlabel('f(Hz)');ylabel('幅度') subplot(3,2,6)plot(fk3,abs(f3))title('(c) FT[xa(nT)],Fs=200Hz');xlabel('f(Hz)');ylabel('幅度')实验图像:204060-200200(a)Fs=1000Hznx 1(n )51015-200200(b)Fs=300Hznx 2(n)510-2000200(c)Fs=200Hznx 3(n )500100005001000(a) FT[xa(nT)],Fs=1000Hzf(Hz)幅度1002003000200400(b) FT[xa(nT)],Fs=300Hzf(Hz)幅度501001502000100200(c) FT[xa(nT)],Fs=200Hzf(Hz)幅度结果分析:由图2.2可见,采样序列的频谱的确是以采样频率为周期对模拟信号频谱的周期延拓。

当采样频率为1000Hz 时频谱混叠很小;当采样频率为300Hz 时,在折叠频率150Hz 附近频谱混叠很严重;当采样频率为200Hz 时,在折叠频率110Hz 附近频谱混叠更很严重。

由实验图像可以看出,时域非周期对应着频域连续。

对连续时间函数对采样使其离散化处理时,必须满足时域采样定理的要求,否则,必将引起频域的混叠。

要满足要求信号的最高频率Fc 不能采样频率的一半(Fs/2),不满足时域采样定理,频率将会在ω=π附近,或者f=Fs/2混叠而且混叠得最严重。

2、频域采样理论的验证 给定信号如下:⎪⎩⎪⎨⎧≤≤-≤≤+=其它02614271301)(n n n n n x编写程序分别对频谱函数()FT[()]j X e x n ω=在区间]2,0[π上等间隔采样32和16点,得到)()(1632k X k X 和:32232()() , 0,1,2,31j k X k X e k ωπω=== 16216()(), 0,1,2,15j k X k X e k ωπω===再分别对)()(1632k X k X 和进行32点和16点IFFT ,得到)()(1632n x n x 和:323232()IFFT[()] , 0,1,2,,31x n X k n == 161616()IFFT[()] , 0,1,2,,15x n X k n ==分别画出()j X e ω、)()(1632k X k X 和的幅度谱,并绘图显示x(n)、)()(1632n x n x 和的波形,进行对比和分析,验证总结频域采样理论。

提示:频域采样用以下方法容易变程序实现。

① 直接调用MATLAB 函数fft 计算3232()FFT[()]X k x n =就得到()j X e ω在]2,0[π的32点频率域采样② 抽取32()X k 的偶数点即可得到()j X e ω在]2,0[π的16点频率域采样16()X k ,即1632()(2) , 0,1,2,,15X k X k k ==。

○3 当然也可以按照频域采样理论,先将信号x(n)以16为周期进行周期延拓,取其主值区(16点),再对其进行16点DFT(FFT),得到的就是()j X e ω在]2,0[π的16点频率域采样16()X k 。

Matlab 源代码:M=27;N=32;n=0:M; %产生M 长三角波序列x(n)xa=0:floor(M/2); xb= ceil(M/2)-1:-1:0; xn=[xa,xb]; Xk=fft(xn,1024); %1024点FFT[x(n)], 用于近似序列x(n)的TFX32k=fft(xn,32) ;%32点FFT[x(n)]x32n=ifft(X32k); %32点IFFT[X32(k)]得到x32(n) X16k=X32k(1:2:N); %隔点抽取X32k 得到X16(K) x16n=ifft(X16k,N/2); %16点IFFT[X16(k)]得到x16(n) subplot(3,2,2);stem(n,xn,'.');box on title('(b)三角波序列x(n)');xlabel('n');ylabel('x(n)');axis([0,32,0,20]) k=0:1023;wk=2*k/1024; %subplot(3,2,1);plot(wk,abs(Xk));title('(a)FT[x(n)]'); xlabel('\omega/\pi');ylabel('|X(e^j^\omega)|');axis([0,1,0,200])k=0:N/2-1;subplot(3,2,3);stem(k,abs(X16k),'.');box ontitle('(c) 16点频域采样');xlabel('k');ylabel('|X_1_6(k)|');axis([0,8,0,200])n1=0:N/2-1;subplot(3,2,4);stem(n1,x16n,'.');box ontitle('(d) 16点IDFT[X_1_6(k)]');xlabel('n');ylabel('x_1_6(n)');axis([0,32,0, 20])k=0:N-1;subplot(3,2,5);stem(k,abs(X32k),'.');box ontitle('(e) 32点频域采样');xlabel('k');ylabel('|X_3_2(k)|');axis([0,16,0,200])n1=0:N-1;subplot(3,2,6);stem(n1,x32n,'.');box ontitle('(f) 32点IDFT[X_3_2(k)]');xlabel('n');ylabel('x_3_2(n)');axis([0,32,0,20])实验图像10203001020(b) 三角波序列x(n)nx (n )0.510100200(a)FT[x(n)]ω/π|X (e j ω)|24680100200(c) 16点频域采样k|X 16(k )|10203001020(d) 16点IDFT[X 16(k)]nx 16(n )510150100200(e) 32点频域采样k|X 32(k )|10203001020(f) 32点IDFT[X 32(k)]nx 32(n )结果分析:该图验证了频域采样理论和频域采样定理。

相关文档
最新文档